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Abstract
ITK-SNAP is an interactive software tool for manual and semi-automatic segmentation of 3D medical images. This paper
summarizes major new features added to ITK-SNAP over the last decade. The main focus of the paper is on new features
that support semi-automatic segmentation of multi-modality imaging datasets, such as MRI scans acquired using different
contrast mechanisms (e.g., T1, T2, FLAIR). The new functionality uses decision forest classifiers trained interactively by
the user to transform multiple input image volumes into a foreground/background probability map; this map is then input as
the data term to the active contour evolution algorithm, which yields regularized surface representations of the segmented
objects of interest. The new functionality is evaluated in the context of high-grade and low-grade glioma segmentation by
three expert neuroradiogists and a non-expert on a reference dataset from the MICCAI 2013 Multi-Modal Brain Tumor
Segmentation Challenge (BRATS). The accuracy of semi-automatic segmentation is competitive with the top specialized
brain tumor segmentation methods evaluated in the BRATS challenge, with most results obtained in ITK-SNAP being more
accurate, relative to the BRATS reference manual segmentation, than the second-best performer in the BRATS challenge;
and all results being more accurate than the fourth-best performer. Segmentation time is reduced over manual segmentation
by 2.5 and 5 times, depending on the rater. Additional experiments in interactive placenta segmentation in 3D fetal ultrasound
illustrate the generalizability of the new functionality to a different problem domain.
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Introduction

ITK-SNAP is a software tool that provides a graphical
user interface for manual and user-guided semi-automatic
segmentation of 3D medical imaging datasets. ITK-SNAP
was created to address image segmentation problems for
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which fully automated algorithms are not yet available.
Automatic segmentation may be lacking because a given
problem has not received sufficient attention from algorithm
developers; because the problem is too complex to be
solved without human input; or because there is not
yet sufficient expert-annotated data to train automated
algorithms. Current state-of-the-art automatic medical
image segmentation algorithms often use machine learning
(Litjens et al. 2017; Shen et al. 2017), multi-atlas label
fusion (Iglesias and Sabuncu 2015), or statistical shape
priors (Heimann and Meinzer 2009). These techniques
require training data in the form of tens or even hundreds
of manually or semi-automatically segmented example
images. Furthermore, extending fully automatic techniques
to new domains (e.g. from adult to pediatric subjects, from
healthy subjects to subjects with extensive pathology, or
from one scanner manufacturer to another) requires yet
more expert-generated segmentations as additional training
data and/or validation data. Subsequently, there is a robust
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need for expert-guided medical image segmentation approa-
ches that span multiple imaging modalities and application
domains.

ITK-SNAP was first developed in the early 2000s to
provide an interactive platform for segmenting anatomical
structures in 3D images both manually (by painting outlines
on 2D cross-sections of a 3D image) and semi-automatically
(by manually setting the parameters and initial seeds for
two active contour algorithms (Caselles et al. 1997; Zhu and
Yuille 1996)). Since its introduction, ITK-SNAP became a
popular tool, as evidenced by a large number of citations
in the scientific literature.1 We analyzed a sample of 50
articles from 2014 that cited ITK-SNAP, and found that 86%
of the articles used ITK-SNAP for image segmentation,
4% used it as an image viewer, and 10% cited ITK-SNAP
but did not use it. Among the first group, 42% used ITK-
SNAP only for manual segmentation, 42% used the semi-
automatic segmentation features, and 16% did not state
which approach was used. The relatively modest utilization
of semi-automatic segmentation prompted us to extend ITK-
SNAP with more advanced and generally applicable semi-
automatic segmentation capabilities. These new capabilities
focused primarily on two areas: enabling the concurrent
use of multiple image channels during semi-automatic
segmentation (such as multiple MRI contrast mechanisms,
e.g., T1-weighted and FLAIR, as done increasingly in
fully automatic segmentation) and leveraging machine
learning to identify foreground and background image
regions in the input to active contour segmentation (in
contrast to the original ITK-SNAP (Yushkevich et al. 2006),
which relies on simple thresholding and edge detection).
Introducing these capabilities required not only integrating
new algorithms into ITK-SNAP, but also incorporating a
large set of new user interface capabilities, for example
to support the display and management of multiple image
channels.

The present paper serves several aims: (1) to describe
the new features introduced in ITK-SNAP software since
the original 2006 publication (Yushkevich et al. 2006); (2)
to demonstrate that the new semi-automatic functionality
in ITK-SNAP can be applied to problems where thresh-
old and edge-based active contour tools are ineffective;
(3) to quantitatively compare ITK-SNAP semi-automatic
segmentation to state-of-the-art specialized automatic seg-
mentation algorithms in a widely studied problem; (4)
to show that semi-automatic segmentation in ITK-SNAP
can reduce segmentation time over manual segmenta-

1The number of articles citing the original ITK-SNAP paper
(Yushkevich et al. 2006) reported by Scopus (scopus.com) as of
3/12/2018 was 1944; the number of citations reported by Google
Scholar (scholar.google.com) was 2822.

tion; and (5) to demonstrate that ITK-SNAP segmenta-
tion capabilities can be applied in multiple application
domains and imaging modalities.

Toward addressing aims 2, 3 and 4, we apply the new
semi-automatic segmentation capabilities in ITK-SNAP to
the challenging problem of brain tumor segmentation in
multi-modality MRI. This study leverages data from the
MICCAI 2013 Multi-Modal Brain Tumor Segmentation
Challenge (BRATS) (Menze et al. 2015), a well charac-
terized benchmark dataset. ITK-SNAP was used by three
neuroradiologists as well as one novice user to label a set
of 20 glioma cases from multi-modality MRI (pre-contrast
T1, post-contrast T1, T2, and FLAIR). We hypothesized
that users (both novices and neuroradiologists) would label
tumors using ITK-SNAP reliably and in less time than
what is required for manual segmentation. Inter-rater and
intra-rater evaluation, as well as online evaluation by the
BRATS system against reference manual segmentations
were performed to quantify segmentation reliability and
accuracy.Additionally, toward addressing aims 2, 4, and 5,
we apply semi-automatic segmentation in ITK-SNAP to
the very different problem of placenta segmentation in the
first-trimester in 3D ultrasound images, and evaluate against
manual segmentation in terms of accuracy and segmentation
time.

Materials andMethods

This section describes the main features of ITK-SNAP
software. The first part of the section briefly summarizes the
software design principles and the user interface features for
image navigation, visualization, and manual segmentation.
The remainder of the section focuses on the semi-automatic
segmentation workflow, including the machine learning
approach for reducing multi-modality image information
to object/background probability maps and active contour
segmentation.

ITK-SNAP Software Design Principles

The software development for ITK-SNAP is guided by
three simple principles: exclusive focus on segmentation;
generality of purpose; and ease of use. These principles
are applied by the developers to prioritize potential new
features. Features are excluded if they do not directly
support the needs of image segmentation, if they are tailored
exclusively to specific segmentation problems, or if they are
largely redundant with existing capabilities. The application
of these principles has resulted in a feature set that is
relatively contained, as seen in Table 1, which lists the
primary features incorporated into the software since 2011.
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Table 1 Major new features
added in recent versions of
ITK-SNAP

Functionality Version Section

Semi-automatic segmentation of multi-component 3.0 “Image Navigation and Visualization

images and multiple image volumes in ITK-SNAP”

Semi-automatic segmentation using unsupervised 3.0 None

learning (Gaussian mixture models)

New Qt-based GUI with project file 3.0 “Image Navigation and Visualization

support and numerous UI improvements in ITK-SNAP”

Full support for the DICOM image format 3.0 None

Semi-automatic segmentation using supervised 3.2 “Intensity-Based Presegmentation”

learning (Random Forests (Breiman 2001))

4D (3D+time) image support 3.2 “Image Navigation and Visualization

Line and text annotations (to improve collaborative 3.4 in ITK-SNAP”

segmentation)

Reduced memory footprint using run length encoding 3.4 Zukić et al. (2016a)

of segmentations in memory

Images with different size, resolution and orientation 3.6 “Image Navigation and Visualization

may be loaded and segmented together in ITK-SNAP”

Manual and automated linear image registration 3.6 “Image Registration”

Interpolation of manual segmentation between slices 3.6 Zukić et al. (2016b)

For most features, the corresponding section in this paper or external reference is indicated

It is possible for new users to learn the primary features of
ITK-SNAP in the course of a 90 min training session.

ITK-SNAP is open-source software and is distributed
under the General Public License (Free Software Foun-
dation 2007). It is a cross-platform application written
in the C++ language. It leverages the Insight Toolkit
(www.itk.org) library for image processing functionality,
the Visualization Toolkit (www.vtk.org) for image and sur-
face visualization, and Qt (www.qt.io) for user interface
functionality. The CMake, CTest and CDash tools (cmake.
org) are used for cross-platform compilation, automated
testing, and posting of compilation and test results to a
web-based dashboard. A web portal (www.itksnap.org) pro-
vides source code, pre-complied binaries for the Windows,
MacOS and Linux platforms, documentation, and user sup-
port resources.

Image Navigation and Visualization in ITK-SNAP

ITK-SNAP allows the user to load image volumes using
common 3D medical image formats, including DICOM,
NIFTI, MetaImage and NRRD. ITK-SNAP recognizes the
information encoded in the image header on the spatial
position and orientation of image volumes relative to the
scanner physical coordinate system. The first image loaded
into ITK-SNAP is designated as the “main image” and
all visualization is performed relative to the main image
geometry. Additional images can be loaded into ITK-SNAP
after the main image, and these images can have different

dimensions, resolution, and spatial orientation than the main
image.

As shown in Fig. 1, 3D volumes are visualized as three
orthogonal slices (cross-sections). The slices are parallel
to the axes of the main image. When the main image
is acquired non-obliquely, the slices correspond to the
axial, coronal and sagittal planes in physical space. The
three slices intersect at the center of a single voxel in the
main image; the position of this voxel is defined as the
“3D cursor” position. Crosshairs displayed on each slice
visualize the 3D cursor position. Moving this crosshair in
one slice view adjusts the slices visualized in other views.
This “linked crosshair” concept provides a convenient way
to navigate through 3D volumes, with all three views
focused on the same location in the 3D image.

Multiple images loaded in ITK-SNAP can be visualized
in three ways: (1) a “tiled” layout, where the coronal, axial
and sagittal slice views each display the same slice through
all loaded modalities; (2) a “thumbnail” layout, where one
modality occupies most of each slice view, while others are
shown as small thumbnails, clicking on which switches to
that modality; and (3) a “overlay” mode, in which selected
images are shown as semiopaque overlays shown on top of
the main image and other images.

Images loaded into ITK-SNAP may be scalar images
(each voxel holds a single intensity value) or multi-
component images, such as RGB color images (each voxel
holds a red, green and blue value), displacement fields (each
voxel holds a displacement vector, e.g., from deformable
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Fig. 1 Screen shot of the ITK-SNAP user interface after completed
brain tumor segmentation. Three orthogonal slices through the T1-
weighted MRI scan are shown, with segmentation overlaid in color. A
3D rendering of the segmentation appears in the lower left quadrant.

Small thumbnails in the top and bottom right quadrants represent
other MRI scans loaded in ITK-SNAP (T2-weighted, FLAIR, contrast-
enhanced T1)

registration), diffusion tensor images, or dynamic image
sequences. For multi-component images, the user can select
between viewing a single selected component, the max-
imum, average or magnitude of the components. Special
visualization modes are provided for RGB color images and
displacement fields.

The visualization of individual voxels is controlled by
a user-controlled intensity remapping function, which may
be linear (e.g., window/level control) or spline-based; and
a color map function that maps scalar intensities to display
color. Window and level can be set automatically based on
the image histogram.

Navigation in 3D image space is accomplished by the
repositioning of the crosshairs in the three slice views with
the mouse or keyboard, as well as mouse-based zooming
and panning. Multiple redundant user interface widgets are
provided to support crosshair repositioning, exact zooming
and panning.

The ITK-SNAP state, i.e., the set of images currently
loaded, their layout, intensity remapping, color map func-
tion, and various other state variables can be saved in light-
weight XML format workspace files.

Segmentation Representation and Visualization

Segmentations are represented in ITK-SNAP as 3D images
with the same dimensions and orientation as the main
image. Each voxel in the segmentation volume is assigned a
discrete integer label, with the label 0 representing the clear
label. Segmentations can be loaded and saved using popular
3D image file formats, such as NIFTI. A label description
table is maintained internally that assigns a name, color,
opacity, and other metadata to each label. The label table
may be edited using a “label editor” UI, and saved in
the XML format. Segmentations are visualized as color
overlays rendered on top of the main and additional image
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slices; and as surfaces in the 3D render view (Fig. 1). These
surfaces can be exported to file using common 3D geometry
formats used in 3D printing and 3D visualization (STL,
VTK). The 3D render view supports navigation by allowing
the user to click on the rendered surfaces to reposition the
3D cursor.

The approach of representing segmentation as discrete
label images limits the resolution of the segmentation
to that of the main image and disallows partial volume
segmentation.2 However, it simplifies three-dimensional
editing of the segmentations, as a change made in one slice
view is unambiguously translated into changes in the other
slice views. The use of a common representation for both
images and segmentations also facilitates analysis.

Image Registration

ITK-SNAP provides a linear registration mode that makes
it possible to correct for subject motion between scans,
such as head motion between multiple MRI scans obtained
in the same session. A manual registration mode allows
the user to rotate and translate images relative to the main
image using widgets displayed on top of the orthogonal
slices and mouse-based panning. An automatic registration
mode can be used to find locally optimal rigid and affine
transformations between the main image and a given
additional image using common image similarity metric.

Manual Segmentation

ITK-SNAP provides simple tools for creating manual
segmentation and editing semi-automatic segmentations.
The “polygon” tool can be used to draw structure outlines
in any of the slice views. Polygons can be edited by moving
vertices in the slice plane. Once accepted, the polygon
is assigned the current label and integrated into the 3D
segmentation volume. The “paintbrush” tool allows quick
drawing and touch-up editing using the mouse, with masks
of different shape and size. An adaptive paintbrush mask is
also provided, wherein only the neighboring voxels similar
in intensity to the voxel clicked on by the user are assigned
the foreground label. Additionally, the 3D render view
provides a “3D scalpel” tool that can be used to assign a
different label to a part of a structure using a user-specified
cut plane.

When applying the manual segmentation tools, users
select the active label used to perform the drawing/painting
operation as well as the way in which operations will affect
existing labels. For the latter, the users may select to paint

2Note that active contour segmentations of individiual structures
generated in the semi-automatic mode can be exported in a way that
retains partial volume information.

over all existing labels, only the clear label, or only a
specific selected label. This allows the user to “protect”
previously drawn labels during segmentation and editing.

Semi-automatic Segmentation

Semi-automatic workflow proceeds in five stages, which are
detailed in the sub-sections below.

1. The users specifies the region of interest (ROI) in which
to perform semi-automatic segmentation;

2. The user uses one of several available presegmentation
modes to transform the input image volumes into a
single synthetic image volume called the speed image.
In most presegmentation modes, the speed image rep-
resents the difference between the probability that a
voxel belongs to the object of interest and the proba-
bility that a voxel belongs to the image background.

3. The user places one or more initial contours inside of
the object of interest.

4. The contours evolve in a manner governed by the speed
image and a shape regularization term.

5. The semi-automatic segmentation result is incorporated
into the main ITK-SNAP segmentation volume.

ROI Selection for Semi-automatic Segmentation

The first stage of semi-automatic segmentation involves
defining the rectilinear image domain in which segmenta-
tion will be performed. It is often desirable for this domain
to be smaller than the whole main image, so as to reduce
computational and memory demands of the segmentation
algorithm. It is also desirable for the images input to the
active contour segmentation algorithm to have approxi-
mately isotropic voxel size, as noted in “Active Contour
Segmentation”.

In the ROI selection stage, the user defines the corners
of a rectilinear ROI that contains the object of interest, and
can optionally set the voxel size for the ROI to be different
from that of the main image. All images are then cropped
and resampled to the space of the user-selected ROI. All
subsequent operations are performed on these cropped
and resampled images. We note that while the multiple
image layers loaded in a single ITK-SNAP session may
be in different voxel spaces (i.e., have different resolution
and orientation from each other), they are brought into a
common voxel space for the purpose of semi-automatic
segmentation.

Intensity-Based Presegmentation

For each voxel x in the ROI, multiple intensity values
may be available, e.g., if the user applies segmentation
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to multiple co-registered image volumes or to a multi-
component image. Presegmentation reduces all the image
intensity values available at a voxel to a single scalar
value. The resulting scalar image g(x) is called the speed
image. ITK-SNAP offers four presegmentation modes:
supervised classification, unsupervised classification, soft
thresholding, and edge detection.

• In the supervised classification mode, presegmentation
estimates the probability Pobj(x) of the voxel x

belonging to the object of interest and the probability
Pbkg(x) of it belonging to the background. These
probabilities are estimated by training a random forest
classifier (Breiman 2001; Criminisi et al. 2012) on a set
of example voxels identified by the user via painting
operations. The probabilities are estimated using all
available image intensity values at x. The speed image
has range [−1, 1] and is defined as the difference
between object and background probabilities, g(x) =
Pobj(x) − Pbkg(x). Figure 2 shows ITK-SNAP in this
presegmentation mode.

• In the unsupervised classification mode, the speed
image also estimates the difference between object and

background probabilities at each voxel. These prob-
abilities are also estimated using all available image
intensity values at each voxel. However, this estima-
tion is obtained without training data using a Gaussian
mixture model and the Expectation-Maximization (EM)
algorithm (Dempster et al. 1977). The user specifies the
number of distinct tissue classes in the ROI, and the ini-
tial parameters for each class are randomly seeded using
the k-means++ algorithm (Arthur and Vassilvitskii
2007).

• In the soft thresholding mode, the speed image is
also of the form g(x) = Pobj(x) − Pbkg(x), but the
foreground and background probabilities are estimated
in a more rudimentary way. A soft binary threshold
function with user-supplied upper and lower threshold
values is applied to a single image intensity component
selected by the user. Intensity values between the lower
and upper thresholds are assigned positive speed values,
and values outside the thresholds map to negative speed
values. The soft thresholding mode corresponds to the
“region competition” segmentation approach developed
by Zhu and Yuille (1995), and its implementation within

Fig. 2 Screen shot of the ITK-SNAP user interface during brain tumor
presegmentation (supervised classification mode). Axial, sagittal and
coronal slices through four MRI modalities and the speed image are
in the top left, top right and bottom right quadrants of the user inter-
face, respectively. The speed image (blue-to-white color map) has
range between − 1 (blue) and 1 (white), with positive values indicat-
ing higher probability that a voxel belongs to the object of interest
and negative values indicating higher probability of a voxel belonging

to the background. The object of interest in this example consists of
all tissue classes composing the complete tumor: edema, active tumor,
enhancing tumor core and necrosis. The lower left quadrant shows a
3D rendering of the samples used for training the random forest clas-
sifier. Some of the samples (necrosis: green, normal gray and white
matter: blue) are also seen as color overlays in the axial, sagittal and
coronal views
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ITK-SNAP is described and evaluated in Yushkevich
et al. (2006).

• In the edge attraction mode, the speed image has
the range [0, 1] and the speed image is derived
from the gradient magnitude of a single image
intensity component selected by the user. Large gradient
magnitude values (strong edges) are mapped to small
speed values, and vice versa. The edge attraction
mode corresponds to the “geodesic active contours”
approach described by Caselles et al. (1993, 1997), and
its implementation within ITK-SNAP is described in
Yushkevich et al. (2006).

The remainder of this section focuses on the supervised
classification mode, which is used in all evaluation
experiments in this paper. In this mode, the user specifies
examples of k ≥ 2 tissue classes present in the segmentation
ROI. Examples are specified by painting brushstrokes in one
or more orthogonal slice views (the polygon tool can also be
used). Each voxel painted by the user is treated as a separate
example {Fj , yj } for training the random decision forest
classifier, where Fj denotes the vector of features associated
with the j -th example voxel and yj ∈ {1, . . . , k} is its tissue
class.

By default, the feature vector Fj consists of all the image
intensity values available for the j -th voxel (i.e., all the

components of all the images). However, the feature vector
can also be made to include all the intensity values in the
rectangular patch centered on the j -th voxel, with the patch
size set by the user. Including neighboring intensities as
additional features makes it possible for the classifier to
learn more complex intensity patterns that separate different
tissue classes. As illustrated in Fig. 3, patch features make
it possible to differentiate between image regions based on
texture. The feature vector Fj may also be made to include
the coordinates of the j -th voxel as features. This makes
it possible to differentiate between image regions that have
identical intensity characteristics but distinct locations in the
image, as illustrated in Fig. 3.

The random forest algorithm (Breiman 2001; Criminisi
et al. 2012) is applied to the training data. The algorithm
trains an ensemble of decision tree classifiers. Each decision
tree is trained using a random bootstrap sample of the
training data, and a random sample of the features (Breiman
2001; Criminisi et al. 2012). The number of decision trees
and the depth of each decision tree are user-adjustable
parameters (defaulting to 50 and 30, respectively).

After training, the random forest classifier is applied to
all voxels in the ROI. For each voxel x, the feature vector
Fx is constructed, and each decision tree in the ensemble
is applied to Fx , resulting in a set of posterior probability

Texture test image with examples

Default 
features

Patch intensity 
features

Location 
features

Patch intensity 
and location 

features

Speed images for combinations of feature set and foreground object

Red Green Cyan Yellow

Fig. 3 Illustration of the “patch intensity” and “location” features
available in the ITK-SNAP supervised classification presegmentation
mode. A test 2D image on the left consists of four regions with similar
mean intensity but different texture. A set of example voxels has been
marked in each region (red, green, cyan and yellow circles) The 4 × 4
grid on the right consists of speed images generated by training a Ran-
dom Forest classifier using the four circles as the training data under
different conditions. The rows in the grid correspond to different set of
features used to train the classifier: the default features (the intensity of

each voxel serving as its only feature), patch intensity features (the set
of intensities in the 5× 5× 5 patch around the voxel used as features),
location features (the coordinates of each voxel used as features), and
patch and location features combined. The columns in the grid corre-
spond to different objects (red, green, cyan and yellow) being selected
as the object of interest. The addition of patch features improves the
ability of the classifier to discriminate regions based on texture, while
the location features allow imposition of geometrical constraints into
the segmentation
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values P t
x,l , where l ∈ {1, . . . , k} is the class index and

t ∈ {1, . . . , T } is the tree index. The ensemble posterior
probability for voxel x and label l is computed as Px,l =∑T

t=1P
t
x,l .

For the computation of Pobj(x) and Pbkg(x), the user tags
one or more segmentation labels as corresponding to the
object of interest, and the remaining labels are assigned to
the background. Then we set Pobj(x) = ∑

l∈obj Px,l and
Pbkg(x) = ∑

l∈bkg Px,l .
The user interface for the supervised classification

mode is lightweight. It includes a set of buttons for
selecting classes (labels) for painting examples, a button to
train/retrain the classifier, a button to clear all examples,
and a list of defined classes in which labels can be tagged
as object or background. A separate window allows the
user to specify how the feature vectors are constructed,
to set classifier parameters, and to export and import
examples.

The user interface is also highly responsive in order to
allow interactive modification of the training data. During
presegmentation, the random forest is applied selectively to
the input image volume, so that only the slices visible to
the user are classified. This is much faster than applying
the classifier to the whole image. If the user moves the
3D crosshair (thus changing which slices are shown in the
three ITK-SNAP views), the classification is recomputed
on the fly. This allows the user to repeatedly retrain the
classifier until a desired classification is accomplished. For
example, if a particular area of the object of interest is
mislabeled, the user can paint some voxels in that area with
the object label and retrain the classifier. The availability
of undo/redo functionality for the painting operations also
speeds up classifier training.

Active Contour Segmentation

In the supervised classification, unsupervised classification,
and soft thresholding modes, positive values of the speed
image correspond to parts of the image that have higher
probability of being the object than the background.
However, simply thresholding the speed image at 0 usually
fails to provide a satisfactory segmentation. Firstly, there
may be multiple objects of interest in the image (e.g.,
left and right caudate, or multiple lesions) that need to
be assigned different labels; and there may be parts of
the background that have nearly identical appearance to
the object of interest. Secondly, the speed image may
be noisy due to imaging noise and due to the fact that
presegmentation is applied independently to each voxel.
In ITK-SNAP, presegmentation is followed by a more
geometric active contour segmentation step, in which seeds
are placed inside of the specific object of interest and
grown in a way that balances adherence to the speed image

with a geometric regularization term (Zhu and Yuille 1995;
Caselles et al. 1997; Sethian 1999; Whitaker 1998).

The active contour evolution algorithm implementation
in ITK-SNAP was described previously in Yushkevich et al.
(2006), and we only provide a brief summary here for
completeness. Let t be time, and let Ct be a smooth contour
in R

3, i.e., there exists a continuous, smooth function φt :
R
3 → R such that Ct = {x ∈ R

3 : φ(x) = 0}. The contour
evolves according to the differential equation

dCt

dt
= [

g(Ct ) + α · κCt

] · NCt , (1)

where g(x) is the speed function, κCt is the mean curvature
of the contour Ct , and NCt is the unit outward normal to the
contourCt , and α is a scalar parameter set by the user. Under
this evolution equation, the contour expands into regions
where the speed function is positive (and contracts where
the speed function is negative), while also contracting at
points where curvature is high. The evolution equation (1)
corresponds to the variational gradient descent of an energy
function that maximizes the energy

E[C] =
∫

C
g(x) dx −

∫

R3\C
g(x) dx + α

∫

C

dA,

where C denotes the interior of the contour C, and dA is
the element of area. Numerically, the contour evolution (1)
is solved using the level set method (Sethian 1999), which
expresses all terms of Eq. 1 in terms of the function φt

and uses a robust finite difference scheme to approximate
derivatives. An efficient extreme narrow banding method
that only computes φt at a set of nodes adjacent to the
zero contour (Whitaker 1998) is used for computational
efficiency. The requirement for approximately isotropic
voxels in active contour segmentation stems from the fact
that the surface normal and mean curvature of C are
approximated from the partial derivatives of φ, and the
approximation is inaccurate when voxels have large aspect
ratios (e.g., 1:2 or greater).

The workflow for active contour segmentation consists
of selecting an active label for the segmentation (in the
supervised classification mode, this label is pre-populated
as the first “object” tissue class); placing spherical seeds in
the ROI; and supervising the active contour evolution. The
user can choose to advance the evolution by fixed step size,
or continuously, until pressing “stop”. The evolving contour
is visualized in real time in 2D slices and in 3D if enabled
by the user.

As the last step, the user “accepts” the segmentation. The
active contour segmentation is then resampled into the space
of the ITK-SNAPmain image and integrated into the overall
segmentation image.
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Segmentation of Multiple Structures in Supervised
Classification Mode

The supervised classification mode can be used to define
multiple tissue classes in the image (e.g., edema, non-
enhancing tumor core, enhancing tumor core, necrosis,
healthy tissue, etc. in the case of glioblastomas), whereas the
active contour segmentation only segments a single object at
a time. To facilitate the segmentation of all relevant objects
in the image, ITK-SNAP retains the classifier training
data after active contour segmentation is completed. To
segment additional objects in the ROI, the user re-enters
the semi-automatic segmentation mode, assigns a different
combination of tissue classes as object and background,
and applies active contour evolution; all without having to
re-train the random forest classifier.

Experiments and Results

The overall goal of the evaluation experiments is to show
that ITK-SNAP can be used to perform complex image
segmentation tasks in multi-modality image data quickly
and reliably.

Brain Tumor Segmentation in Multi-contrast MRI

The primary evaluation is carried out in the context of
semi-automatic segmentation of high-grade and low-grade
gliomas in multi-contrast MRI from the 2013 MICCAI
Brain Tumor Segmentation (BRATS) challenge (Menze
et al. 2015). BRATS challenge data has been used to
evaluate dozens of brain tumor segmentation algorithms,
so it offers a well-established benchmark for evaluating
ITK-SNAP segmentation performance. The reliability of
“ground truth” manual segmentation in BRATS data is also
known (Menze et al. 2015, Figure 5).

Our evaluation uses data from the 25-subject “leader-
board” subset of the 2013 BRATS dataset (Menze et al.
2015). For each patient, four MRI scans are provided:

pre-contrast T1-weighted, T2-weighted and FLAIR scans,
as well as a gadolinium contrast enhanced T1-weighted
scan (T1CE). All four scans are co-registered by BRATS
organizers and resampled to 1 mm × 1 mm × 1 mm res-
olution. Most high-grade gliomas have four distinct tissue
classes: edema, which appears bright on T2 and FLAIR;
enhancing tumor core (EC), which appears bright on T1CE;
non-enhancing tumor core (NEC), which is abnormal in
T2 but appears as normal gray/white matter in T1CE;
and necrosis, which appears dark in T1. However not all
classes are present in all subjects and appearance can be
variable. Low-grade gliomas typically do not have EC or
necrosis.

The BRATS leaderboard dataset includes 21 scans of
patients with high-grade gliomas and 4 scans of patients
with low-grade gliomas. These include 15 cases (11 high-
grade, 4 low-grade) that were used for off-site evaluation
both in BRATS 2012 and BRATS 2013, and 10 additional
cases that were used only in the 2013 challenge (Fig. 4). The
15-case subset (subset B in Fig. 4) was used to compare 20
tumor segmentation methods in the report on BRATS 2012
and 2013 by Menze et al. (2015).

Gliomas were segmented in ITK-SNAP using the fol-
lowing protocol. In the supervised classification pre-
segmentation mode, seven tissue classes were available:
edema, EC, NEC, necrosis, normal brain tissue, cere-
brospinal fluid (CSF), air/background. In most segmen-
tations the first five classes were marked by the raters,
and CSF was marked when tumors were adjacent to
the CSF. Active contour segmentation was performed
repeatedly, starting from the whole tumor and working
inwards, as illustrated in Fig. 5. First, the combined
tumor region (edema+NEC+EC+necrosis) is segmented;
then (NEC+EC+necrosis); then (EC+necrosis); and finally
necrosis only. This sequence takes advantage of the fact that
in most tumors necrosis lies within the EC, which is within
the NEC, which in turn is within the edema, and minimizes
the need to label structures with holes.

The whole BRATS 2013 leaderboard dataset was seg-
mented twice by a non-expert rater (AP) who had no

Fig. 4 Composition of the different subsets of the BRATS 2012/2013
data referenced in this paper. A: the “Leaderboard” dataset pro-
vided for off-site evaluation in BRATS 2013. The online BRATS
system (virtualskeleton.ch) continues to use this dataset for evalu-
ating and ranking segmentation methods. B: the subset of 15 cases
used for off-site evaluation in both BRATS 2012 and BRATS 2013.

It served as the primary dataset for the comparison of 20 algo-
rithms from the two challenges in the BRATS evaluation paper by
Menze et al. (2015, Figure 7). C: the subset of 20 cases that was
segmented using ITK-SNAP by all three neuroradiologists in this
study. D: the subset of five cases segmented twice by the three
neuroradiologists
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Fig. 5 Sequence of segmentation used by the tumor segmentation pro-
tocol. The input images for the example tumor dataset are shown on
the left. The columns on the right show the speed images and the
segmentations obtained in the four stages of the segmentation. Seg-
mentation is performed proceeding from the largest object inwards, so
that during each segmentation stage, the object being segmented does
not have holes. The table in the bottom right describes how the differ-
ent tissue classes in the image are assigned to the object of interest and

background during each stage, as well as what label is assigned to the
result of active contour segmentation during each stage. For example,
in stage 1, the four tissue classes comprising the complete tumor are
assigned to the object of interest, while healthy appearing gray/white
matter and CSF are assigned to the background. This yields a speed
image that is positive in the complete tumor and negative in the healthy
tissue. After applying active contour segmentation to this speed image,
the result is assigned the edema label

previous experience with image segmentation or brain
tumor segmentation. After studying the BRATSmanual seg-
mentation protocol (Jakab 2012) and ITK-SNAP tutorials,
this rater practiced on a set of 20 cases with available seg-
mentations from the BRATS “training” subset for about one
week. The rater then segmented the 25-case leaderboard
dataset sequentially over the course of 10 days. Following
a one-month delay, the rater segmented each dataset again.
The total segmentation time (from loading a workspace file
in ITK-SNAP to saving final segmentation) was recorded
for each segmentation attempt. The strokes used to train
the random forest classifier were also saved as an image
volume.

Additional segmentation was performed independently
by three expert neuroradiologists (JES, JMS, SM) who had
no prior experience with ITK-SNAP. The neuroradiologists
performed segmentation in a subset of 20 cases (16 high-
grade, 4 low-grade), designated as subset C in Fig. 4. Subset
C includes the 15-case subset B used for the comparison
methods in the BRATS 2012 and 2013 challenges (Menze
et al. 2015, Figure 7). A smaller subset of 5 images (3
high-grade, 2 low-grade) were segmented twice by each
neuroradiologist after a delay of at least two weeks. The
neuroradiologists attended a two-hour training session from
ITK-SNAP developers, watched ITK-SNAP training videos
online, and practiced on the 20-subject training subset until

they felt comfortable with the tool and the segmentation
protocol.

Segmentations performed by different raters, as well as
repeat segmentations by the same rater, were compared
in terms of the Dice similarity coefficient (Dice 1945)
and volume. These measurements were conducted in a
manner consistent with evaluations in the BRATS challenge
(Menze et al. 2015). Specifically, Dice coefficient was
computed and reported for the “complete tumor” (edema+
NEC+EC+necrosis), “tumor core” (NEC+EC+necrosis)
and “enhancing core” (EC) for high-grade gliomas and
“complete tumor” and “tumor core” for low-grade gliomas.
Dice coefficient is a measure of relative overlap between
segmentations, defined as the ratio of the volume of the
intersection between two segmentations to the average
volume of the two segmentations, and ranging between 0
and 1.

Results: Intra-rater and Inter-rater Reliability

The intra-rater reliability for the non-expert rater is summa-
rized in Table 2. There is a substantial difference between
the mean and median Dice coefficient, driven in part by
zero Dice coefficient for one subject (high-grade 137), for
which the rater labeled a completely different part of the
image as tumor. The intra-rater reliability for low-grade
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Table 2 Intra-rater reliability
of glioma segmentation by the
non-expert rater

Grade Region Full Leaderboard (n = 25) Subset B (n = 15)

Dice coefficient ICC Dice coefficient ICC

Mean (SD) Median Mean (SD) Median

High Complete 0.88 (0.20) 0.93 0.97 0.83 (0.28) 0.92 0.98

Tumor core 0.79 (0.22) 0.85 0.94 0.73 (0.28) 0.84 0.97

Enh. core 0.75 (0.26) 0.83 0.82 0.64 (0.34) 0.78 0.80

Low Complete 0.81 (0.16) 0.83 1.00 0.81 (0.16) 0.83 1.00

Tumor core 0.36 (0.21) 0.34 0.55 0.36 (0.21) 0.34 0.55

All Complete 0.87 (0.20) 0.93 0.98 0.83 (0.25) 0.92 0.99

Tumor core 0.72 (0.27) 0.84 0.85 0.63 (0.31) 0.81 0.84

Enh. core 0.75 (0.26) 0.83 0.83 0.64 (0.34) 0.78 0.81

The left portion of the table shows average intra-rater Dice coefficient and intra-class correlation coefficient
(ICC) for all 25 cases segmented by the non-expert. The right portion shows the same metrics for Subset
B in Fig. 4, allowing comparison with inter-rater reliability of the BRATS reference manual segmentation
reported in Menze et al. (2015, Figure 5)

gliomas is much lower than for high-grade gliomas, partic-
ularly for the tumor core. Overall, the median intra-rater
Dice coefficient for our non-expert rater in subset B (0.92
for complete tumor, 0.81 for tumor core, 0.78 for enhancing
region) compares favorably with the inter-rater reliability of
the ground truth BRATS manual segmentation reported in
Menze et al. (2015, Figure 5) for the same set of cases (0.85
for complete tumor, 0.84 for tumor core, 0.72 for enhancing
region). Mean intra-rater Dice for our non-expert rater (0.83
for complete tumor, 0.63 for tumor core, 0.64 for enhancing
region) compares less favorably with Menze et al. (2015,
Figure 5) (0.81 for complete tumor, 0.77 for tumor core,
0.68 for enhancing region), which is likely driven by the
lower performance of the non-expert rater on low-grade
cases and the outlier high-grade case 137.

Average intra-rater reliability for each of the three
radiologists and average inter-rater reliability between all
pairs of radiologists are reported in Table 3. Intra-rater
reliability is consistently higher than inter-rater reliability,
as would be expected, since inter-rater disagreements may
include differences in the interpretation of underlying
anatomy, while intra-rater disagreements, in principle
reflect difficulty in applying a given set of anatomical rules
consistently. Additionally, Table 4 compares the average
inter-rater reliability of three radiologists using ITK-SNAP
and the average inter-rater reliability of three raters who
provided reference manual segmentation in Menze et al.
(2015) in the same set of images. Compared with Menze
et al. (2015), the ITK-SNAP inter-rater reliability is lower
for high-grade cases and higher for low-grade cases; the

Table 3 Summary statistics for
inter-rater and intra-rater
reliability of the three
neuroradiologist experts

Grade Region Inter-rater (n = 20) Intra-rater (n = 5)

Dice coefficient ICC Dice coefficient ICC

Mean (SD) Median Mean (SD) Median

High Complete 0.84 (0.12) 0.86 0.78 0.85 (0.07) 0.87

Tumor core 0.71 (0.19) 0.75 0.68 0.77 (0.09) 0.76

Enh. core 0.70 (0.21) 0.76 0.86 0.78 (0.11) 0.82

Low Complete 0.76 (0.18) 0.79 0.99 0.90 (0.06) 0.92

Tumor core 0.66 (0.20) 0.71 0.97 0.85 (0.12) 0.89

All Complete 0.82 (0.13) 0.84 0.87 0.87 (0.07) 0.88 0.97

Tumor core 0.70 (0.19) 0.75 0.77 0.80 (0.10) 0.81 0.93

Enh. core 0.70 (0.21) 0.76 0.86 0.78 (0.11) 0.82 0.10a

Intra-rater ICC is not reported for high-grade and low-grade gliomas separately because of the small dataset
(3 and 2 cases, respectively)
aOnly three cases available for estimating ICC
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Table 4 Comparison of mean
and median inter-rater Dice
coefficient between the three
experts in the current study and
manual segmentation by three
raters in Menze et al. (2015)

Grade Region ITK-SNAP inter-rater Menze et al. inter-rater

Dice coefficient Dice coefficient

Mean (SD) Median Mean (SD) Median

High Complete 0.82 (0.12) 0.83 0.85 (0.09) 0.87

Tumor core 0.67 (0.20) 0.71 0.81 (0.19) 0.87

Enh. core 0.64 (0.23) 0.70 0.68 (0.17) 0.71

Low Complete 0.76 (0.18) 0.79 0.71 (0.16) 0.68

Tumor core 0.66 (0.20) 0.71 0.64 (0.27) 0.78

All Complete 0.80 (0.14) 0.82 0.81 (0.13) 0.85

Tumor core 0.67 (0.20) 0.71 0.77 (0.22) 0.84

Enh. core 0.64 (0.23) 0.70 0.68 (0.17) 0.71

The comparison is in the same set of cases (subset B in Fig. 4, n = 15)

average over all cases is lower for ITK-SNAP, particularly
for the tumor core.

The intra-class correlation coefficients (ICC, Shrout and
Fleiss (1979)) in Table 3 display a wide range, and higher
ICC values do not always correspond to higher inter-rater
and intra-rater Dice coefficient. Figure 6 uses Bland-Altman
plots (Bland and Altman 2007) to plot the between-rater and
within-rater disagreement in volume. Large range of ICC
values is likely explained by very different ranges of volume
for the different regions. For example, for the enhancing
tumor region, the between-rater and within-rater error is
approximately the same in absolute terms, but the range of
volumes is very small for the set of 3 high-grade cases in
which intra-rater ICC is computed, resulting in a very low
ICC (0.1).

Results: Comparison to BRATS Reference Segmentation

Segmentations by the three experts and the non-expert were
uploaded to the online BRATS evaluation system, which
reports the Dice coefficient between each segmentation
and the BRATS reference segmentation, which is a
consensus segmentation derived from combining multiple
manual segmentations (Menze et al. 2015). Table 5
reports the mean and median overlap for each rater on
the set of 20 cases that were segmented by all four
raters (Subset C in Fig. 4). The non-expert’s agreement
with the BRATS reference is generally on par with the
experts for the high-grade gliomas, but lower than that
of the experts on the low-grade gliomas. Combining
across low-grade and high-grade gliomas, Expert 2 has the

Fig. 6 Bland-Altman plots
showing agreement in
segmentation volume between
attempts by different pairs of
neuroradiologists (inter-rater
plot, left) and different attempts
by the same neuroradiologist
(intra-rater plot, right). The
average volume in both attempts
is plotted on the horizontal axis,
and the difference in volume
between attempts is plotted on
the vertical axis. All sub-plots
have aspect ratio of 1
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Table 5 Evaluation of the ITK-SNAP segmentation by the three experts and the non-expert against the BRATS challenge reference segmentation
on Subset C (Fig. 4), which was segmented by all four raters

Grade Region Dice coefficient between ITK-SNAP segmentation and BRATS reference segmentation

Expert 1 Expert 2 Expert 3 Non-expert

Mean (SD) Median Mean (SD) Median Mean (SD) Median Mean (SD) Median

High Complete 0.82 (0.13) 0.85 0.89 (0.04) 0.89 0.81 (0.09) 0.84 0.86 (0.11) 0.88

Tumor core 0.63 (0.20) 0.72 0.74 (0.19) 0.80 0.62 (0.20) 0.67 0.74 (0.20) 0.78

Enh. core 0.69 (0.24) 0.77 0.71 (0.22) 0.81 0.68 (0.13) 0.69 0.66 (0.27) 0.76

Low Complete 0.67 (0.28) 0.69 0.82 (0.12) 0.83 0.83 (0.11) 0.82 0.71 (0.33) 0.82

Tumor core 0.43 (0.36) 0.41 0.52 (0.37) 0.56 0.60 (0.41) 0.75 0.31 (0.42) 0.16

All Complete 0.79 (0.17) 0.84 0.88 (0.07) 0.89 0.81 (0.09) 0.84 0.83 (0.17) 0.88

Tumor core 0.59 (0.25) 0.64 0.69 (0.24) 0.76 0.62 (0.24) 0.68 0.65 (0.30) 0.76

Enh. core 0.69 (0.24) 0.77 0.71 (0.22) 0.81 0.68 (0.13) 0.69 0.66 (0.27) 0.76

Highest mean Dice coefficient for each region is shown in bold

highest agreement with the BRATS reference of all four
raters.

Table 6 estimates how the ITK-SNAP segmentations by
the four raters compare to the 20 brain tumor segmentation
techniques evaluated in the BRATS 2012 and 2013
challenges (Menze et al. 2015, Figure 7). The “Rank”
columns of Table 6 indicates where the segmentation by
each expert would rank with respect to the 20 methods
evaluated in Menze et al. (2015, Figure 7). The best overall
ranking is achieved by Expert 2, with Experts 1, 3 and the
non-expert having very similar ranking profiles. However,
for low-grade gliomas, Expert 3 has the best ranking. If the
Dice coefficient across all three regions is averaged, then
ITK-SNAP segmentation by experts 2 and 3 comes out in

the first place relative to the 20 methods in Menze et al.
(2015, Figure 7) and in the second place for Expert 1 and the
non-expert.

The BRATS online evaluation system is open and
new methods are continually added. The online system
ranks methods based on average Dice coefficient relative
to the BRATS reference segmentation across the 25-
case leaderboard dataset (Subset A in Fig. 4). As of
April 2017, the segmentation produced by the non-
expert was given overall rank 5 of 45 by the online
system. The dataset combining segmentations by Expert
2 for subset C and non-expert segmentation for the
remaining 5 leaderboard cases, was given overall rank of
4 of 45.

Table 6 Agreement of ITK-SNAP segmentation by the three experts and the non-expert with the BRATS challenge reference segmentation, ranked
against the 20 methods evaluated in the BRATS 2012/2013 challenges (Menze et al. 2015, Figure 7)

Grade Region ITK-SNAP Segmentation vis-a-vis 20 Methods in the BRATS 2012/2013 Challenges

Expert 1 Expert 2 Expert 3 Non-Expert

Mean (SD) Rank Mean (SD) Rank Mean (SD) Rank Mean (SD) Rank

High Complete 0.83 (0.12) 2 0.89 (0.03) 1 0.80 (0.09) 3† 0.84 (0.13) 1†

Tumor core 0.65 (0.20) 4 0.74 (0.20) 2 0.62 (0.21) 5 0.70 (0.22) 2

Enh. core 0.63 (0.27) 1 0.65 (0.24) 1 0.64 (0.13) 1 0.59 (0.30) 2†

Low Complete 0.67 (0.28) 5† 0.82 (0.12) 1 0.83 (0.11) 1 0.71 (0.33) 3‡

Tumor core 0.43 (0.36) 5 0.52 (0.37) 5 0.60 (0.41) 1† 0.31 (0.42) 15

All Complete 0.79 (0.18) 2 0.87 (0.07) 1 0.80 (0.09) 2 0.81 (0.20) 2

Tumor core 0.59 (0.26) 4 0.68 (0.26) 2 0.62 (0.26) 4 0.60 (0.33) 4

Enh. core 0.63 (0.27) 1 0.65 (0.24) 1 0.64 (0.13) 1 0.59 (0.30) 2†

The “rank” columns give the rank of each mean Dice coefficient measurement relative to the Dice coefficients for the 20 methods listed in Menze
et al. (2015, Figure 7). Ranks are computed separately for each region/grade combination. Ties, occurring when mean Dice coefficient is within
rounding error in Menze et al. (2015, Figure 7), are indicated as follows: †: two-way tie, ‡: three-way tie
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Segmentation Effort

The distribution of segmentation times for each rater,
separated by tumor grade, is plotted in Fig. 7. The mean
segmentation time for the non-expert across all cases was
12.3 min, while the mean segmentation for the three experts
was higher: 24.1, 24.3, and 16.2 min, respectively. We used
the Wilcoxon signed rank test to determine whether the
differences in segmentation time between pairs of raters
were statistically significant. Significant differences were
found between Expert 1 and non-expert (p < 0.001), Expert
2 and non-expert (p < 0.001), Expert 2 and Expert 3
(p = 0.005); a trend toward significance was found between
Expert 2 and Expert 3 (p < 0.06).

Figure 8 plots the number of training voxels labeled
by each rater for each tissue class during supervised
classification. The average number of training voxels per
case was greatest for Expert 1, followed by the non-
expert, Expert 2, and Expert 3. Differences in the number
of training voxels were statistically significant on the
Wilcoxon signed rank test between all pairs of raters (p <

0.01), except between Expert 2 and the non-expert.
For the non-expert rater, who has the most training

data available for analysis, and whose training examples
were consistently drawn on disjoint slices, we estimated
the number of training strokes by performing 1-voxel
morphological erosion on each x, y and z slice, and counting
the number of connected components. The number of
training strokes correlated significantly with segmentation
time s(R = 0.51, p = 0.01) and with Dice coefficient
on BRATS evaluation (R = 0.52, p = 0.01). These
correlations remained significant if only high-grade gliomas
were considered. However, segmentation time was not

significantly correlated with Dice coefficient on BRATS
evaluation (R = 0.25, p = 0.26).

Placenta Segmentation

A secondary evaluation of ITK-SNAP semi-automatic
segmentation was performed in the context of segmenting
the placenta in 3D ultrasound (3DUS) images taken during
the first trimester of pregnancy. The placenta is difficult
to segment in 3DUS because of non-uniform intensity
within the placenta, high levels of noise, and weak
intensity contrast between the placenta and surrounding
uterine tissue. A dataset of 25 first-trimester (11–14
weeks) 3DUS scans acquired with the GE Voluson E8
ultrasound machines was used in this study. Images were
exported in cartesian format with isotropic resolution,
ranging from 0.34 mm × 0.34 mm × 0.34 mm to
0.61 mm × 0.61 mm × 0.61 mm.

Manual segmentation was performed in ITK-SNAP in
collaboration between a non-expert rater (NY) and an expert
obstetrician with over 10 years of experience in prenatal
ultrasound imaging and placenta segmentation (NS). The
expert supervised training for the non-expert and inspected
and approved each segmentation. The non-expert traced
the placental outline in approximately every fifth slice
in all three orthogonal slice planes. The resulting sparse
segmentations were reviewed by the expert, and if needed,
sent back to the non-expert rater for correction. Sparse
segmentations were interpolated to create a smooth 3D
placental volume, which was reviewed and corrected if
necessary. Although segmentation time was not recorded, it
took over ten hours of total segmentation time per case with
the correction and editing.

Fig. 7 Distribution of
ITK-SNAP segmentation time
for each rater, by tumor grade High Grade Low Grade
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Fig. 8 Number of voxels
labeled for each tissue class by
each rater. The number of voxels
is plotted on a logarithmic scale
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A semi-automatic placenta segmentation protocol was
developed using a subset of 13 “training” images for
which he had access to manual segmentations. Images
were first processed using the 3 × 3 × 3 voxel median
filter to reduce speckle noise. The supervised classification
mode in ITK-SNAP was used to define examples of seven
tissue classes: placenta, anterior uterine muscle, posterior
muscle, amniotic fluid, fetus, fat and other. The feature set
for supervised classification included both patch intensity

features (with patch radius 2, i.e., 5 × 5 × 5 voxel patches)
and coordinate features. The coordinate features helped
define placental boundaries in regions where there was
little or no contrast between the placenta and the adjacent
structures. An example of placenta presegmentation is
shown in Fig. 9.

A non-expert rater (AP) applied this protocol to a
“testing” set of 12 placenta 3DUS images for which manual
segmentation were available. The mean Dice coefficient

Fig. 9 ITK-SNAP during placenta presegmentation using the supervised classification mode. The orthogonal slice views show a median-filtered
3DUS image of the placenta and the fetus and the speed image. The 3D view shows the samples traced for training the classifier
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between the manual and semi-automatic segmentation was
0.88 ± 0.04, and the median Dice coefficient was 0.89.
The average segmentation time using the ITK-SNAP semi-
automatic protocol was 27.8 ± 7.0 min per case.

Discussion

Brain Tumor Segmentation

The evaluation in BRATS data illustrates the ability of
ITK-SNAP to label complex multi-label structures quickly
and effectively. Semi-automatic segmentation by the non-
expert rater required only 12.5 min per case on average,
compared with 60 min per case for the manual segmentation
used to generate the BRATS ground truth (Menze et al.
2015). Experts took longer to perform segmentation (from
16 to 24 min, on average), and experts 2 and 3 had
better overall accuracy relative to the BRATS reference
than the non-expert. ITK-SNAP segmentation by Experts
2 and 3 (Table 6) was very competitive with the 20
methods evaluated in Menze et al. (2015), achieving first
and second ranks in almost all categories in Table 6.
Segmentation by the non-expert and expert 1 was also
competitive, ranking just behind the top methods in Menze
et al. (2015). When new methodology development since
2013 is taken into account, tumor segmentation by ITK-
SNAP remains competitive, ranking 4th or 5th (depending
on the rater) in the online BRATS leaderboard evaluation
system.

A caveat in the comparison with Menze et al. (2015)
is that most of the methods participating in the BRATS
challenges were either fully automatic or required minimal
seeding to initialize (Menze et al. 2015), whereas ITK-
SNAP is a highly interactive method that required raters to
spend 10–15 min training the classifier. Indeed, the fact that
intra-rater reliability of ITK-SNAP is in the 0.7–0.9 Dice

coefficient range for most combinations of region/grade
(Tables 2 and 3) indicates the significant impact that user
input plays in determining the ITK-SNAP segmentation
result. This can be viewed as both a drawback and a
strength. The drawback is operator bias: just as in manual
segmentation, results produced by one user may not be
reproduced well by another user. The strength, compared
to fully automatic segmentation, is that the expert is
largely in control of the anatomical definitions applied
during segmentation. Differences between the experts’
segmentations are driven, at least in part, by differences
in their interpretations of the underlying anatomy. As
demonstrated in a typical example shown in Fig. 10,
the experts and the non-expert frequently disagreed as to
what constituted different parts of the tumor. Crucially,
the neuroradiologists did not study and try to mimic the
manual segmentation protocol used in Menze et al. (2015),
but instead applied their individual understanding of what
constitutes the edema, enhancing and non-enhancing core,
and necrotic components of the tumors.

The successful methods in BRATS were specialized to
the problem of brain tumor segmentation and incorporated
machine learning classifiers trained on a dataset of 30
annotated cases. Menze et al. (2015) conclude that “a
majority of the top ranking algorithms relied on a
discriminative learning approach, where low-level image
features were generated in a first step, and a discriminative
classifier was applied in a second step, transforming local
features into class probabilities with MRF regularization
to produce the final set of segmentations”. By contrast,
ITK-SNAP is a general-purpose tool, and the Random
Forest (Breiman 2001; Criminisi et al. 2012) classifiers
used in ITK-SNAP were trained using the input images
themselves, without a need for a separate annotated dataset.
This suggests that ITK-SNAP is a viable alternative to
manual segmentation in “novel” problems where annotated
training data has not yet been generated.

Fig. 10 Example high-grade
case demonstrating areas of
disagreement between raters. To
a considerable degree,
disagreement is driven by
differences in the anatomical
interpretation of complex cases
(e.g., what constitutes
enhancement, what constitutes
edema vs. tumor), as opposed to
fine-scale disagreements in
tracing of agreed-upon
boundaries

T2

Edema (E)

Non-Enh. Core (NEC)

Enhancing Core (EC)

Necrosis (N)

FLAIR T1CE T1

Expert 1 Expert 2 Expert 3 Non-Expert
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The inter-rater reliability between the experts using ITK-
SNAP was below that of the inter-rater reliability of BRATS
reference segmentation (Menze et al. 2015, Figure 5)
for high-grade tumors (Table 4). However, the BRATS
segmentation itself was not purely manual: for example,
segmentation was performed on every second or third slice
and interpolated; and Gaussian smoothing was performed
following the segmentation (Jakab 2012). Local threshold-
based segmentation was used to segment the enhancing
region and the necrosis (Jakab 2012). Interpolation,
smoothing and threshold-based painting operations can
result in more consistent segmentations between raters and
result in higher inter-rater Dice coefficient than purely
manual segmentation might produce. Furthermore, BRATS
manual segmentation followed a detailed and procedural
protocol (Jakab 2012) that involved tracing edema in
T2-weighted MRI and tumor sub-regions on T1CE MRI
(Jakab 2012). The manual segmentation in BRATS also
had access to native resolution MRI scans. By contrast,
the segmentation in ITK-SNAP used information from all
modalities concurrently, and worked with images resampled
to a common 1 mm3 isotropic resolution. The three
radiologists defined the tissue classes in the image based
on their individual interpretation of anatomy, which likely
resulted in greater divergence between experts than in the
BRATS reference segmentation.

Placenta Segmentation

In the placenta segmentation problem, the accuracy of semi-
automatic segmentation in ITK-SNAP relative to manual
segmentation (average Dice coefficient of 0.88 ± 0.04)
compared favorably with previously published work on
semi-automatic segmentation of the placenta in 11–13 week
3DUS scans using the random walker algorithm (Collins
et al. 2013; Stevenson et al. 2015), where the average
Dice coefficient of 0.86 ± 0.06 is reported; and with
fully automatic multi-atlas segmentation results, where Dice
coefficient of 0.83 ± 0.05 is reported (Oguz et al. 2016).
However, the segmentation time in ITK-SNAP (27.8 ± 7.0)
was several times greater than the average time of 3.6 min
reported for the random walker segmentation (Stevenson
et al. 2015). One possible factor explaining the difference
in time is that the initialization for the random walker
algorithm is performed in a manner favorable for placenta
identification: in slices taken radially around the placenta;
whereas in ITK-SNAP the placenta is viewed in orthogonal
planes that may make placental anatomy harder to interpret.

Conclusions from the ITK-SNAP Evaluation

The main conclusion of the evaluation in brain tumor and
placenta segmentation is that while ITK-SNAP does not

unequivocally improve on existing segmentation solutions
in these domains, it offers segmentation performance
competitive with the state of the art, without being
specially tuned, optimized, or trained for these specific
problems. The ability of a general-purpose semi-automatic
segmentation tool to compete with highly specialized
and/or heavily trained approaches in these two problems
suggests that ITK-SNAP can be an effective tool in a
broad range of complex image segmentation problems,
including problems for which there currently do not exist
specialized solutions or annotated data for training machine
learning and multi-atlas based techniques. Even in problems
where automated algorithms have been developed, they
may not always be available in the form of ready-to-
use software, making ITK-SNAP a preferred segmentation
solution.

ITK-SNAP in Relation to Other Medical Image
Analysis Software

A number of mature medical image analysis software
tools provide automatic and semi-automatic segmentation
capabilities. General-purpose segmentation functionality is
offered in 3D Slicer (Gering et al. 2001; Fedorov et al.
2012), ImageJ (Abramoff et al. 2004; Barboriak et al.
2005), BioImage Suite (Duncan et al. 2004) and MIPAV
(McAuliffe et al. 2001). Additionally, a large number
of domain-specific tools that support segmentation exists,
such as FreeSurfer (Fischl et al. 2002), FSL (Smith
et al. 2004) or SPM (Ashburner 2009) provide excellent
automated tools for brain MRI segmentation, but they are
not general-purpose segmentation tools. To our knowledge,
ITK-SNAP is the first interactive image segmentation
tool to combine Random Forest classification and active
contour segmentation in a single interactive segmentation
workflow. It is also the first to extend such a workflow
to concurrent semi-automatic segmentation of multiple
image modalities. In the 2D microscopy segmentation
domain, the tool Ilastik (Sommer et al. 2011), which also
leverages Random Forest classifiers trained interactively
by the user on multi-channel images offers similar scope
and functionality to ITK-SNAP. 3D Slicer is the general-
purpose 3D medical image analysis tool that arguably
comes closest in offering the semi-automated segmentation
functionality in ITK-SNAP. However, 3D Slicer follows a
distinct design philosophy from ITK-SNAP that emphasizes
“breadth of functionality [and] extensibility” (Fedorov et al.
2012, p. 1324) that “separates Slicer from such task-oriented
packages as ITK-Snap” (Fedorov et al. 2012, p. 1324).
For example, 3D Slicer offers extensive functionality
for image filtering, non-linear registration, surface model
visualization and editing, diffusion MRI processing and
tractography, and image-guided surgery (Fedorov et al.

Neuroinform (2019) 17:83–102 99



2012). By contrast, ITK-SNAP focuses specifically on the
task of image segmentation and eschews functionality not
directly related to segmentation. 3D Slicer is a much larger
tool that ITK-SNAP, with over 570,000 lines of C++ and
Python code (not counting the 90+ extensions that do not
form the core of the software). By contrast, ITK-SNAP
has 190,000 lines of code and does not currently offer
extensions. 3D Slicer offers several built-in options for
image segmentation, such as tissue classification based on
the expectation-maximization algorithm (Pohl et al. 2007),
a simple region growing algorithm,3 a competitive region
growing algorithm “GrowCut” (Egger et al. 2013), a more
recent Fast GrowCut algorithm (Zhu et al. 2014), and active
contour segmentation via robust statistics (Gao et al. 2012).
The extensions of 3D Slicer supporting general-purpose
segmentation include a tool for watershed segmentation,4

and a tool called the “Segmentation Wizard”.5 The
above modules, with the exception of the Segmentation
Wizard, take only a single-modality image as the input.
Semi-automatic GBM segmentation using 3D Slicer was
evaluated in Egger et al. (2013); the authors determined that
the GrowCut module was the most suitable of the available
tools, and was shown to have good overlap with manual
segmentations (88% Dice coefficient) while reducing
segmentation time by 39% over manual segmentation.
However, direct comparison of the quantitative results in
Egger et al. (2013) and the current paper cannot be made
for several reasons: (1) in Egger et al. (2013), segmentation
was performed in a single modality (contrast-enhanced T1-
MRI) and only using a single anatomical label (tumor
vs. no tumor); (2) in Egger et al. (2013), the segmented
tumors were considerably smaller than in the BRATS
challenge (average tumor volume 27.7 cm3, as opposed to
82.4 cm3 for the complete tumor and 60.1 cm3 for the
tumor core in the current paper); (3) the comparison of semi-
automatic and manual segmentation in Egger et al. (2013)
was between segmentations performed by the same rater,
whereas in the current paper, we report accuracy relative
to the BRATS consensus reference segmentation derived by
different raters.

Limitations

A limitation of ITK-SNAP is that it is a general-purpose
image segmentation tool, and thus not optimized for any
specific segmentation problem. As the result, it is likely

3https://www.slicer.org/wiki/Documentation/4.8/Modules/
SimpleRegionGrowingSegmentation
4https://www.slicer.org/wiki/Documentation/4.4/Extensions/Wasp
5https://www.slicer.org/wiki/Documentation/Nightly/Extensions/
SegmentationWizard

to produce segmentation results inferior to tools that are
specialized. However, as noted in the Introduction, expert-
guided segmentation is needed both to create and train
new specialized tools, and to address existing segmentation
problems for which specialized tools have not yet been
developed. A particular limitation of the active contour
algorithm implemented in ITK-SNAP is that for thin tissue
layers (e.g., fewer than 3-4 voxels thick), the active contour
may not flow into the tissue layer due to the strong
action of the curvature term in (1) and due to the inherent
limitation of the level set method in representing parallel
contours separated by short distances. These limitations
can be overcome by reducing the weight of the curvature
term and/or by supersampling the input image (effectively
making the tissue layer thicker in units of voxels). However,
these mitigation strategies add time to segmentation and
may result in leakage and poor segmentation due to under-
regularization. In the tumor segmentation problem, we took
advantage of the adjacency of thin layers composing the
tumors by performing segmentation in a nested fashion, so
that thin layers never had to be segmented directly. Such
a nesting strategy may not always be feasible in other
applications. In particular, the active contour algorithm
as implemented in ITK-SNAP is not well suited for the
segmentation of thin tubular structures, such as vessels.

A limitation of the evaluation in this paper is that ITK-
SNAP was compared to manual segmentation and, in the
case of brain tumors, to specialized brain tumor segmen-
tation algorithms, but not to other general-purpose inter-
active image segmentation tools. It would have been dif-
ficult to conduct such an evaluation in a manner that is
free of real or perceived bias, since in the current study,
the developers of ITK-SNAP participated in the evalu-
ation (e.g., by training the neuroradiologists) while the
developers of other interactive open-source tools did not.
However, the fact that the brain tumor evaluation was per-
formed on a publicly available BRATS challenge dataset
will allow the developers of other tools to carry out similar
evaluations independently and to compare their segmen-
tation results to those reported in this paper in a direct
way.

Another limitation of the evaluations performed in
this paper is the use of Dice coefficient to characterize
segmentation accuracy. Dice coefficient provides only one
aspect of segmentation accuracy and the value is correlated
with the shape of the segmented object, e.g., the same
displacement will result in a much larger reduction in Dice
overlap for thin shapes than for blob-like shapes. Boundary
distance metrics are frequently reported alongside Dice
coefficients when evaluating segmentation, but in this paper,
such data were unavailable to us for the BRATS challenge
because the underlying reference manual segmentations are
not publicly available.
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Information Sharing Statement

The ITK-SNAP (RRID:SCR 002010) software (source
code and binaries) are hosted on SourceForge at https://
sourceforge.net/projects/itk-snap, and can also be accessed
through the ITK-SNAP website www.itksnap.org and the
Neuroimaging Tools & Resources Collaboratory (NITRC)
at https://www.nitrc.org/projects/itk-snap.

The BRATS challenge data were obtained from the
Swiss Institute for Computer Assisted Surgery (SICAS)
Medical Image Repository at https://www.smir.ch/BRATS/
Start2013. The ITK-SNAP segmentations of the BRATS
datasets, as well as the placenta ultrasound scans, manual
segmentations, and ITK-SNAP segmentations are available
in the ITK-SNAP NITRC repository https://www.nitrc.org/
projects/itk-snap under the package “nein2018”. The R
language statistical analysis scripts and spreadsheets used to
generate the tables and figures in this paper are hosted on
Github at https://github.com/pyushkevich/nein2018 stats.
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