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Abstract
A crucial quest in neuroimaging is the discovery of image features (biomarkers) associated with neurodegenerative disorders.
Recent works show that such biomarkers can be obtained by image analysis techniques. However, these techniques cannot
be directly compared since they use different databases and validation protocols. In this paper, we present an extensive
study of image descriptors for the diagnosis of Alzheimer Disease (AD) and introduce a new one, named Residual Center
of Mass (RCM). The RCM descriptor explores image moments and other techniques to enhance brain regions and select
discriminative features for the diagnosis of AD. For validation, a Support Vector Machine (SVM) is trained with the selected
features to classify images from normal subjects and patients with AD. We show that RCM with SVM achieves the best
accuracies on a considerable number of exams by 10-fold cross-validation — 95.1% on 507 FDG-PET scans and 90.3% on
1374 MRI scans.
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Introduction

The Alzheimer Disease (AD) is a neurodegenerative
disorder that critically affects memory, reasoning, and
behavior. It is the most common type of dementia,
accounting for 60%–80% of the cases (Alzheimer’s
Association 2017). Worldwide, it is estimated that 47.5
million people live with dementia and such prevalence is
expected to double in 20 years (World Health Organization
2017). There is no cure for AD, but a suitable treatment
can relieve the symptoms and reduce its aggravation. Its
early and accurate diagnosis is crucial to improve the life
quality of the patient, but this is a complex task that requires
cognitive and objective tests, patient records, clinical and
laboratory exams.

Recent works have shown that biomarkers obtained by image
processing and machine learning techniques can aid the diagno-
sis of AD (Chincarini et al. 2011; Garali et al. 2016; Liu et al.
2014). Machines might also provide a more accurate diagnosis
than clinicians, because they are free from fatigue and can
deal with neurodegenerative patterns of difficult visualiza-
tion (Casanova et al. 2011; Klöppel et al. 2008). Effects of
aging also cause brain changes, making more difficult the
effective pattern identification (Ambastha 2015).
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Many works have reported high accuracies when using
different image databases, pattern classifiers, and validation
protocols. This makes impossible a comparative analysis of
their image descriptors. In this work, we present an exten-
sive study of image descriptors for the diagnosis of AD
and introduce a new one, named Residual Center of Mass
(RCM). RCM explores image moments and other opera-
tions to enhance brain regions and select the most relevant
features for the diagnosis of AD. For validation, a Support
Vector Machine (SVM) is trained with the selected features
to classify images from Normal Control (NC) subjects and
patients with AD. We show that RCM with SVM achieves
the best accuracies on a considerable number of exams —
507 Fluorodeoxyglucose-Positron Emission Tomography
(FDG-PET) scans and 1,374 Magnetic Resonance Imag-
ing (MRI) scans, as provided by the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) (Jack et al. 2008).

The related works are described in Section “Related
Works”, making clear the motivation and impact of this
paper. Section “Materials” presents the databases and the
image preprocessing techniques used for the experiments.
The RCM descriptor is introduced in Section “Methods”
and its comparative study is presented in Section “Results
and Discussion”. Finally, Section “Conclusion” states
conclusion and provides direction to future research.

RelatedWorks

Neuroimaging methods for Computer-Aided Diagnosis
(CAD) are composed by different techniques of image
processing and classification, as shown in Fig. 1. Each
method has each its own pipeline of processes described in
the following. The images are preprocessed to remove the
skull and muscle tissues, both irrelevant for classification.
Then, the images are spatially normalized (e.g., registered
into a reference image space) to account for the natural
differences in size and shape of the brain. The voxel
intensities are also normalized to correct the large variations
caused by the use of different scanners and parameters.
Finally, the images may be resized to a lower resolution, for

the sake of efficiency, and smoothed by a low-pass filter to
reduce the effects of misregistration.

In the next step, some works extract image features
and/or apply feature-space reduction techniques. Subse-
quently, the image descriptor results from feature selection
techniques and/or regions/volumes of interest (ROIs/VOIs).
ROIs are image regions that represent the spatial extension
of brain structures, which are interactively delineated or
automatically segmented based on object models, such as a
probabilistic atlas (Carmichael et al. 2005). VOIs are volu-
metric blocks extracted from the image at given locations, as
defined by prior knowledge in some reference image space.
Finally, a classifier is trained from the image descriptor and
evaluated by some validation method .

The performances of recent neuroimaging methods using
MRI and FDG-PET scans are presented in Tables 1 and 2.
The following metrics are reported:

Accuracy (ACC) = T P+T N
T P+T N+FP+FN

,

P recision (PRE) = T P
T P+FP

,

Recall (REC) = T P
T P+FN

,

Specif icity (SPE) = T N
FP+T N

,

(1)

where TP (true positives) are the AD patients correctly
classified as AD, TN (true negatives) are the normal control
(NC) individuals correctly classified as NC, FP (false
positives) are the NC incorrectly identified as AD and FN
(false negatives) are the AD patients incorrectly identified as
NC. The positive class represents the data from AD patients
and the negative, the data from healthy individuals.

The simplest approach for the detection of AD consists
in classifying the images directly based on their voxel
values. Some works classify voxels from segmented tissues
(ROIs) (Casanova et al. 2011; Klöppel et al. 2008; Rao
et al. 2011) by logistic regression (LR) or SVM. Others
train deep learning architectures with the whole brain image
volume (Ambastha 2015; Gupta et al. 2013; Liu et al. 2015;
Payan and Montana 2015). Klöppel et al. (2008) achieved an
accuracy rate of 96.4% when classifying images of the gray
matter tissue by SVM, but they used images from only 68

Fig. 1 Processes of neuroimaging methods for computer-aided diagnosis
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Table 1 Classification performances of methods using MRI scans

Method Subjects ACC (%) PRE (%) REC (%) SPE (%)

3D ConvNet + AdaBoost (Ambastha 2015) 50 AD, 50 NC 81.8 − − −
3D ConvNet with SAE (Ambastha 2015) 50 AD, 50 NC 81.8 − − −
White and gray matter + PLR (Casanova et al. 2011) 49 AD, 49 NC 85.7 ± 1.0 − 82.9 ± 1.9 90.0 ± 1.5

VOI + SVM (Chincarini et al. 2011) 144 AD, 189 NC − − 89.0 94.0

ConvNet 2D with SAE (Gupta et al. 2013) 200 AD, 232 NC 94.7 − 95.2 94.3

PCA + SVM (Khedher et al. 2015) 188 AD, 229 NC 87.8 − 90.0 85.1

Gray matter + SVM (Klöppel et al. 2008) 34 AD, 34 NC 96.4 − 100.0 92.9

Biomarkers + SVM (Liu et al. 2014) 198 AD, 229 NC 90.2 ± 0.5 − 85.3 ± 0.6 94.3 ± 0.4

Stacked AE (Liu et al. 2015) 85 AD, 77 NC 82.6 ± 5.3 84.3 ± 7.4 86.8 ± 6.8 77.8 ± 10.8

3D ConvNet with SAE (Payan and Montana 2015) 200 AD, 232 NC 95.4 − − −
Gray matter + SLR (Rao et al. 2011) 69 AD, 60 NC 85.3 ± 1.4 − 90.8 ± 3.7 80.3 ± 3.9

ICA + SVM (Yang et al. 2011) 202 AD, 236 NC 88.9 − 80.9 95.8

subjects. Casanova et al. (2011) tested the performance of a
penalized logistic regression (PLR) to classify 98 subjects,
resulting in an accuracy rate of 85.7%. In Rao et al. (2011), a
sparse logistic regression (SLR) was trained, incorporating
a sparsity penalty into the log-likelihood function, such
that 85.3% of the images from 129 subjects were correctly
classified.

Recent works (Ambastha 2015; Gupta et al. 2013;
Liu et al. 2015; Payan and Montana 2015) adopt deep
learning techniques for feature extraction and classification
using images from the ADNI databases (Jack et al. 2008).
Ambastha (2015) proposed a 3D convolutional neural
network (ConvNet), reporting an accuracy rate of 81.8%
in the classification of 100 individuals. In Payan and
Montana (2015), the authors trained a 3D ConvNet with
Sparse Autoencoders (SAE) and reported a high accuracy
rate of 95.4% on images of 432 individuals. However,
according to Ambastha (2015), the experiments in Payan
and Montana (2015) indicate bias in the data. Liu et al.
(2015) evaluated a multimodal approach, training Stacked
Autoencoders (Stacked AE) with FDG-PET and MRI scans
from 162 subjects. They reported a high accuracy rate of
91.4%. Gupta et al. (2013) trained a 2D ConvNet with SAE
to extract features from MRI slices, achieving an accuracy
rate of 94.7% on images of 432 individuals.

We may also say that the most promising approaches
apply feature selection methods to discover biomarkers and
remove non-informative features. Liu et al. (2014) selected
the most relevant features using a tree construction method
based on hierarchical clustering by taking into account
spatial adjacency and feature similarity and discriminability.
They achieved an accuracy rate of 90.2% for classifying 198
AD patients and 229 NC. In Garali et al. (2016), the brain
was segmented into 116 regions to create a ranking of the
most discriminative regions. Features were selected from
29 ROIs using the SelectKBest method (Kramer 2016),
achieving an accuracy rate of 94.4% in the classification of
142 subjects. In Chincarini et al. (2011), different features
were extracted from 9 VOIs to classify 144 AD and 189 NC.
The features with the highest relative importance values,
given by a Random Forest classifier (Breiman 2001), were
selected to train an SVM classifier. This approach was
able to discriminate NC from AD individuals with 89% of
sensitivity and 94% of specificity.

Other approaches use Principal Component Analysis
(PCA) and Independent Component Analysis (ICA) to
reduce the feature space. Khedher et al. (2015) applied
PCA to extract features from segmented MRI scans,
achieving an accuracy rate of 87.7% on images from 417
individuals. Approaches with ICA achieved accuracies of

Table 2 Classification
performances of methods using
FDG-PET scans

Method Subjects ACC (%) REC (%) SPE (%)

ROI + SVM (Garali et al. 2016) 61 AD, 81 NC 94.4 − −
ICA + SVM (Illán et al. 2011) 95 AD, 97 NC 87.0 87.8 86.4

PCA + SVM (Illán et al. 2011) 95 AD, 97 NC 88.2 87.7 88.6

ICA + SVM (Wenlu et al. 2011) 80 AD, 80 NC 86.8 73.9 99.7
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Table 3 Demographic
information of each dataset Dataset Group Subjects Female/Male Age No. of images

MRI Normal 222 109/113 77.2 ± 5.2 865

AD 181 85/96 76.4 ± 7.5 509

FDG-PET Normal 93 35/58 77.5 ± 5.0 304

AD 79 33/46 76.9 ± 6.8 203

88.9% (Yang et al. 2011) and 86.8% (Wenlu et al. 2011)
in the classification of 438 and 160 subjects, respectively.
In Illán et al. (2011), the experiments were performed by
applying ICA and PCA to images from 192 subjects. The
best accuracy was 88.24%, as obtained by PCA with SVM.

Therefore, given the differences in databases, classifiers,
and validation protocols, it is impossible to indirectly
compare the image descriptors or methods (descriptor and
classifier) proposed in the aforementioned works. We have
then selected some of them for a fair comparative analysis
based on 10-fold cross-validation and a considerable
number of FDG-PET and MRI scans.

Materials

ADNI Database

The data used in the preparation of this article were obtained
from the ADNI databases (adni.loni.usc.edu). The ADNI
was launched in 2003 by the National Institute on Aging
(NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies and non-profit
organizations, as a $60 million, 5-year public-private
partnership. The primary goal of ADNI has been to test

Fig. 2 Flowchart to compute the RCM features. The images on the right are the inputs and outputs of each feature extraction step
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Fig. 3 Schematic representation
of the validation method

whether serial MRI, FDG-PET, other biological markers,
and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive
impairment (MCI) and early AD. Determination of sensitive
and specific markers of very early AD progression is
intended to aid researchers and clinicians to develop new
treatments and monitor their effectiveness, as well as reduce
the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael
W. Weiner, MD, VA Medical Center, the University of
California - San Francisco. ADNI is the result of efforts
of many co-investigators from a broad range of academic
institutions and private corporations, and subjects have
been recruited from over 50 sites across the U.S. and
Canada. The initial goal of ADNI was to recruit 800
subjects, but ADNI has been followed by ADNI-GO and
ADNI-2. To date, these three protocols have recruited
over 1,500 adults of age from 55 to 90, consisting of
cognitively normal older individuals, people with early
or late MCI, and people with early AD. The follow-
up duration of each group is specified in the protocols
for ADNI-1, ADNI-2, and ADNI-GO. Subjects originally
recruited for ADNI-1 and ADNI-GO had the option to
be followed in ADNI-2. For up-to-date information, see
www.adni-info.org.

Our experiments were performed using scans acquired
over a 2 or 3-year period in two imaging modalities: FDG-
PET and T1-weighted MRI. The group and demographic
information about the data are summarized in Table 3. The
data include 507 FDG-PET scans from 172 individuals and
1374 MRI scans from 403 individuals.

Preprocessing

Before extracting the features, the images are preprocessed
through 4 steps: skull-stripping, spatial normalization, min-
max normalization, and image downsampling.

Skull-stripping: firstly, the skull is stripped off using the
Brain Extraction Tool version 2 (BET2) from the FMRIB
Software Library 4.1 (FSL 4.1) (Jenkinson et al. 2005).
This step removes the skull and the muscle tissue of
the head. The skull-stripping algorithm creates a three-
dimensional mesh with a spherical shape positioned at
the center of gravity of the head. The mesh is iteratively
expanded, adjusting its vertices to the borders detected
between the brain tissues and the skull. Then, the brain is
separated from the skull by applying the mask defined by
this mesh. In the FDG-PET images, the skull region is not
well-defined. Thus the skull-stripping was not performed

Neuroinform (2019) 17:307–321 311
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Fig. 4 Preprocessed image and
features extracted with filter size
5

and the images were only smoothed with a 12mm FWHM
(Full width at half maximum) Gaussian filter (Landini
et al. 2005).

Spatial normalization: the images are spatially normal-
ized onto the MNI (Montreal Neurological Institute)
reference space (Fonov et al. 2011). This step reduces
the brain anatomy variability among individuals, warp-
ing the images into a standard coordinate space. The MRI

images are normalized using the symmetric diffeomor-
phic registration (SyN) (Avants et al. 2008). In an evalu-
ation of 14 brain registration methods, the SyN was the
algorithm that presented the best results according to
overlap and distance measures (Klein et al. 2009). The
FDG-PET scans are registered using the Statistical Para-
metric Mapping 5 (SPM 5) toolbox (Eickhoff et al. 2005)
configured with its default parameters.

Neuroinform (2019) 17:307–321312



Fig. 5 Scores computed using
preprocessed images and their
features

Min-max normalization: the voxel values are mapped in
the range [0, 1], calculated by:

Inorm(p) = I (p) − Imin

Imax − Imin

. (2)

Each voxel I (p) at its position p = (p1, p2, p3) is
subtracted to the minimum value Imin of all voxels. Then,

they are divided by the difference between the maximum
Imax and the minimum Imin of their original values.

Image downsampling: After registration, each image is
downsampled to the dimension 74×92×78 with a voxel
size of 2 × 2 × 2 mm3, which results in 531 024 voxels.
This process helps to eliminate noise and compensate
imprecisions in the registration. Also, the computational
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time and memory requirements are reduced without
losing discriminant information (Segovia et al. 2010,
2012).

Methods

Image Description

When analyzing biomarkers from other studies (Chincarini
et al. 2011; Liu et al. 2014), we can observe that the brain
boundaries concentrate the most discriminative voxels for
the detection of AD. Thus, we explore in this work image
operations to highlight theses areas. We extract three types
of features for evaluation: top-hat (Heijmans and Roerdink
1998), Mexican-hat (Russ 2016) and RCM. The first two
were already used in neuroimaging applications (Sensi et al.
2014; Somasundaram and Genish 2014). The last one,
RCM, is proposed in this work.

In computer vision, image moments have been exten-
sively used for pattern recognition (Chaumette 2004). In this
work, we use image moments to extract a feature designed
to highlight the brain boundaries. The process to extract the
RCM features has three steps as presented in Fig. 2.

In the first step, we compute the center of mass locally
in regions of the image using three-dimensional moments.
For a continuous function f (p1, p2, p3), we can define the
moment of order (q + r + s) as:

Mqrs =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
p

q

1 pr
2p

s
3f (p1, p2, p3)dp1dp2dp3 (3)

where q, r, s = 0, 1, 2, ...,∞. Adapting (3) to volumetric
images with voxel intensities I (p1, p2, p3), image moments
Mijk are calculated by:

Mijk =
∑

p1,p2,p3

pi
1p

j

2pk
3I (p1, p2, p3) (4)

where i, j, k ∈ N and (i +j +k) is the order of the moment.
A set of moments up to order n consists of all moments

Mi,j,k such that 0 ≤ i + j + k ≤ n. Moments of low orders
provide geometric properties of the image. The zero-order
moment M000 defines the total of mass of the image I . The
ratios between the first-order moments and the zero-order
moments (M100/M000, M010/M000, M001/M000) define the
center of mass or centroid of the image.

To extract the RCM features, an image IC is created with
all voxel values of the centroids calculated locally in regions
of the input image. We define a region R at each voxel p
of the input image and compute the centroid CP of R as
follows:

Cp =
∑

p∈R pI (p)∑
p∈R I (p)

, (5)

where I (p) is the voxel value at the position p. The region R

at a position p = (p1, p2, p3) is defined by all valid voxels
between (p1 −s/2, p2 −s/2, p3 −s/2) and (p1 +s/2, p2 +
s/2, p3 + s/2), where s × s × s is the region’s size.

In the second step, the center of mass image IC is
smoothed by a mean filter, creating a smoothed image I ′

C .
Lastly, we subtract I ′

C from the input image of the brain
to output the RCM features. Figure 2 presents the resulting
images from the RCM procedure. The first image is the
input image used to extract the features. The second is the
center of mass image IC . The third image is I ′

C and the voxel
intensities of the last image represent the RCM features.

Feature Selection

One of the main challenges in working with neuroimages
is the curse of dimensionality. In neuroimaging studies,
there are generally hundreds of images to be analyzed for
thousands of features. All that can easily lead to classifiers
that overfit the data. Some studies avoid this problem by
introducing regularization parameters to train sparse models
(Rao et al. 2011). Others use feature selection techniques to
identify biomarkers (Breiman 2001; Chincarini et al. 2011;
Garali et al. 2016; Kramer 2016; Liu et al. 2014).

A popular technique used in machine learning appli-
cations is the feature selection by ANOVA (Analysis Of
Variance) (Chen and Lin 2006; Costafreda et al. 2009;
Costafreda et al. 2011; Elssied et al. 2014; Garali et al. 2016;
Golugula et al. 2011; Grünauer and Vincze 2015). It con-
sists of selecting the most relevant features for classification
by calculating scores with the ANOVA F-test. The features
with the lowest F-values are filtered out and the features
with the highest F-values are maintained as the final image
descriptor to train and test the classifier. We can define the
F-value as:

F = S2
B

S2
W

. (6)

S2
B is the between-group variability (sets of samples per

class), given by:

S2
B =

∑
i ni(x̄i − x̄)2

K − 1
, (7)

where ni and x̄i denote the number of observations and the
sample mean in the ith group, respectively. x̄ is the overall
mean of the data and K denotes the number of groups (or
classes).

S2
W is the within-group variability, defined as:

S2
W =

∑
ij (xij − x̄i )

2

N − K
, (8)

where xij is the j th observation in the ith group and N is
the overall sample size.
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Studies have shown that ANOVA is an efficient method
to discover biomarkers (Costafreda et al. 2009, 2011; Garali
et al. 2016). However, it is very sensitive to outliers (French
et al. 2017; Halldestam 2016). Noisy data and errors in
the spatial normalization can hamper the effectiveness of
the scores. To avoid that, the F-values are computed in
an iterative process by random sampling the data. The
pseudo-code of the method is summarized as follows:

First, a score vector (scores) is initialized with zeros.
Each voxel value (or feature) is associated with a score
value. And X represents the set of vectors composed by
the image voxels of each sample. We select a random
subset of samples X′ from X and compute the F-values
(f V alues) for each feature in X′. Then the scores of
each feature are updated with the maximum values of the
score values (scores) and the F-values (f V alues). The
random selection and the score update are executed until
a stopping criteria is reached. We may stop the execution
when a maximum iteration number is achieved or the scores
converges to some value. The positions of the relevant
features for classification are identified by selecting the
regions associated with the N highest scores. Lastly, we
select the N features in the corresponding relevant positions.

Results and Discussion

ValidationMethod

The experiments adopted the 10-fold cross-validation
method, presented in the flowchart of Fig. 3. First, the
data are split in ten folds, assigning the images of each
subject to different folds to avoid biased results. Then, ten
classification tests are performed. In each test, one fold is
selected to be the test set and the others are split in training
and validation sets. After splitting the data, we have about
10% of the data for testing, 85% for training and 5% for
validation.

From the training set, we compute the scores for the
feature selection. Then, the features are selected and the
classifier is trained, adjusting its parameters and the number

Table 4 Rank of the regions with highest scores in MRI scans

sub cortical gray nuclei - amygdala l

limbic lobe - hippocampus l

limbic lobe - hippocampus r

sub cortical gray nuclei - amygdala r

limbic lobe - parahippocampal gyrus l

limbic lobe - parahippocampal gyrus r

temporal lobe - lateral surface - heschl gyrus l

insula l

limbic lobe - temporal pole superior temporal gyrus l

temporal lobe - lateral surface - heschl gyrus r

of features selected using the validation data. At last, the
classifier is tested using the test data and the performance
metrics are reported.

Experiments and Results

In the experiments of this work, we first analyze the
classification performances of the preprocessed images
and three descriptors: RCM and the preprocessed input
image filtered by mexican-hat and by top-hat. Different
patterns are generated with different filter scales. Thus,
four filter sizes are used to extract the features: 3, 5, 7
and 9. The descriptors for classification are represented by
vectors concatenating the features of each filter size, as
selected with the scores computed by ANOVA. Examples
of features extracted with filter size equal to 5 are shown
in Fig. 4. All images are normalized to the range 0 to
255 of grayscale values for visualization. The images
Fig. 4b, c and d are the RCM, top-hat and mexican-hat
features extracted from the preprocessed image Fig. 4a,
respectively.

In feature selection, the scores are computed separately
for each type of feature and filter size using 100 iterations.
Figure 5 presents the scores computed with the preprocessed
images and their features. The filters applied in the images

Table 5 Rank of the regions with highest scores in FDG-PET scans

limbic lobe - posterior cingulate gyrus l

limbic lobe - posterior cingulate gyrus r

parietal lobe - lateral surface - angular gyrus l

limbic lobe - hippocampus l

limbic lobe - hippocampus r

parietal lobe - lateral surface - angular gyrus r

sub cortical gray nuclei - amygdala l

limbic lobe - parahippocampal gyrus l

sub cortical gray nuclei - thalamus l

parietal lobe - medial surface - precuneus r

Neuroinform (2019) 17:307–321 315



Fig. 6 Classification accuracy
when the number of selected
features varies

help to select discriminant features, highlighting the scores
of relevant voxels near the boundary. We ranked the brain
regions by their scores and the results are consistent with the
literature (Ambastha 2015; Garali et al. 2016). The brain is
segmented in 116 anatomical regions using masks extracted
from the MARINA software (Walter et al. 2003). The 10
regions with highest mean scores in MRI and FDG-PET
scans are presented in the Tables 4 and 5. The MRI features

with the highest scores are located in the hippocampi,
parahippocampi, and amygdalae. In the FDG-PET scans,
the top ranked regions are the posterior cingulate gyrus,
angular gyrus and hippocampi.

To calculate the scores, random subsets are selected
choosing randomly images from 95% of the subjects from
the training data. At each iteration, only one image is
chosen by subject to keep the number of samples fixed for

Neuroinform (2019) 17:307–321316



Table 6 Classification performances of SVM with each descriptor

Dataset Type of feature ACC (%) PRE (%) REC (%) SPE (%) κ

MRI Preprocessed image 83.8 ± 6.2 79.2 ± 10.8 78.1 ± 10.0 87.1 ± 7.9 0.65 ± 0.12

Top-hat 86.2 ± 5.7 83.0 ± 9.8 80.5 ± 7.2 89.9 ± 6.5 0.73 ± 0.1

Mexican-hat 87.5 ± 4.7 84.0 ± 9.1 81.7 ± 7.2 90.9 ± 4.9 0.7 ± 0.11

RCM 90.3 ± 4.790.3 ± 4.790.3 ± 4.7 88.5 ± 9.088.5 ± 9.088.5 ± 9.0 85.5 ± 6.285.5 ± 6.285.5 ± 6.2 93.3 ± 5.193.3 ± 5.193.3 ± 5.1 0.79 ± 0.10.79 ± 0.10.79 ± 0.1

FDG-PET Preprocessed image 86.7 ± 10.9 83.1 ± 15.3 91.2 ± 16.2 84.4 ± 17.5 0.72 ± 0.23

Top-hat 87.9 ± 11.5 86.1 ± 15.5 86.1 ± 12.7 89.0 ± 14.2 0.77 ± 0.25

Mexican-hat 89.3 ± 12.3 87.1 ± 15.5 86.5 ± 16.1 91.2 ± 11.9 0.75 ± 0.24

RCM 95.1 ± 6.095.1 ± 6.095.1 ± 6.0 93.8 ± 7.493.8 ± 7.493.8 ± 7.4 95.9 ± 8.795.9 ± 8.795.9 ± 8.7 94.6 ± 7.894.6 ± 7.894.6 ± 7.8 0.9 ± 0.120.9 ± 0.120.9 ± 0.12

the calculation of the F-values. The number of features is
selected by the value that achieved the highest accuracy on
the validation set. Experiments were performed by training
linear SVM classifiers with penalty parameter C fixed at
value 1. Other values of C did not cause variations in
classification performances.

Figure 6 shows the average accuracy on the test set
with respect to different number of selected features. For
each neuroimaging modality, we evaluated the classification
performance of SVM with each descriptor: the preprocessed
input image and the filtered images. The highest classi-
fication performance of SVM was obtained with the RCM
descriptor. Correct classification rates of 90.3% e 95.1% were
achieved for the MRI and FDG-PET modalities, respectively.
Table 6 presents the results for each image descriptor. The
highest means of the performance rates are emphasized in
bold.

Figure 7 shows the Receiver Operating Characteristic
(ROC) (Hanley and McNeil 1982) plots of the RCM
descriptor. Analyzing the ROC curves, we can observe
variations in the classification performances across the folds
due to the diversity of individuals. This shows that there are
some subjects more difficult to classify than others. Thus,
our choice for 10-fold cross-validation is justified to obtain
more reliable results.

The results reported in the literature are difficult to be
compared given the differences in the validation methods,
databases and amount of data used. In addition, problems
such as the presence of images of the same individual in
both training and test sets, or the lack of consideration to
the variability among individuals in the validation method,
may compromise the accuracy of the results. Therefore,
for a more reliable comparison with other methods, the
performances of different techniques were evaluated using
k-fold cross-validation with k = 10 without overlapping
images of the same individual in the training and test sets.
The same images and folds were used to evaluate these
methods. The results are reported in Table 7. The highest
means of the performance rates are emphasized in bold.

The classification performances of LR with the prepro-
cessed images, feature-space reduction, and Deep Learning
techniques were also evaluated. PLR models were trained
with regularization parameter λ = 0.5, achieving accuracies
of 82.2% and 91.6% on MRI and FDG-PET images. SLR
with regularization and sparsity parameters, λ = 0.5 and
β = 0.5, achieved correction classification rates of 81.0%
and 91.6% in the classification of MRI and FDG-PET
images, respectively.

Feature-space reduction techniques also resulted in high
accuracy of classification. The space dimension of the
images was reduced by PCA and ICA, followed by SVM
classification. The best results were obtained with ICA,
presenting correct classification rates of 82.3% and 92.1%
on MRI and FDG-PET images, respectively. The PCA
method resulted in a accuracy of 81.9% and 89.8% on MRI
and FDG-PET images. The number of components chosen
for the feature-space reduction was determined by the value
that reached the highest accuracy in the classification of the
validation data.

Deep learning techniques have proved to be effective for
image representation and classification. For neuroimaging
applications, different architectures have been exploited
(Ambastha 2015; Gupta et al. 2013; Liu et al. 2015; Payan
and Montana 2015). Most of the works train their models
with Autoencoders (Gupta et al. 2013; Liu et al. 2015; Payan
and Montana 2015) due to the high dimensionality of the
data. Some of these works, however, do not split the training
and the test sets by subjects. This implies in a high risk
of overfitting, because some databases can have multiple
images of a same subject. Thus, we evaluated in this work
the performances of two ConvNet architectures (Gupta et al.
2013; Payan and Montana 2015) trained with SAE.

The 2D architecture of Gupta et al. (2013) resulted in
low accuracies below 60%. The large pooling causes the
loss of discriminant information, affecting the classification
performances. The 43 084 800 features extracted by
the convolution layer are reduced to 61 200. Generally,
ConvNets use pooling sizes of 3 × 3 or 5 × 5, preserving
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Fig. 7 ROC curves of
experiments performed with
RCM features

discriminant information. But in this architecture, the size
used was 24x30.

Payan and Montana (2015) trained a 3D ConvNet with
the same data used in Gupta et al. (2013), reporting a
greater accuracy. Our experiments with this architecture

have reached accuracies of 82.3% and 87.1% on MRI and
FDG-PET images.

Considering the randomness on the data that can
affect the classification performances, we also reported
the Cohen’s kappa coefficient (Association et al. 1999)
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Table 7 Classification performances obtained from different techniques using 10-fold cross-validation

Dataset Method ACC (%) PRE (%) REC (%) SPE (%) κ

MRI PLR 82.2 ± 6.9 72.3 ± 10.8 87.3 ± 5.687.3 ± 5.687.3 ± 5.6 79.4 ± 10.4 0.64 ± 0.13

SLR 81.0 ± 7.0 70.5 ± 10.9 86.7 ± 5.5 77.6 ± 10.9 0.61 ± 0.13

PCA + SVM 81.9 ± 6.4 78.5 ± 11.7 73.2 ± 7.2 87.4 ± 8.0 0.61 ± 0.13

ICA + SVM 82.3 ± 4.2 79.5 ± 11.2 71.9 ± 8.9 88.8 ± 7.0 0.61 ± 0.09

2D ConvNet with SAE 59.5 ± 6.2 52.8 ± 25.3 25.8 ± 24.1 81.6 ± 19.2 0.03 ± 0.05

3D ConvNet with SAE 82.3 ± 5.0 78.7 ± 13.0 75.1 ± 8.0 86.9 ± 8.9 0.62 ± 0.1

RCM + SVM 90.3 ± 4.790.3 ± 4.790.3 ± 4.7 88.5 ± 9.088.5 ± 9.088.5 ± 9.0 85.5 ± 6.2 93.3 ± 5.193.3 ± 5.193.3 ± 5.1 0.79 ± 0.10.79 ± 0.10.79 ± 0.1

FDG-PET PLR 91.6 ± 9.0 88.5 ± 11.8 92.1 ± 13.0 91.2 ± 9.4 0.82 ± 0.19

SLR 91.6 ± 8.9 89.0 ± 10.7 91.5 ± 13.1 91.7 ± 9.0 0.82 ± 0.19

PCA + SVM 89.8 ± 7.6 90.0 ± 11.2 86.0 ± 14.4 92.5 ± 9.1 0.78 ± 0.16

ICA + SVM 92.1 ± 7.7 92.4 ± 8.8 88.2 ± 14.8 95.9 ± 4.395.9 ± 4.395.9 ± 4.3 0.83 ± 0.17

2D ConvNet with SAE 53.1 ± 9.9 46.0 ± 34.6 12.2 ± 7.8 87.2 ± 10.5 −0.07 ± 0.13

3D ConvNet with SAE 87.1 ± 7.3 89.8 ± 9.5 78.6 ± 14.5 93.1 ± 7.3 0.72 ± 0.15

RCM + SVM 95.1 ± 6.095.1 ± 6.095.1 ± 6.0 93.8 ± 7.493.8 ± 7.493.8 ± 7.4 95.9 ± 8.795.9 ± 8.795.9 ± 8.7 94.6 ± 7.8 0.9 ± 0.120.9 ± 0.120.9 ± 0.12

obtained in each experiment. Different from the accuracy,
Cohen’s Kappa calculates the correct classification rates
independently for each class and then aggregates them into
a single value. This metric is less sensitive to randomness
caused by variations in the numbers of observations of each
class. The coefficient κ can be defined by:

κ = 1 − 1 − po

1 − pe

, (9)

where po is the relative agreement rate observed between
the real value and the estimated value by the classifier, being
equal to the value of the accuracy:

po = T P + T N

T P + T N + FP + FN
. (10)

The term pe is the hypothetical probability of chance
agreement, calculated by:

pe = (T P +FN)(T P +FP)+(FP + T N)(FN + T N)

(T P + T N + FP + FN)2
.

(11)

According to Landis and Koch (1977), the κ value can be
interpreted based on the intervals shown in Table 8.

Table 8 Interpretation of κ based on intervals of values (Landis and
Koch 1977)

κ values Interpretation

< 0 No agreement

0 − 0.19 Slight agreement

0.20 − 0.39 Fair agreement

0.40 − 0.59 Moderate agreement

0.60 − 0.79 Substantial agreement

0.80 − 0.99 Almost perfect agreement

The κ values obtained for each classification method are
presented in Table 7. Analyzing κ , the performances with
RCM indicate substantial agreement and almost perfect
agreement with the clinical information of the MRI and
FDG-PET scans, respectively.

Conclusion

In this paper, we analyzed the performances of different
methods for the discovery of image biomarkers associated
with AD. Experiments were performed with large and
public datasets of MRI and FDG-PET scans. The results
showed that image filtering techniques could be useful
to improve the classification performances. We also
proposed the RCM descriptor that extracts features from
the brain boundaries. Our method was able to find relevant
biomarkers not requiring prior knowledge of ROIs/VOIs.
Also, the whole brain with gray matter and white matter
tissues was used for feature extraction. Thus, tissue
segmentation was not necessary as in other approaches.
In comparison with other methods, the classification with
the RCM descriptor obtained high performances with low
variances.

AD severely damages the hippocampal region that begins
to be affected from the earliest stages of the disease, even
before it impairs the patient’s cognitive ability. In this work,
it is noted that this region is very important for the diagnosis
as also reported in medical studies. The results indicate that
relevant regions can be automatically found by computers
and are useful for supporting the clinical diagnosis.

PET images indicated a high potential to aid the
diagnosis of AD. It is expected that this type of exam
will be an important tool for diagnosis and prognosis.
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Furthermore, with advances in treatment methods, imaging
exams will be of great importance for the discovery and
determination of the stages of AD. In future work, we
intend to investigate multimodal approaches with FDG-PET
and MRI, since the combination of different modalities
improved the classification performances in other studies.
RCM can also be investigated to classify images of patients
with other stages of dementia, such as early and late MCI.
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Klöppel, S., Stonnington, C.M., Barnes, J., Chen, F., Chu, C., Good,
C.D., Mader, I., Mitchell, L.A., Patel, A.C., Roberts, C.C., et al
(2008). Accuracy of dementia diagnosis - a direct comparison
between radiologists and a computerized method. Brain: A
Journal of Neurology, 131(11), 2969–2974.

Kramer, O. (2016). Scikit-learn. In Machine learning for evolution
strategies (pp. 45–53). Springer.

Landini, L., Positano, V., Santarelli, M. (2005). Advanced image
processing in magnetic resonance imaging. CRC Press.

Landis, J.R., & Koch, G.G. (1977). The measurement of observer
agreement for categorical data. Biometrics, 159–174.

Liu, M., Zhang, D., Shen, D., ADNI, et al. (2014). Identifying
informative imaging biomarkers via tree structured sparse learning
for AD diagnosis. Neuroinformatics, 12(3), 381–394.

Liu, S., Liu, S., Cai, W., Che, H., Pujol, S., Kikinis, R., Feng, D.,
Fulham, M.J., et al. (2015). Multimodal neuroimaging feature

learning for multiclass diagnosis of Alzheimer’s disease. IEEE
Transactions on Biomedical Engineering, 62(4), 1132–1140.

Payan, A., & Montana, G. (2015). Predicting Alzheimer’s disease:
a neuroimaging study with 3d convolutional neural networks.
arXiv:1502.02506.

Rao, A., Lee, Y., Gass, A., Monsch, A. (2011). Classification of
Alzheimer’s disease from structural MRI using sparse logistic
regression with optional spatial regularization. In 2011 Annual
International conference of the IEEE engineering in medicine and
biology society, EMBC (pp. 4499–4502). IEEE.

Russ, J.C. (2016). The image processing handbook. CRC Press.
Segovia, F., Górriz, J., Ramı́rez, J., Salas-Gonzalez, D., Álvarez, I.,
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