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Abstract
Mathematical modeling is a powerful tool that enables researchers to describe the experimentally observed dynamics of
complex systems. Starting with a robust model including model parameters, it is necessary to choose an appropriate set
of model parameters to reproduce experimental data. However, estimating an optimal solution of the inverse problem, i.e.,
finding a set of model parameters that yields the best possible fit to the experimental data, is a very challenging problem. In
the present work, we use different optimization algorithms based on a frequentist approach, as well as Monte Carlo Markov
Chain methods based on Bayesian inference techniques to solve the considered inverse problems. We first probe two case
studies with synthetic data and study models described by a stochastic non-delayed linear second-order differential equation
and a stochastic linear delay differential equation. In a third case study, a thalamo-cortical neural mass model is fitted to
the EEG spectral power measured during general anesthesia induced by anesthetics propofol and desflurane. We show that
the proposed neural mass model fits very well to the observed EEG power spectra, particularly to the power spectral peaks
within δ− (0 − 4 Hz) and α− (8 − 13 Hz) frequency ranges. Furthermore, for each case study, we perform a practical
identifiability analysis by estimating the confidence regions of the parameter estimates and interpret the corresponding
correlation and sensitivity matrices. Our results indicate that estimating the model parameters from analytically computed
spectral power, we are able to accurately estimate the unknown parameters while avoiding the computational costs due to
numerical integration of the model equations.
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Introduction

Although mathematical modeling plays a key role in
describing the dynamics of complex systems, it still remains
a challenging problem (Banga and Balsa-Canto 2008; van
Riel 2006; Stelling 2004; Kell 2004). In order to build a
successful model that allows one to reveal the mechanism
underlying a complex system, we first need to select a
robust model whose output is consistent with a priori avail-
able knowledge about the system dynamics (Kitano 2002;
Rodriguez-Fernandez et al. 2006a; Rodriguez-Fernandez
et al. 2013). The selected model should be able to repro-
duce, at least qualitatively, observed specific features in
experimental data. This task is referred to as structure
identification (Lillacci and Khammash 2010; Tashkova
et al. 2011). The subsequent task is parameter estima-
tion (Ashyraliyev et al. 2008, 2009). After the model
identification, one needs to determine the unknown model
parameters from the measurements. Since the output of a
model depends on the values of its parameters, reproducing
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specific features of the experimental measurements requires
selecting a suitable set of the unknown parameters. There-
fore, parameter estimation is a very important component of
the model developing procedure. Broadly speaking, given
a set of experimental data and a particular mathemati-
cal model, the aim of parameter estimation (also known
as model calibration) is to identify the unknown model
parameters from the measurements for which substituting
the estimated parameters in the model equations reproduces
the experimental data in the best possible way (Rodriguez-
Fernandez et al. 2006a). Nevertheless, finding a set of model
parameters which accurately fits the recorded data is an
extremely difficult task, especially for nonlinear dynamic
models with many parameters and constraints. Numerical
integration of differential equations and finding the best
parameter values in the entire search domain, i.e. find-
ing the global minimum, are two major challenges in the
parameter estimation problems (Zhan and Yeung 2011). In
particular for biological systems, these challenges need to
be addressed in nonlinear high-dimensional models.

In general, there are two broad classes of approaches
for solving parameter estimation problems: the frequentist
(classic) inference and Bayesian (probabilistic) estimation
(Kimura et al. 2005; Myung 2003; Gelman et al. 2004).
Both approaches have been applied successfully in a wide
range of scientific areas with different applications while
one over the other is preferable in specific problems (Green
and Worden 2015; Prasad and Souradeep 2012; Lillacci and
Khammash 2010; Ashyraliyev et al. 2009). Bayesian infer-
ence gives the full probability distribution of the parameters
rather than single optimal values as in frequentist infer-
ence. However, the former approach is more complex and
more expensive in terms of computational cost than the
latter (Lillacci and Khammash 2010). In practice, the fre-
quentist framework is more simple and more suitable for
high-dimensional models (Tashkova et al. 2011).

It is important to point out that there are various algo-
rithms in both frequentist and Bayesian inferences, and no
single algorithm is the best for all problems or even for a
broad class of problems (Mendes and Kell 1998; Gelman
et al. 2004; Haario et al. 2006; Girolami and Calderhead
2011; Kramer et al. 2014). Specifically, in the frequentist
approach the choice of the optimization technique com-
monly depends on the nonlinearity of the model and its con-
straints, on the problem dimensionality as well as on the a
priori knowledge about the system.

In the present study, we employ different algorithms
within both frequentist and Bayesian inference frame-
works. As frequentist techniques, we apply the Levenberg-
Marquardt (LM) algorithm as a gradient descent local
search method, the algorithm by Hooke and Jeeves (HJ) as
direct local search method, in addition to Particle Swarm

Optimization (PSO), Differential Evolution (DE), Genetic
Algorithm (GA), and Covariance Matrix Adaptation Evolu-
tion Strategy (CMA-ES) as stochastic global search meth-
ods that have previously been compared and/or shown to
be efficient for fitting electrophysiological neuronal record-
ings (Buhry et al. 2012). We also use Metropolis-Hastings
(MH) and Simulated Annealing (SA) as the most estab-
lished Monte Carlo Markov Chain (MCMC) algorithms,
which are widely used in the Bayesian framework. Fur-
thermore, we evaluate the performance of aforementioned
algorithms to determine which method is more suitable for
each of the parameter estimation problem considered in this
study.

It is well known that the dynamics of a majority of
biological systems can be described by a set of coupled
Ordinary Differential Equations (ODEs) or Delay Differen-
tial Equations (DDEs) (Mendes and Kell 1998). Moreover,
biological systems are often subject to external random
fluctuations (noise) from signal stimuli and environmen-
tal perturbations (Daunizeau et al. 2009; Breakspear 2017).
Despite the importance of stochastic differential equations
(SDEs) in brain stimulation (Deco et al. 2009; Herrmann
et al. 2016) and describing biological systems (Wilkinson
2011; Hutt et al. 2016), their parameter inference by a
rigorous analytical approach have received relatively little
attention and substantial challenges remain in this context.
This motivated us to focus on the parameter estimation of
systems whose dynamics are governed by SDEs.

More precisely, a parameter estimation problem is shown
for a neurophysiological model describing recorded elec-
troencephalographic data (EEG) obtained under anesthesia.
We show that the proposed neural mass model is able to
fit very well to observed EEG spectral power peaks in the
δ− (0 − 4 Hz) and α− (8 − 13 Hz) frequency ranges.
For illustration reasons, firstly two in silico parameter esti-
mation problems are presented using synthetic data. These
case studies consider very basic linear stochastic models and
illustrate in detail the analysis applied.

After the parameter estimation task, another important
challenge is the identifiability of the estimates (Ashyraliyev
et al. 2009; Rodriguez-Fernandez et al. 2006b). Identifia-
bility analysis allows one to estimate whether the model
parameters can be uniquely determined by the given exper-
imental data (Rodriguez-Fernandez et al. 2013). For each
considered case study, we employ different methods to
address this issue. The confidence regions of the estimates
are plotted and the correlation and sensitivity matrices are
analyzed to assess the accuracy of the estimates.

Several previous methods need to integrate differential
equations to estimate model parameters, which is a major
time consuming problem for the parameter estimation of
nonlinear dynamic systems (Tsai and Wang 2005). In this
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work, we present a general methodological framework for
estimating the parameters of systems described by a set of
stochastic ODEs or DDEs. In our proposed scheme which
is applicable in both frequentist and Bayesian inference
frameworks, we compute analytically the power spectrum
of model solutions by the aid of the Green’s function and
fit these to the spectral power of measured data. This com-
bination of techniques provides high estimation accuracy
in addition to a great advantage in terms of optimiza-
tion speed, because it allows us to avoid the numerical
integration of model equations.

The following section presents the acquisition proce-
dure of experimental EEG under anesthesia. Then, we
briefly review the parameter estimation algorithms and
present the mathematical formulation of identifiability anal-
ysis in details. Next, we provide the analytical derivation
of system spectral power for the two synthetic case stud-
ies and the thalamo-cortical model carried out in this work.
The subsequent results section provides the performance
of employed optimization algorithms for the synthetic and
neurophysiological models. We can show the different sen-
sitivity of model parameters in the thalamo-cortical model.
Moreover, employing EAs yields very good model fits to the
EEG spectral features within δ− and α−frequency ranges
measured during general anesthesia. A final patient group
study reveals which model parameters vary statistically sig-
nificantly between experimental conditions and which are
robust towards conditions.

Materials andMethods

EEG Acquisition during General Anesthesia

The details of the patient management and EEG acquisition
is described in Sleigh et al. (2010). In brief, frontal (FP2-
FT7 montage) EEG was obtained from adult patients under
general anesthesia that was maintained using either propofol
and fentanyl, or desflurane and fentanyl. The hypnotic drugs
were titrated to obtain a bispectral index value of 40-50
as per clinical guidelines. The EEG data were collected
2 minutes before, and 2 minutes after, the initial skin
incision. The signal was digitized at 128/sec and with
14 bit precision. To remove line artefact it was band-pass
filtered between 1 Hz and 41 Hz.

Objective Function

The most widely used criteria to evaluate the goodness of
a model fit are the maximum likelihood estimation (MLE)
and the least-squares estimation (LSE) (Bates and Watts
1988; Villaverde and Banga 2013). MLE implies Bayesian

inference and was originally introduced by R.A. Fisher
in 1912 (Aldrich 1997). It searches parameter space to
obtain the parameter probability distributions that produce
the observed data most likely (Kay 1993). In other words,
the MLE assesses the quality of estimated parameters by
maximizing the likelihood function (or equivalently the log-
likelihood function which is easier to work mathematically).
The likelihood function is the probability of obtaining
the set of observed data, with a given set of parameter
values. The set of parameters that maximizes the likelihood
function is called the maximum likelihood estimator. On the
other hand, choosing LSE method (frequentist inference),
we search for the parameter values that minimize the
sum of squared error (SSE) between the measured and
the simulated data (Ljung 1999; Myung 2003). As it is
widely known, if we assume that the experimental errors are
independent and normally distributed and assuming that the
measurement noise is uncorrelated and obeys a Gaussian
distribution, the MLE is equivalent to LSE (Bates and Watts
1980; Ljung 1999):
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p
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Ŷi − Yi(t,p)

)2

σ 2
i

⎤
⎥⎦

⎞
⎟⎠ , (2)

E(p) =
Ny∑
i=1

⎡
⎢⎣

(
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where E(p) is the weighted least-squares fitness function,
Ŷi denotes the measured data in the i-th data point, Yi(t,p)

represents the corresponding model prediction at time point
ti , p is the parameter vector being estimated, σi are
the measurement errors (the variance of the experimental
fluctuations), and Ny is the number of sampling points
of the observed data. In addition, if we assume that all
variances σ 2

i are equal, Eq. 3 simplifies to the well-known
chi-squared error criterion (Walter and Pronzato 1997)

χ2 =
Ny∑
i=1

(
Ŷi − Yi(t,p)

)2
. (4)

When minimizing the standard chi-squared error criterion
failed to reveal the power peaks in certain frequency bands,
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we employ a modified chi-squared error criterion referred
to as the biased chi-squared function given by

χ2=c1

N1∑
i=1

(
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(5)

where c1, c2 and c3 c4 are manually chosen constants
depending on the observed spectral peaks in the estimation
problem. Let us consider a power spectrum that exhibits
two peaks in δ− (0 − 4 Hz) and α− (8 − 13 Hz) fre-
quency ranges. We can choose N1, N2, and N3 in such
a way that the δ− and α− peaks fall within the ranges
[1, N1] and [N2, N3], respectively. Then, large values of c1,
c3 forces the model output to be fitted with the observed
spectral peaks within these frequency ranges. It is trivial that
c1 = c2 = c3 = 1 yields the standard chi-squared error
criterion given by Eq. 4. To fit the model’s power spectrum
to the empirical data, we take the logarithm of the spec-
tral power i.e., Yi(t,p) = log(PSDmodel(fi, p)), where fi

is the i-th frequency value and p contains all the unknown
model parameters being estimated. Here, PSDmodel is
the analytically derived power spectrum derived in
Section “Case Studies”.

Parameter Estimation Algorithms

Optimization methods can be broadly divided into two
major groups known as local optimization methods and
global optimization methods. Local optimization methods
can be further subdivided into two categories. First, gra-
dient based methods involve the use of derivative infor-
mation, such as Levenberg-Marquardt and Gauss-Newton
algorithms. Second, pattern search methods, such as Nelder-
Mead simplex and Hooke-Jeeves algorithms, which involve
the use of function evaluations only and do not need the
derivative information. Local optimization methods start
with an initial guess for the parameter values and, in
order to obtain satisfactory results, one has to manually
tune the initial parameters. Although the local search algo-
rithms converge very rapidly to a solution, they can easily
get trapped at a local minimum if the algorithm is not ini-
tialized close to the global minimum (Moles et al. 2003;
Mendes and Kell 1998; Rodriguez-Fernandez et al. 2006a;
Hamm et al. 2007). To overcome such drawbacks, stochas-
tic global optimization methods have been widely used for
the solving of nonlinear optimization problems (Rodriguez-
Fernandez et al. 2006b; Svensson et al. 2012; Tashkova
et al. 2011). These methods need neither an initial guess for
the parameters nor the gradient of the objective function.

Although stochastic global search methods cannot guaran-
tee the convergence to a global optimum, they are particu-
larly adapted to black-box optimization problems (Pardalos
et al. 2000; Papamichail and Adjiman 2004; Lera and
Dergeyev 2010). These methods are also usually more
efficient in locating a global minimum than deterministic
methods, which are based on the computation of gradient
information (Georgieva and Jordanov 2009; Cuevas et al.
2014).

There are several types of stochastic global optimization
methods, which are mostly based on biological or physical
phenomena (Corne et al. 1999; Fogel 2000). Evolutionary
algorithms (EAs) are stochastic search methods, which
incorporate a random search principle existing in natural
systems including biological evolution (e.g. GA inspired by
mating and mutation), artificial evolution (if one does not
deal with binary data), and social swarming behavior of
living organisms. As an example for the latter algorithm,
Particle Swarm Optimization is inspired by birds flocking
and fish schooling.

In this study, we use the most popular optimization
algorithms namely Levenberg-Marquardt (LM) algorithm
and Hooke and Jeeves (HJ) algorithm selected from local
search category, and Particle Swarm Optimization (PSO),
Differential Evolution (DE), Genetic Algorithm (GA), and
Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) from stochastic global search methods. Furthermore,
we use Metropolis-Hastings (MH) and Simulated Annealing
(SA) as the popular sampling algorithm belonging to Monte
Carlo Markov Chain (MCMC) methods. In addition, to
confirm our results obtained by MH, we have used PyMC,
which is a probabilistic programming language to perform
Bayesian inference in Python (Patil et al. 2010). The
details of these algorithms are explained in Appendix A in
Supplementary Material.

Identifiability Analysis

Once the model parameters have been estimated, it is nec-
essary to determine the identifiability of the estimates, i.e.,
whether the model parameters can be uniquely determined
by the given experimental data (Raue et al. 2011, 2009;
Quaiser and Monnigmann 2009). This task is referred to as
practical identifiability of the estimates. Several approaches
have been suggested to assess the reliability and accuracy
of the estimated parameters. In what follows, we describe
the most widely used metrics for assessing the accuracy of
estimates.

Confidence Regions

A widely used method in statistical inference to assess
the precision of estimated parameters is constructing the
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confidence regions (Draper and Smith 1998; Rawlings et al.
1998). A confidence region with the confidence level of
(1 − α)% is a region around the estimated parameter that
contains the true parameter with a probability of (1 − α).
Since the sum of squares function is quadratic in linear
models, the confidence regions for linear problems with
Gaussian noise can be obtained exactly as the ellipsoid (Kay
1993)

(p∗ − p)�C−1
lin (p∗ − p) ≤ NpF1−α

NP ,Ny−Np
. (6)

It is centered at the estimated parameter p∗ with principal
axes directed along the eigenvectors of C−1

lin , where Clin

denotes the covariance matrix of the linear model, F is
the Fisher distribution with Np and Ny − Np degrees of
freedom, Np and Ny are the number of model parameters
and the total number of data points, respectively.

In contrast, for nonlinear models there is no exact
solution to obtain the confidence regions (Marsili-Libelli
et al. 2003). In these cases, we have to approximate the
covariance matrix to extend (6) for nonlinear models leading
to (Seber and Wild 1997; Ljung 1999)

(p∗ − p)�C−1
approx(p

∗ − p) ≤ NpF1−α
NP ,Ny−Np

. (7)

Here Capprox is an approximation of covariance matrix and
it can be computed by either the Fisher information matrix
(represented by CJ ), or the Hessian matrix (represented by
CH ).

Applying the Fisher matrix CJ = FIM−1, the
approximate covariance matrix is given by (Rodriguez-
Fernandez et al. 2006a)

CJ = s2
(
J (p)�WJ(p)

)−1
, (8)

where s2 = E(p∗)/(Ny −Np) is an unbiased approximation
of the measurement variance,

J (p) = ∂Y (t, p)

∂p
|p∗

is an Ny × Np matrix indicating the Jacobian matrix
evaluated at p∗, and W is a weighting diagonal matrix
with elements w2

ii = 1/σ 2
ii in the principal diagonal.

Consequently, by substituting (8) into (7), the confidence
region obtained with the Fisher matrix reads

(p∗−p)�
(
J (p)�WJ(p)

)
(p∗−p) ≤ Np

E(p∗)
Ny −Np

×F1−α
NP ,Ny−Np

. (9)

In another approach, the approximate covariance matrix
can be derived from the curvature of the objective function
through the Hessian matrix (Marsili-Libelli et al. 2003):

CH = 2s2H(p)−1, (10)

where

H(p) = ∂2E(p)

∂p∂p� |p∗ .

Therefore, the confidence region based on Hessian matrix
reads

(p∗−p)�H(p)(p∗−p) ≤ 2Np

E(p∗)
Ny − Np

F1−α
NP ,Ny−Np

. (11)

It is important to note that if both approaches yield the
same confidence ellipsoids, the estimation converges to the
true parameters. Otherwise, any discrepancy between them
indicates an inaccurate estimation (Marsili-Libelli et al.
2003; Rodriguez-Fernandez et al. 2006b).

Another way of constructing the confidence regions in
non-linear models is known as the likelihood method. In this
approach, an approximate confidence region is defined as
all the parameter sets that satisfy (Donaldson and Schnabel
1985)

E(p) ≤ E(p∗)
(

1 + Np

Ny − Np

F1−α
NP ,Ny−Np

)
. (12)

In general, the confidence regions constructed by this
approach do not have to be elliptical. Furthermore, since
the (12) does not depend on the linearizion, the confi-
dence regions obtained through the likelihood method are
more precise than those computed through the approxi-
mate covariance matrix (Schmeink et al. 2011). Generat-
ing likelihood-based confidence regions requires a large
number of function evaluations, which can be compu-
tationally expensive. Despite this fact, since minimiz-
ing an objective function with metaheuristic optimiza-
tion algorithms like PSO is performed through func-
tion evaluations, using them is a suitable way to
obtain the likelihood confidence regions (Schwaab et al.
2008). In this work, we employ the PSO algorithm
to compute the likelihood confidence regions which
will be compared with those obtained through the
covariance approximation.

Correlation Analysis

The correlation matrix quantifies the possible interrelation-
ship among the model parameters, which can be obtained
from the covariance matrix. The correlation coefficient
between the i-th and j -th parameter is defined by

Rij = Cij√
CiiCjj

(13)

where Cij is the covariance between the i-th and j -th
parameter estimates (Rodriguez-Fernandez et al. 2006a).
By virtue of the conceptual definition of the correla-
tion coefficient, the correlation among parameters leads to
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non-identifiability problems (Li and Vu 2013; Rodriguez-
Fernandez et al. 2006b). Thus, highly correlated parameters
cannot be uniquely estimated, because the output modifica-
tion due to small change in one of the correlated parameter
can be compensated by an appropriate change in the other
parameter.

Sensitivity Analysis

Sensitivity analysis is an appropriate way to identify which
model parameters contribute most to variations in model
output due to the changes in model input (Rateitschak et al.
2012). A local sensitivity coefficient measures the influence
of small changes in one model parameter on the model
output, while the other parameters are held constant (Ingalls
2008; Zi 2011). The local sensitivity coefficients can be
defined by (Brun et al. 2001)

�(pj ) = D(J (p)�WJ(p)), (14)

where D denotes the main diagonal elements of a matrix. In
addition, the local sensitivity matrix can be determined by
computing the curvature of the objective function through
the Hessian matrix (Bates and Watts 1980)

	(pj ) = D(H(p)). (15)

The sensitivity analysis can shed light on the identifiabil-
ity of model parameters. Making a small change in a very
sensitive model parameter causes a strong response in the
model output, which indicates that the parameter is more
identifiable. On the contrary, a model parameter with low
sensitivity is more difficult to being identified, because any
modification in an insensitive parameter has no influence on
the model output (Rodriguez-Fernandez et al. 2013).

Case Studies

Firstly, in order to illustrate the performance and capability
of the parameter estimation method carried out in this work,
we estimate the model parameters of two case studies:
Case Study I) a stochastic damped harmonic oscillator, and
Case Study II) a stochastic delayed oscillator. For each
case we have generated in silico data, i.e., the measured
data is generated artificially by adding noise to the model
output obtained by simulating the model equations with
a set of pre-chosen parameters referred to as the true
values. Finally, in Case Study III) the parameters of a
thalamo-ocortical model are inferred by fitting the model
power spectrum to the EEG spectral power recorded under
various experimental conditions. All the computations in the
present work were implemented in Matlab (The Mathworks
Inc., MA) on a Mac OS X machine with 2.5 GHz
Intel Core i5 processor and 12 GB of 1333 MHz DDR3
memory.

Case Study I: a Stochastic Damped Harmonic Oscillator

Consider a damped harmonic oscillator driven by a random
stochastic force given by (Øksendal 2007)

d2x

dt2
+ γ

dx

dt
+ ω2

0x = ξ(t), (16)

where ω0 is the intrinsic angular frequency of the oscillator,
and γ denotes the damping coefficient. The additive
Gaussian white noise ξ(t) obeys

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t ′)〉 = 2κδ(t − t ′), (17)

where κ is the intensity of the uncorrelated driving noise,
and 〈.〉 denotes the ensemble average (Risken 1984; 1996).
Using the Wiener-Khinchin theorem, the power spectrum
of the stochastic differential equation (16) reads (Wang and
Uhlenbeck 1945; Masoliver and Porrá 1993)

P(ω) = 2κ√
2π

1

(ω2 − ω2
0)

2 + γ 2ω2
, (18)

where ω = 2πf denotes the angular frequency. It can
be shown that the only maximum of P(ω) is located at

ωmax =
√

ω2
0 − γ 2/2, where f0 = ω0/2π is the resonant

frequency of the system. In this case study, the vector of
unknown parameters being estimated is pI = (κ, γ, f0)

with the constraint κ, γ, f0 > 0.

Case Study II: a Stochastic Linear Delayed Oscillator

Consider a linear scalar delay differential equation in the
presence of additive white noise given by

dy(t)

dt
= ay(t) + by(t − τ) + ξ(t). (19)

where the noise ξ(t) obeys the properties given by Eq. 17.
The power spectrum of the corresponding solution is

P(ω) = 2κ√
2π

1

(a + b cos(ωτ))2 + (ω + b sin(ωτ))2
, (20)

where κ is the intensity of the additive white Gaussian noise.
In this case study the vector of unknown parameters being
estimated is pII = (κ, a, b, τ ), where κ > 0, τ > 0, and
a, b ∈ R.

Case Study III: a Thalamo-Cortical Model Reproducing
the EEG Rhythms

Case Study III aims to estimate the parameters of a
neural mass model by fitting the power spectrum of
the system to the recorded EEG data during awake and
anesthesia conditions. To this end, we consider a reduced
thalamo-cortical neuronal population model, which is able
to reproduce the characteristic spectral changes in EEG
rhythms observed experimentally during propofol-induced
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anesthesia (Hashemi et al. 2014; 2015). In the following,
the model equations are given, then we derive the analytical
expression for EEG power spectrum which will be fitted to
the empirical spectra.

Consider the thalamo-cortical system shown schemati-
cally in Fig. 1. The model consists of a network of three
populations of neurons: cortical pyramidal neurons (E),
thalamo-cortical relay neurons (S) which both are excita-
tory glutamatergic neurons, and thalamic reticular nucleus
(R) which is a thin shell of GABAergic cells surrounding
the thalamus. The cortical pyramidal neurons (E) receives
excitatory input from thalamo-cortical relay neurons (S)
and projects back to the same nucleus. This reciprocal
long-range excitatory interaction would generates a positive
feedback which is associated with a conduction delay τ .
However, the incessant excitation in this loop is prevented
by the interposed inhibition to thalamo-cortical relay neu-
rons (S) which originates from thalamic reticular nucleus
(R). The thalamic reticular nucleus (R) receive excitatory
input from axon collaterals of the cortical pyramidal neu-
rons (E) and thalamo-cortical relay neurons (S), which the
former input is associated with a constant time delay τ

(Robinson et al. 2001a; Victor et al. 2011).
Following Hashemi et al. (2014, 2015), we denote the

excitatory and inhibitory postsynaptic potentials (PSPs)

in the model’s neuronal populations by V c
a , where a ∈

{E,R, S} represents the pyramidal (E), relay (S), and
reticular (R) neurons, respectively, and c ∈ {e, i} indicates
the excitatory and inhibitory synapses, respectively. The
system dynamics are governed by the following set of
coupled delay differential equations

L̂eV
e
E(t) = KESSS[V e

S (t − τ) − V i
S(t − τ)],

L̂eV
e
S (t) = KSESE[V e

E(t − τ)] + I (t),

L̂iV
i
S(t) = KSRSR[V e

R(t)],
L̂eV

e
R(t) = KRESE[V e

E(t − τ)] + KRSSS[V e
S (t) − V i

S(t)]
(21)

where the parameters Kab are the synaptic connection stre-
ngths in population a originating from population b and τ is
the transmission time delay between cortex and thalamus.
The additional activity I (t) introduces an external input to the
system considered as a non-specific input to relay neurons

I (t) = I0 + ξ(t), (22)

where I0 is the input mean value, and the noise ξ(t) obeys
the properties given by Eq. 17. According to previous
studies, we assume that the EEG can be described in a
good approximation by spatially constant neural population
activity (Robinson et al. 2001a, b, 2002). Thus, under the

Fig. 1 Schematic diagram of the
reduced thalamo-cortical model.
The excitatory connections
(glutamatergic) are indicated
with blue arrows, while the
inhibitory connections
(GABAergic) are represented by
red lines with filled circle ends.
The connections between
cortical pyramidal neurons (E)
and the thalamus consisting of
thalamocortical relay neurons
(S) and thalamic reticular
nucleus (R) are associated with
a constant time delay τ

Cerebral Cortex 

Thalamus 

Subthalamus

Thalamocortical Relay Nucleus 

Thalamic Reticular Nucleus 

Pyramidal cells 
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assumption of the spatial homogeneity, mean post-synaptic
potentials in above equations do not depend on spatial
locations. The parameters Sa[.] describe the mean firing rate
functions for neuronal populations a ∈ {E, S,R}, in which
they are generally considered as a standard sigmoid function

Sa(V ) = Smax
a

1 + e−c(V −V th
a )

, (23)

where Smax
a is the maximum firing rate of population a,

V th
a indicates the mean firing threshold, and c denotes the

slope of the sigmoid function at the inflexion-point V th. The
temporal operators L̂e,i are given by

L̂e(∂/∂t) = 1

αeβe

∂2

∂t2
+ (

1

αe

+ 1

βe

)
∂

∂t
+ 1,

L̂i(∂/∂t) = 1

αiβi

∂2

∂t2
+ (

1

αi

+ 1

βi

)
∂

∂t
+ 1,

(24)

with αe > βe, and αi > βi , where αe and αi indicate the
synaptic rise rates of the response functions for excitatory
and inhibitory synapses in s−1, respectively, and βe and βi

denote the corresponding decay rate constants. Moreover,
the delay term, τ , is zero if both the sending and receiving
populations are in the thalamus while for the thalamo-
cortical or cortico-thalamic pathways, the delay term is
nonzero. For further details on model equation derivation
see Hashemi et al. (2015).

Finally, since we assume that the EEG is generated
by the activity of pyramidal cortical cells (Nunez and
Srinivasan 2006; Rennie et al. 2002), and by virtue of the
specific choice of external input to relay neurons, the power
spectrum of the EEG just depends on one matrix component
of the Green’s function by (Hutt 2013; Hashemi et al. 2015)

PE(ω) = 2κ
√

2π

∣∣∣G̃1,2(ω)

∣∣∣2
, (25)

where

G̃1,2(ω) = −K1L̂ie
−iωτ

L̂e(L̂eL̂i + Gsrs) + e−2iωτ (Gesre − GeseL̂i)
,

(26)

with Gese = K1K2, Gsrs = K3K5 and Gesre = K1K3K4,
and

L̂e =
(

1 + iω

αe

) (
1 + iω

βe

)
, L̂i =

(
1 + iω

αi

)(
1 + iω

βi

)
,

K1 =KES

dSS [V ]
dV

|V =(V ∗e
S −V ∗i

S ), K2 =KSE

dSE[V ]
dV

|V =V ∗e
E

,

K3 =KSR

dSR[V ]
dV

|V =V ∗e
R

, K4 =KRE

dSE[V ]
dV

|V =V ∗e
E

,

K5 =KRS

dSS [V ]
dV

|V =(V ∗e
S −V ∗i

S ) .

In a reasonable approximation, we assume an instanta-
neous rise of the synaptic response function followed by an
exponential decay i.e., αe 
 βe, and αi 
 βi (Hashemi

et al. 2017). This approximation reduces the second-order
temporal operators L̂e,i given by Eq. 24 to the first-order
operators L̂e = 1 + iω/βe, and L̂i = 1 + iω/βi . Using
this approximation, the sixth-order characteristic equation
(the denominator of G̃1,2 given by Eq. 26) simplifies to a
third-order equation, which is more analytically tractable.
In our previous study (Hashemi et al. 2017), we have
shown that this simplification does not affect the spectral
power in the delta and alpha ranges. Moreover, it is widely
accepted that anesthetic agent propofol prolongs the tempo-
ral decay phase of inhibitory synapses while the rise rates
remain unaffected (Hutt and Longtin 2009; Hutt et al. 2015;
Hashemi et al. 2014, 2015).

Taken together, by fitting the power spectrum of EEG given
by Eq. 25 to the empirical spectra, we aim to estimate seven
model parameters, namely, the power normalization D =√

2κK1, the excitatory and inhibitory synaptic decay ratesβe,
and βi , respectively, the axonal propagation delay τ , and the
closed-loop gains Gese, Gsrs , and Gesre. Thus, the vector
of unknown parameters being estimated is pIII = (D, τ,

βe, βi, Gese, Gsrs, Gesre), where based on the physiological
limits, all the parameters are restricted to be positive.

Furthermore, there are six inequality constraints on
system parameters, which will be imposed over the chi-
squared error function in spectral fitting problem. The
first constraint is related to the synaptic rise and decay
rate constants. Since response functions for the excitatory
synapses exhibit a longer characteristic rise and decay times
than the inhibitory synapses, thus αe > αi , and βe > βi

(Constraint I). Following the analytical approach described
in Forde and Nelson (2004) to obtain stability conditions
for characteristic equation of DDEs, we have derived five
analytical conditions for the stability of the considered
thalamo-cortical system. According to this approach, we
first investigate the conditions under which the system is
stable in the absence of time delay (τ = 0). Then, by
increasing the delay value (τ > 0), we seek to determine
whether there exists a critical delay value for which
the system becomes unstable. Since the power spectrum
analysis is valid only if the system resting state is stable, we
probe the conditions under which the introduction of time
delay cannot cause a bifurcation. The following conditions
guarantee that the system is stable when τ = 0, and
increasing the delay value does not change the stability of
the system (see (Hashemi et al. 2017) for the details):

βi(2 + Gsrs)+βe(1−Gese)>0, (Constraint II)

1+Gesre+Gsrs −Gese >0, (Constraint III)

(2βe + βi)

(
2 + Gsrs

βe

+ 1−Gese

βi

)

−(1 + Gesre + Gsrs − Gese)>0, (Constraint IV)

(β2
e βi)

2
(
(1+Gsrs)

2−(Gesre−Gese)
2
)
>0, (Constraint V)

�=18ξ2ξ1ξ0 − 4ξ3
2 ξ0 + ξ2

2 ξ2
1 − 4ξ3

1 − 27ξ2
0 <0. (Constraint VI)
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Results

In the following, the results of model parameter estimation
for the case studies described in the previous section are
presented. The first two case studies aim to illustrate
important features of the methods applied laying the ground
for the analysis of recorded experimental data by a thalamo-
cortical model. An outline of the parameter inference in
this study is illustrated in Fig. 2. In Case Study I and
II, the unknown parameters of set of SDEs (stochastic
ordinary and delay differential equation, respectively) are
inferred from pseudo-experimental data. As can be observed
from the schematic illustration, in order to estimate the
unknown parameters of a set of SDE, we transform the
observation from time-domain to frequency-domain data.
To this end, the power spectrum of the system is computed
analytically by the aid of the Green’s function to generate
the true signal, i.e. the signal constructed by the nominal
(true) parameters. In addition, the system spectral power
is calculated numerically to acquire the measurement

signal by applying the Welch method. Then, the model
parameters are estimated by fitting the experimental data to
the corresponding model power spectrum. In general, the
generated in silico data can be mathematically expressed
as � = � + noise, where � and � denote the noise-
free observation (true signal) and the corresponding noisy
data (measured signal), respectively. Finally, in the main
Case Study III, the proposed parameter inference method
is applied to the real experimental data set to estimate the
parameters of a neural mass thalamo-cortical model (true
signal) from the EEG spectral power (measured signal).

Case Study I

Case Study I deals with estimating the parameters of a
stochastic damped harmonic oscillator by fitting the model’s
spectrum to a set of pseudo-experimental data. The result
of this estimation is shown in Fig. 3. In Fig. 3a, the
estimated power spectrum obtained by PSO is compared
with the respective noise-free and the noisy spectra. From
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Fig. 2 Schematic illustration of parameter inference carried out in this
work. In Case studies I and II, the true signal (analytical power spec-
trum, �) is fitted to the measured signal (numerical power spectrum,

�). In a simmilar manner applied to real data measuremet, in Case
study III, the power spectrum of a neural mass model (true signal) is
fitted to the EEG spectral power (measured signal)
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a b

c

d

Fig. 3 Parameter estimation of a stochastic damped harmonic oscil-
lator (Case Study I) from a set of noisy in silico data. a Estimated
power spectrum is plotted versus the noise-free and the noisy spectrum,
encoded in dashed green, solid blue, and dashed red lines, respec-
tively. In addition, the grey shaded area represents the 95% confidence
interval. The true and estimated parameters obtained by PSO are

pI = (κ, γ, f0) = (0.1 mV, 5.0 Hz, 3.0 Hz), and p∗
I = (κ, γ, f0) =

(0.103 mV, 4.562 Hz, 3.00 Hz), respectively. b, c, d Histogram of
Markov chains constructed by the MH algorithm for parameters κ , γ

and f0, respectively. The mean value of Markov chains (vertical red
lines) indicate near identical estimates with those obtained by the PSO
algorithm

the result, we observe that the estimated power spectrum
is in very good agreement with the power spectrum
computed from the given signal. The noise-free power
spectrum was generated according to Eq. 18 with the true
parameters pI = (κ, γ, f0) = (0.1 mV, 5.0 Hz, 3.0 Hz).
The estimated parameters p∗

I = (κ, γ, f0) = (0.103 mV,

4.562 Hz, 3.00 Hz) are very close to the true parameters pI

and yield the best-fit value E(p∗
I ) = 0.6554. It is worth

pointing out that other EAs such as GA and DE yield similar
estimations.

Moreover, using MCMC methods we can produce an
estimate of the means and standard deviations of the inferred
parameters. The histogram of Markov Chains constructed
by the MH algorithm for model parameters κ , γ , and
f0 are shown in Fig. 3b, c and d, respectively. One can
see that the Markov chains obey a Gaussian distribution,
where the mean values (vertical red lines) indicate near
identical estimates with those obtained by PSO algorithm.
This result represents a very close agreement between the
MLE and LSE obtained by the MH and the PSO algorithm,
respectively.

Once the model parameters have been inferred, one can
determine the uncertainties in the parameter estimations.
In order to assess the accuracy of the estimates shown in
Fig. 3, we plot the confidence regions of the calibrated
parameters. Figure 4 illustrates the 95% confidence regions
for different pairs of parameter estimates in Case Study I.
Covariance matrix estimation yields elliptical confidence
regions, whereas the likelihood confidence regions are
estimated by PSO algorithm. Since J (p∗)�WJ(p∗) =

2H(p∗) the covariance matrix approximated by the Fisher
Information Matrix (cf. Eq. 9) and Hessian matrix (cf.
Eq. 11) are equal. This yields identical elliptical confidence
regions, cf. dashed red and green lines in Fig. 4a.
Considering the conceptual difference of Hessian and FIM
approaches in the derivative terms, the exact coincidence
of the ellipsoids obtained by these methods confirms that
the accuracy in parameter estimations are well captured
(Marsili-Libelli et al. 2003). Moreover, comparing the
likelihood confidence regions (calculated from Eq. 12)
with the elliptical confidence regions indicates that high
inference precision have been obtained by PSO algorithm.
This demonstrates further the benefits of the PSO algorithm
in estimating the model parameters combined with a
simultaneous computation of the confidence estimates.

To further confirm the reliability of the obtained
confidence regions, we have also computed the 95%
confidence regions by PyMC package (Patil et al. 2010). As
presented in Fig. 4b, one observes very good agreement with
the results illustrated in panel a.

An easy way to study the practical identifiability of an
estimation is to plot the correlation matrix of the model
parameters. Here, the local identifiability of the obtained
estimations is evaluated based on the correlation analysis.
For Case Study I, Fig. 5 displays the absolute value of
the correlation coefficients obtained according to Eq. 13.
The figure shows low correlation values in non-diagonal
elements. The lack of correlation between the estimated
parameters indicates that all the parameters are identifiable.
Furthermore, we have carried out the sensitivity analysis
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Fig. 4 Comparison of 95%
confidence regions for different
pairs of parameter estimates in
Case Study I. a The ellipsoids
encoded in dashed red and green
lines show the confidence
regions obtained by
approximating the covariance
matrix through the use of FIM
and Hessian approaches,
respectively. The regions
constructed by the blue markers
indicate the likelihood
confidence regions produced by
the PSO algorithm. b
Confidence regions for model
parameters obtained by MH
algorithm. The regions are
centered at the optimal
parameters p∗

I illustrated by the
filled red circles

for this case study (see the relevant result presented in
Appendix B in Supplementary Material) revealing that the
estimated parameters in this case study are captured in an
accurate manner.

Further it is interesting to take a closer look at the
convergence speed of different algorithms carried out in
Case Study I. Figure 6 shows the convergence functions,
i.e., The fitness values versus the function evaluations, for
LM, HJ, PSO, DE, GA, CMA-ES, MH, and SA algorithms
averaged over 100 runs. Although the fitness function of
all algorithms finally reach the global minimum, the local
search algorithms (LM and HJ) show a faster convergence
speed compared to the others, whereas the EAs (including
PSO, DE, GA, CMA-ES) indicate faster convergence
than MH and SA as MCMC algorithms. In addition, SA

Fig. 5 Correlation matrix for Case Study I. The figure shows the
absolute value of the correlation coefficients indicating lack of
correlation between the estimated model parameters κ , γ , and f0

converges finally to the minimum value in a damping
manner (when the temperature is reduced toward zero). In
contrast, the fitness function of MH keeps oscillating about
the minimum value.

Case Study II

In Case Study II, the power spectrum of a linear SDDE
is fit to a set of pseudo-experimental data. Note that this
case study poses a multimodal objective function, which is
a more challenging problem in finding the global minimum
compared to Case Study I as an example of unimodal
functions. Figure 7 illustrates the parameter inference of
the SDDE from a noisy measurement. The estimated power
spectrum shows a striking close match to the reference
spectrum in Fig. 7a. Here, the noise-free observations
are generated by substituting the true parameters pII =
(κ, a, b, τ ) = (0.1 mV, −17.3, −21.32, 0.2) in Eq. 20.
The fit based on PSO yields the optimal parameters
p∗

II = (κ, a, b, τ ) = (0.103 mV, −18.4, −21.49, 0.2),
that is in very good agreement with the original model
parameters. The corresponding estimation’s fitness function
value is E(p∗

II ) = 33.19. Furthermore, the histograms
of Markov Chains constructed by the MH algorithm for
model parameters κ , a, b and τ are shown in Fig. 7b–e,
respectively. We observe that the estimates calculated by the
MH (vertical red lines) are very close to those obtained by
PSO algorithm.

Figure 8 displays the confidence regions for all possible
pairs of the estimated parameters in Case Study II. Similar
to Case Study I, the elliptical confidence regions are
computed by covariance matrix estimation according to
Eqs. 9, and 11, whereas the likelihood confidence regions
are provided by PSO according to Eq. 12. One can see that
the ellipsoids constructed with covariance matrix estimation
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Fig. 6 Convergence functions of
several optimization algorithms
used in Case Study I. The
fitness values versus the
function evaluations in a log-log
scale for different algorithms:
LM and HJ as local search
algorithm, PSO, DE, GA,
CMA-ES from global search
algorithms, and MH and SA
known as sampling algorithms
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using FIM and Hessian matrix coincide, because in this case
study J (p∗)�WJ(p∗) = 2H(p∗). However, comparing
the elliptical and likelihood confidence regions, there is
a discrepancy between the regions evaluated based on
covariance matrix and those computed through the PSO
method.

In order to identify the origin of the discrepancy between
elliptical and likelihood confidence regions observed in
Fig. 8, we investigate the correlation among the model
parameters. Figure 9 represents the correlation matrix of
the model parameters in case study II. If two parameters
are highly correlated, the change in model output caused
by change in one parameter can be compensated by an

appropriate change in the other parameter. This prevents
the parameters from being uniquely identifiable. In other
words, for a pair of correlated parameters there exist many
combinations that give almost the same value of fitness
function. This aspect reflects a degeneracy of solutions,
resulting from the non-uniqueness of the inverse problem
solution. According to the absolute value of the correlation
coefficients plotted in Fig. 9a, the parameters a and b are
practically non-identifiable since they are highly correlated,
whereas other pairs of parameters are uncorrelated. To
overcome such problem, the pairs of correlated parameters
must be removed analytically by introduction of new
variables. In this case study, setting a candidate solution in

a b

c

d

e

Fig. 7 Inferring the parameter values of a stochastic linear delay dif-
ferential equation (Case Study II) from a set of in silico data. a
The estimated power spectrum (dashed green line), the correspond-
ing noise-free spectrum (blue line) and the spectrum from noisy
measured data (dashed red line). The grey shaded area encodes
the 95% confidence interval. The true and estimated parameters are

pII = (κ, a, b, τ ) = (0.1 mV, −17.3, −21.32, 0.2), and p∗
II =

(κ, a, b, τ ) = (0.103 mV,−18.4, −21.49, 0.2), respectively. b, c, d,
e Histograms of Markov chains constructed by the MH algorithm
for parameters κ , a, b and τ , respectively. The mean value of gener-
ated Markov chains (vertical red lines) are very close to the estimates
obtained by the PSO algorithm
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Fig. 8 Elliptical and likelihood
confidence regions at 95%
confidence level for each pair of
estimated parameters in Case
Study II. The ellipsoids are
computed with the FIM informa-
tion (in dashed red) and Hessian
matrix (in green), whereas the
likelihood confidence regions
(in blue) are estimated by the
PSO algorithm. The estimated
parameters p∗

II = (κ, a, b, τ ) =
(0.103 mV,−18.4, −21.49, 0.201)

are represented by filled red
circles

the form of y(t) = Ceλt yields the following nonlinear
transcendental characteristic equation:

λ − a − be−λτ = 0,

where, by inserting λ = iω, and separating the real and
imaginary parts we obtain

a = −b cos(ωτ),

� = −b sin(ωτ), (27)

or equivalently,

a = ω/ tan(ωτ),

b = −ω/ sin(ωτ). (28)

where ω = 2π�. Now, introducing the parameter �

according to the above equations leads to a model equa-
tion containing three uncorrelated parameters: κ , �, τ (cf.
Fig. 9b). As it is shown in Fig. 10a, for this set of uncorre-
lated parameters, the elliptical confidence regions coincide
very well with the likelihood-based regions. These results
indicate a precise estimation with uniquely identifiable esti-
mates. Here, to compute the confidence regions of the model
parameters, we employed the same approach as used in
Fig. 8. In addition, the 95% confidence regions obtained

by PyMC are displayed in Fig. 10b. From Figs. 7 and 10,
we observe very close agreement between the inference
obtained by PSO and MH.

Finally, for this case study, we compare the performance
of different algorithms used in this study. For the sake of
fair comparison, the initial guesses in the MH and SA algo-
rithms were created randomly within the parameter search
space to have an identical strategy for starting condition
with the EAs (i.e., PSO, DE, GA, CMA-ES). The parameter
search space was limited in the range [0, 20] for each param-
eter. We have also applied the local algorithms LM and
HJ, but nonlocal algorithms out-perform them clearly (LM
and HJ algorithms failed to arrive at the global minimum).
This is why we do not discuss their corresponding results
in the following.

The results for 100 runs are reported in Fig. 11 and
Table 1. We found that PSO, DE, GA, CMA-ES, SA, MH
methods succeeded in finding the global minimum.

In addition, for each algorithm, the mean and minimum
values of obtained fitness function, and the average of run-
ning time are listed in Table 1. Although EAs reveal a high
computational cost, they show a very good performance in
finding the global solution. According to these results, PSO
delivers slightly better solutions than other EAs, although

Fig. 9 Correlation matrix
(absolute values) for Case Study
II. a The estimated parameters
are κ , a, b, and τ . From this
panel, we observe that
parameters a and b are highly
correlated, which were causing
identifiability problem. b
Introducing the parameter �

according to Eq. 27 yields a
model with three uncorrelated
parameters: κ , �, τ
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Fig. 10 Confidence regions for
the parameters of Case Study II.
a The elliptic and likelihood
confidence regions for the
uncorrelated parameters κ , �,
and τ . b Confidence regions of
the parameters built from MH
algorithm. The regions are
centered at the estimated
parameters p∗

II = (κ, �, τ) =
(0.103 mV, 1.99, 0.2)

the employed EAs are competitive in finding the global
minimum.

Case Study III

The first two case studies were designed with the measured
in silico data. In the following, we identify the parameters
of a thalamo-cortical model described by a set of coupled
stochastic delay differential equations through the model
spectral fitting to the in vivo experimental data.

Figure 12 shows the power spectrum of the model
given by Eq. 25 fit to the power spectra of EEG recorded
over frontal and occipital head regions during awake and
anesthesia conditions. As a consequence of the very good
performance of the parameter estimation based on PSO, we
applied it to estimate model parameters optimally. Figure 12

shows a good prediction of the observed spectral power
features in experimental data.

It is important to point out that, in most of the datasets,
implementing a standard fitness function defined by the
discrepancy between the models output and the measured
data does not allow to fit well the spectral power peak in δ−
and α−frequency ranges (cf. the inset in Fig. 12a). Since
the δ− and α−peaks are important and informative signal
features observed during anesthesia, we employed a biased
chi-squared function given by Eq. 5 in order to fit the model
with the spectral power peak within these frequency ranges.
Taking a biased fitness function with more weight value in
δ− and α−frequency bands, the model output is forced to
improve the fit of the corresponding experimental spectral
power peaks. For instance, in panel A, we set c1 = 20,
c2 = 1, c3 = 10, c4 = 1 to capture the observed δ− and α−

Fig. 11 Comparing the
performance of different
algorithms through 100
independent runs in Case Study
II. The red bars indicate the
histogram of fitness function
values (the number of counts of
the best fitness value) obtaiend
by PSO, DE, GA, CMA-ES,
MH and SA algorithm
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Table 1 Comparing the results obtained by different search algorithms
achieved from 100 independent runs in Case Study II

Algorithm Min Counts Mean Time(s)

PSO 33.19 100 33.19 27.5

DE 46.22 95 58.73 27.9

GA 47.76 94 60.04 31.5

CMA 107.03 54 699.59 67.03

SA 112.09 52 825.90 116.3

MH 114.52 44 850.69 117.3

The best values of fitness function (minimum), the related counts, its
mean value and the average of computational time (in second) for each
algorithm are illustrated in the table

peak. It is trivial that c1 = c2 = c3 = c4 = 1 results in the
standard chi-squared function.

The sensitivity analysis of the fitness function to the
estimated parameters for this case study is shown in
Appendix B in Supplementary Mateial.

In order to demonstrate the power of the thalamo-cortical
neural mass model, it is fit to EEG spectral power of eight
patients recorded during pre- and post-incision anesthesia
induced by propofol and desflurane, as shown in Fig. 13.
In this figure, we also observe that the model fits measured
data very well in δ− and α−frequency bands. These results
indicate that the considered thalamo-cortical model in this
work is able to reproduce the specific features observed
in EEG spectral power data adequately. For completeness,
statistics of the estimated parameters are given in Fig. 14 for

all patients. Most parameters are stable over experimental
conditions and subjects, such as the thalamo-cortical
delay time τ . Conversely, the decay rates βe and βi

are significantly different under desflurane and propofol
anesthesia under the pre-incision condition (p < 0.05).
Moreover, the noise strength is significantly different under
desflurane and propofol anesthesia in both experimental
conditions (p < 0.05). The detailed parameter statistics for
each patient are reported in Appendix C in Supplementary
Material.

Discussion

In a great variety of scientific fields, stochastic differential
equations arise naturally in the modeling of systems due
to random forcing or other noisy input (Faisal et al. 2008).
Numerical integration of differential equations is a major
time consuming problem in the parameter estimation of
nonlinear dynamics describing biological systems (Liang
and Lord 2010). Furthermore, inferring the parameters of
SDEs are more problematic due to the inherent noise in
system equations.

Various previous methods attack the parameter inference
problem. It has been shown that a decoupling strategy
(slope approximation), that considers the derivative values
of system state variables, avoids numerical integration
altogether by fitting models to the slope of time-series
data (Almeida and Voit 2003; Voit and Almeida 2004).
However, this technique is not applicable in most inverse

Fig. 12 Fitting a reduced
thalamo-cortical model to the
EEG power spectra in awake
and anesthesia conditions. In
each panel, the spectral power of
recorded EEG data is shown as a
dashed red line. The fit EEG
power spectra using standard
chi-squared function are
illustrated by green lines,
whereas those obtained through
the biased chi-squared function
are shown by blue lines. Panels a
and b illustrate the EEG spectral
power over the frontal head
region in awake and anesthesia
conditions, respectively. The
occipital EEG spectral power in
awake and anesthesia conditions
are displayed in panels c and d,
respectively
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Fig. 13 Fitting a reduced
thalamo-cortical model to EEG
spectral power in pre- and
post-incision anesthesia induced
by propofol and desflurane. The
recorded EEG data for eight
patients are shown by dashed
lines, whereas the corresponding
fitted model are illustrated by
solid lines. a The EEG power
spectra recorded in pre- and b in
post-incision condition induced
by propofol are illustrated by
dashed red and green lines,
respectively. In addition, the
solid blue and black lines depict
the corresponding fitted
thalamo-cortical model to
experimental data. Panels c) and
d show the the fitted mode
against the spectral power of
recorded EEG data during
desflurane induced anesthesia in
pre- and post-incision
conditions, respectively

a

b

c

d

problems. For instance, if an equation is affected by a
state variable for which there is no data available, then the
decoupling technique cannot be applied to that equation.
Moreover, this strategy cannot provides a model that is
readily applicable to the computational simulation when the
given time-series data contain measurement errors (Kimura
et al. 2005).

In another work, Tsai and Wang (2005) have proposed
a modified collocation approximation technique to convert
differential equations into a set of algebraic equations. This
method has the obvious advantage of avoiding numerical
integration of differential equations. They have shown
that their method yields accurate parameter estimation for
S-system models of genetic networks what also saves
much computational time. However, such an approximation
cannot always be employed in general complex nonlinear
inverse problems.

In the last decade, there have been several studies on
fitting the neural population models to experimental data. In

neuroimaging literature, Dynamic Causal Modeling (DCM)
has been used successfully to infer hidden neuronal states
from measurements of brain activity (Friston et al. 2003;
David et al. 2006; Pinotsis et al. 2012). It has been shown
previously that characterizing neural fluctuations in terms
of spectral densities leads to more accurate inference than
stochastic scheme (Razi et al. 2015; Jirsa et al. 2017).
However, in most of the previous studies, a rigorous
analytical approach to overcome the inference difficulties
due to the additive noise has received relatively little
attention (Daunizeau et al. 2012; Ostwald et al. 2014;
Ostwald and Starke 2016). In the technique presented
in this study, we estimated the model parameters from
the power spectrum derived analytically from the system
equations. By the aid of the Green’s function method,
we can easily compute the power spectrum of a linear
system whose dynamics are governed by a set of coupled
stochastic ordinary or delay differential equations. By fitting
the analytically computed spectral power to the spectral
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Fig. 14 Statistics of the
estimated parameters of the
thalamo-cortical model for 25
patients during general
anesthesia. Each boxplot shows
the Kruskal-Wallis test statistic
for the estimated parameters of
the thalamo-cortical neural mass
model fitted to EEG spectral
power in pre- and post-incision
anesthesia induced by propofol
and desflurane. Dpre and Dpst

stand for pre- and post- incision
induced by desflurane,
respectively. Ppre and Ppst

stand for pre- and post- incision
induced by propofol,
respectively
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power estimated from corresponding measurements, we can
estimate the model parameters without solving the model
equations. Hence we are able to avoid the computational
costs of numerical integration, which dramatically reduces
the computational time burden. Note that investigating the
structural identifiability (model selection practice) in order
to identify which model best explains the experimental data,
is beyond the scope of the present manuscript. The reader
is referred to further literature for a more detailed review of
the model comparison (Daunizeau et al. 2009; Raue et al.
2009; Penny 2012).

In general, the inverse problems can be solved by opti-
mization algorithms and MCMCs methods (Myung 2003;
Tashkova et al. 2011; Gelman et al. 2004). Optimization
methods are simple and straightforward to minimize the
error between the model prediction and the measured data
(Mendes and Kell 1998; Moles et al. 2003; Kimura et al.
2015). On the other side, many sampling algorithms and
probabilistic programming languages have been created to
perform Bayesian inference, especially for high dimen-
sional and complex posterior distributions e.g., Carpenter
et al. (2017) and Patil et al. (2010). This maximum like-
lihood approach provides us uncertainty information in
addition to the optimum value for each parameter. In the

present work, we have used several optimization algorithms
as well as classical sampling methods (MH) to benefit from
and compare both classic and probabilistic inferences.

We compared the performance of EAs including PSO,
DE, GA, CMA-ES and the well-known sampling algorithms
MH, and SA (Case Study I and Case Study II, cf.
Figs. 6, and 11)). Our results show that in the case of a
unimodal problem (single spectral peak), EAs outperform
the sampling algorithms while they are computationally
more expensive.

In recent years, many algorithms have been proposed to
solve inverse problems (Rodriguez-Fernandez et al. 2006b;
Kramer et al. 2014; Kimura et al. 2015). Notably, it is shown
that both the choice of algorithm applied in the estimating
problems and the formulation of the objective function
plays a crucial role in reproducing the key features of the
measured data (Kimura et al. 2005). This is confirmed
by our study demonstrating that the specific choice of the
fitness function, e.g. by weighting different signal elements,
plays a decisive role in reproducing the key features of the
measured data. We showed that using the standard least
squares function the thalamo-cortical neural mass model
fails to be fit to the spectral power peak observed in δ− and
α−frequency ranges. This can be improved by adding more
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weights to the fitness function in certain frequency bands
than the others, cf. Fig 12.

For each parameter estimation problem carried out in this
study, we also employed the practical identifiability analysis
to check the reliability of the estimates. The identifiability
analysis in this work comprised the Fisher Information
Matrix (FIM) to compute the sensitivity and the correlation
matrices, in addition to plotting the confidence regions for
estimated parameters. We illustrated that the identifiability
analysis can be easily exploited by plotting the confidence
regions according to the covariance approximation or by
employing PSO and MH algorithms. For instance, the
confidence regions obtained through Hessian and FIM
approaches were compared in Figs. 4 and 10. By virtue
of the conceptual difference between these approaches,
the exact coincidence of the ellipsoids obtained based on
Hessian and FIM information indicates that the estimated
parameters are uniquely identifiable and we were able to
obtain reliable estimates (Marsili-Libelli et al. 2003). To
further confirm the reliability of the shown confidence
regions, we have also compared the results obtained by the
PSO and the MH algorithms. As presented in Figs. 4 and 10,
we observed very good agreement with these approaches.

Furthermore, by measuring the sensitivity values, it
is possible to investigate how the system output will
change in response to small modification in the model
parameters (Rodriguez-Fernandez et al. 2006b, 2013).
This allows us to reveal which model parameters play a
decisive role in the model behavior. A high sensitivity
index for a parameter shows that the small changes on
that parameter cause a strong response in model output.
This indicates that the parameters with higher sensitivity
values are more identifiable than those parameters with
low sensitivity indices (cf. Appendix B in Supplementary
Material). The correlation plots also provide information
about the parameter identifiability. The lack of correlation
among the estimated parameters reveals that the parameters
are identifiable, as shown in Fig. 5. On the contrary, the
highly correlated parameters are not identifiable since there
exist combinations of them yielding an identical fitness
value, cf. Fig. 9. The high correlation between parameters
can also cause a discrepancy between the elliptical and
likelihood-based confidence regions, as illustrated in Fig. 8.
To surmount this problem, the pairs of correlated parameters
must be removed by introduction of new variables.

Up to now, few studies have investigated the parameter
estimation problems in the context of neural population
modeling, which is well-established to reproduce the
measured EEG data during different behavioral states. To
our best knowledge, the present study is the first that fits
a thalamo-cortical model to EEG spectral power peaks
observed in both δ− and α−frequency ranges. A pioneer
study by Bojak and Liley (2005) fitted a neural population

model comprising excitatory and inhibitory cortical neurons
to a set of pseudo-experimental data. In another study,
Rowe et al. (2004) have estimated the values of key
neurophysiological parameters by fitting the model’s single-
peak spectrum to EEG spectra in awake eyes-closed
and eyes-open states. Although they have achieved good
predictions of the measured data, their data do not exhibit a
second spectral power peak as in our data in δ−frequency
range. Moreover, they have used a local search method (LM
method) which requires an initial guess for the parameters.
In a similar approach, Van Albada et al. (2010) have fit a
neural mass model to eyes-closed EEG spectra of a large
number of subjects to probe the age-associated changes
in the physiological model’s parameters. Their findings
suggest that the inverse modeling of EEG spectral power is
a reliable and non-invasive method for investigating large-
scale dynamics, which allows us to extract physiological
information from EEG spectra. In line with these studies,
the data-driven approach presented in the current study
provides a proper guidance for fitting the thalamo-cortical
model to a large set of experimental recordings. This
enables us to investigate the parameter changes during the
transition from awake to anesthesia state, especially those
parameters that cannot be measured directly. An important
finding of our data-based analysis in fitting a thalamo-
cortical model to the EEG spectra is that the model is
heavily sensitive to the delay transmission in the system
(cf. Appendix B in Supplementary Material). This is in
agreement with previous studies suggesting that the location
of spectral power peaks especially in alpha frequency range
heavily depends to the delay values in the thalamo-cortical
circuits (Robinson et al. 2001a, b; Rowe et al. 2004).
Hence the transmission delay can provide a basis for the
reproduction of certain features in experimental data seen
at high concentration of anesthetics. For instance, a recent
study by Hashemi et al. (2017) has considered the effect of
anesthetics on the axonal transmission delay to reproduce
the beta power surging observed in EEG power spectrum
close to loss of consciousness. Inferring the parameter
changes associated to the changes in brain activities from
model fitting to a large data set remains to be investigated in
future work.

Conclusion

The results obtained in the present work reveal that given
a set of stochastic ordinary or delay differential equations
(SDEs) and a set of experimental data, we are able to fit
the model power spectrum to the related data with a high
accuracy and very low computational costs by the aid of
the Green’s function method and evolutionary algorithms.
We demonstrated that using evolutionary algorithms, the
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proposed thalamo-cortical neural population model fits
very well to the EEG spectral features within δ− and
α−frequency ranges measured during general anesthesia.

Moreover, we showed that in multimodal optimization
problems, the use of a global optimization approach such as
PSO or DE is required in order to accurately estimate the
model parameters.

Our analysis indicates further that one can employ a data-
driven approach to provide new valuable insights into the
mechanisms underlying the behavior of complex systems.
This approach will provide an appropriate guidance in
future brain experiments to better understand different
behavioral activities. As a summary, this work can serve
as a basis for future studies revealing biomarkers from
physiological signals.
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