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Abstract
The advances in neuroimaging methods reveal that resting-state functional fMRI (rs-fMRI) connectivity measures can be
potential diagnostic biomarkers for autism spectrum disorder (ASD). Recent data sharing projects help us replicating the
robustness of these biomarkers in different acquisition conditions or preprocessing steps across larger numbers of individuals
or sites. It is necessary to validate the previous results by using data from multiple sites by diminishing the site variations. We
investigated partial least square regression (PLS), a domain adaptive method to adjust the effects of multicenter acquisition. A
sparse Multivariate Pattern Analysis (MVVPA) framework in a leave one site out cross validation (LOSOCV) setting has been
proposed to discriminate ASD from healthy controls using data from six sites in the Autism Brain Imaging Data Exchange
(ABIDE). Classification features were obtained using 42 bilateral Brodmann areas without presupposing any prior hypothesis.
Our results showed that using PLS, SVM showed poorer accuracies with highest accuracy achieved (62%) than without PLS but
not significantly. The regions occurred in two or more informative connections are Dorsolateral Prefrontal Cortex,
Somatosensory Association Cortex, Primary Auditory Cortex, Inferior Temporal Gyrus and Temporopolar area. These
interrupted regions are involved in executive function, speech, visual perception, sense and language which are associated with
ASD. Our findings may support early clinical diagnosis or risk determination by identifying neurobiological markers to distin-
guish between ASD and healthy controls.
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Introduction

Autism spectrum disorder (ASD) is characterized by social
interactions and communication impairments as well as re-
stricted and stereotyped behavior. This neurodevelopmental
disorder develops in early childhood and results in develop-
mental differences in brain anatomy, functioning and connec-
tivity that affect behavior across the lifetime. The diagnosis is
typically done by behavioral observations and clinical

interviews at this stage. Due to the complex nature and in-
creasing number of ASD patients, attractions have been drawn
by both the scientific community and society.

Disrupted network connectivity between distant brain re-
gions has been reported among individuals with ASD
(Wiggins et al. 2011; Cherkassky et al. 2006; Anderson
et al. 2011a; Keehn et al. 2013; Lynch et al. 2013; Tyszka
et al. 2013; DiMartino et al. 2011; Gotts et al. 2012; Von
Hagen et al. 2013). These reports showed both increased and
decreased connectivities in brain regions including default
mode network, social brain regions, attentional regions, visual
search regions and corticostriatal connections. However,
knowing the specificity of diagnosis criteria (American
Psychiatric Association 2013), there is hope that some (possi-
bly complex) patterns of brain features may be unique to the
disorder and it is worth to continue the research.

Given the fact that functional connectivity literature in
ASD is complex and often inconsistent (Müller et al. 2011;
Nair et al. 2014), machine learning (ML) techniques may
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provide valuable tool to discover the aberrant connectivity
pattern that characterizes ASD. Several studies applied multi-
variate classification to functional connectivity MRI (fcMRI)
(Van Dijk et al. 2010) for diagnostic classification, i.e. to char-
acterize ASD using features that are predictive of a diagnosis
on the level of individuals. A leave-one-out classifier
(Anderson et al. 2011a, b) was performed using a large
fcMRI connectivity matrix and achieved an overall classifica-
tion accuracy of 79%. However the accuracy was lower in a
separate small replication sample. Uddin et al. (2013) used a
logistic regression classifier with features identified by ICA
and achieved accuracies about 60–70% for all but one com-
ponent identified as salience network, for which accuracy
reached 77%.

Due to the advent of collective publicly dataset ABIDE (Di
Martino et al. 2014), previous studies started investigating the
potential diagnostic accuracy of ML algorithms with fMRI
data gathered across different scanners, with different field
strengths and different acquisition schemes. Nielsen et al.
(2013) reported an overall accuracy of 60% for whole brain
classification using a large dataset obtained from ABIDE
dataset. In another study, Chen et al. (2015) showed that
support vector machine classifier performed modestly
(with accuracy <70%) whereas random forest classifier
achieved 91% accuracy using Power atlas (Power et al.
2014). Plitt et al. (2015) implemented several machine
learning tools and reported that individuals can be classi-
fied as having ASD with accuracy 76.67% using
Destrieux atlas from their rs-fMRI scans alone. In a recent
study (Chen et al. 2016) a MVPA was utilized to classify
ASDs from HCs based on frequency-specific whole brain
functional connectivity using a cross-site evaluation.
These studies used aggregated data from all sites and
evaluated using either LOOCV or 10-fold CV scheme.

Due to large sample size, multi-site data provides the power
necessary to identify the neuroanatomical differences between
ASD and typical control. However, this aggregated data intro-
duces an additional problem of heterogeneity. Previous studies
(Nielsen et al. 2013; Castrillon et al. 2014) revealed that ac-
quisition site has significant effects on image properties. One
solution to alleviate the problem of between-site variation is to
utilize the domain adaptation machine learning algorithms
(Jiang 2008; Pan and Yang 2010). Domain adaptation is a
new approach in machine learning that deals with the differ-
ences in data distribution between test and train domain.
Recently, this strategy has been used in predicting symptom
severity in ASD based on cortical thickness measures in
ABIDE dataset (Moradi et al. 2016).

Most functional neuroimaging methods are based on voxel
(volume element data); even though recent studies used re-
gions of interest (ROI) data. Most often this ROI approach
presupposes the prior hypothesis and the regions outside of
this network are not fully explored leading to potentially

undetected effects. In this study, we used 42 bilateral
Brodmann areas to see the effect of functional connectivities
in these regions in distinguishing the two groups.

Previous studies did not address whether certain feature
selection methods are better than others in combination with
certain learning methods, in terms of producing models with
high prediction accuracy. Relatively little has been published
on the combined impact of choices of feature selectionmethod
and learning method on the predictive performance in autism
research. To address this issue we empirically evaluated two
different feature selection algorithms (filter-based and Elastic
Nets) together with SVM learner. We addressed classifier gen-
eralizability by including subjects from the ABIDE (Di
Martino et al. 2014) preprocessed dataset (356 individuals)
from scanners located at six sites. Based on this data set,
we aimed to assess the accuracy of ML classifiers for the
automated detection of ASD. First we utilized domain
adaptation algorithm to address the problem of data dis-
tribution across different acquisition sites. We used partial
least square regression (PLS) with site as response vari-
able and functional connectivities as predictor variables to
reduce between-sites variability. Then we used PLS ap-
proximation of predictor variables and ASD/Control sta-
tus as input to SVM model. We hypothesize that by con-
sidering PLS approximations of predictor variables one
can effectively reduce nuisance variation between the data
from different sites. We performed feature selection with-
in a classification framework using a cross-site evaluation
strategy, where the data from one site used as test dataset,
and the remaining sites data as training data to learn the
model parameters.

Methods and Materials

ABIDE Preprocessed Dataset

Data were collected fromABIDE site which is an open-access
multi-site image repositories consists of structural and rs-
fMRI scans from ASD and TD individuals ((Di Martino
et al. 2014). The included sites with sample size were New
York University (NYU, 149), Stanford University
(STANFORD, 40), Olin Center, Institute of Living at
Hartford Hospital (OLIN, 35), Kennedy Krieger Institute
(KKI, 55), San Diego State University (SDSU, 36),
University of Pittsburgh School of Medicine (PITT, 57).
Acquisition parameters, protocol information can be obtained
at ABIDE site http://fcon_1000.projects.nitrc.org/indi/abide/.
We used preprocessed data using Connectome Computation
System (CCS) pipeline as described at ABIDE sites. Subject
demographics for individuals satisfying inclusion criteria are
shown in Table 1.
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Region of Interest and Connectivity Matrix

Connectivity maps were obtained utilizing CONN tool box
(http://www.nitrc.org/projects/conn) running under Matlab 8.
3 (2014a) (http://www.mathworks.com). Results were filtered
to 0.01 to 0.1 Hz to limit spatial-temporal correlation to the
spontaneous brain oscillation power; Brodmann’s areas ROIs
provided by the same tool were utilized as seeding areas. Each
Brodmann region was analyzed against all other Brodmann
regions. Bivariate correlations were calculated between each
pair of ROIs as reflections of connections. The list of 42 bi-
lateral regions provided in CONN toolbox is given in supple-
mentary materials. The rs-fMRI network was captured by an
84 × 84 symmetric matrix of nodes. We extracted the upper
triangle elements of the functional connectivity matrix as clas-
sification features, i.e. the feature space for classification was
spanned by the (84 × 83)/2 = 3486 dimensional feature
vectors.

Significance Testing for Brain Connectivity and Site
Effect

We performed a two sample t-test with Benjamin-Hochberg
(Benjamini et al. 1995) correction using our data set to find
any significant functional connectivity differences between
healthy controls and ASD. Amultivariate ANCOVAwas used
to see the effects of site for brain connectivities.

Feature Selection Algorithms

Previous studies did not explore the impact of feature selection
in ABIDE studies. We empirically evaluated two different
feature selection algorithms such as filter-based (ttest) and
embedded Elastic Nets (Tibshirani 1996, Zou and Hastie
2005) together with SVM learner and evaluated the impact
of these methods on selecting the important connections.
The popular LASSO regression method minimizes the
Residual Sum of Squares (RSS), similar to Ordinary Least
Squares (OLS) regression, but poses a constraint to the sum
of the absolute values of the coefficients being less than a
constant. This additional constraint is similar to that intro-
duced in Ridge regression, where the constraint is to the sum
of the squared values of the coefficients. This simple

modification allows LASSO to perform also variable selection
because the shrinkage of the coefficients is such that some
coefficients can be shrunk exactly to zero. The LASSO com-

putes model coefficient β̂ by minimizing the following func-
tion R(β) + λ ||β||1, where R(β) is the mean square error on the

training set and ||β||1 =∑
p

i¼1
jβij. λ controls the degree of sparsity

of the solution, i.e. the number of features selected.
Elastic Net (Zou and Hastie 2005) is similar to LASSO. It

differs in that the l1 norm of β is replaced by a combination of
l1 and l2 norms. In this case, we minimize R(β) + λ Pα(β),

where Pα βð Þ ¼ 1−αð Þ
2 βj jj j22 þ α βj jj j1, for α strictly between

0 and 1, and a nonnegative λ. The λ parameter can be tuned in
order to set the shrinkage level, and the higher the λ is, and the
more coefficients are shrunk to 0. Elastic Net is the same as
LASSO when α = 1. As α shrinks toward 0, Elastic Net ap-
proaches ridge regression. For other values of α, the penalty
term Pα(β) interpolates between the L1 norm of β and the
squared L2 norm of β. The advantage of Elastic Net over
LASSO is that the Elastic Net penalty completes automatic
variable selection and continuous shrinkage simultaneously,
and it can select from a group of correlated variables. It is
especially useful for large p small n problems where the
grouped variables situation is a particularly important concern
(Hastie et al. 2001).

Both Elastic Net and Univariate t-test based feature subset
ranking were implemented in MATLAB 2016a.

Partial Least Squares

Partial Least Squares (PLS) regression is based on linear tran-
sition from a large number of original predictors to a new
variable space based on small number of orthogonal factors
(latent variables). The advantage of PLS is that it finds com-
ponents (latent variables) which explain the covariance be-
tween predictor and response variables. This method is partic-
ularly suitable with high dimensional and high correlated pre-
dictor variables. The general underlying model of multivariate
PLS is X = TPT + E, Y =UQT + F, where X is an n x m matrix
of predictors, Y is an n x p matrix of response variables; T and
U are n x l matrices that are respectively projections of X and
projections of Y. P andQ arem x l and p x l orthogonal loading

Table 1 Subject demographics from the ABIDE sample

Age ADI-R social ADI-R verbal ADOS total VIQ PIQ

# of subjects 372 140 141 165 282 282

Control (159 M,46 F) 4 4 4 157 157

Autism (145 M,22 F) 136 137 161 125 125

Control mean ± SD 13.6 ± 4.7 18.8 ± 2.9 12.5 ± 3.1 8.0 ± 0.8 110.7 ± 13.4 109.9 ± 13.4

Autism mean ± SD 13.4 ± 5.1 19.7 ± 5.3 15.6 ± 4.5 12.1 ± 3.9 106.7 ± 16.5 109.8 ± 17.0
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matrices and matrices E and F are the error terms, which are
assumed independent and identically distributed random nor-
mal variables. We denote the functional connectivities values
byX, where n is the number of subjects andm is the number of
connectivities (m= 3486). The response variable Y represents
the site information and is denoted by Y = {y1, 1 .....,yn, p},
where p is the number of sites. yn, p is 1 if subject n belongs
to site p, otherwise zero. We used the PLS approximation of
the predictor matrix X as our feature set for predicting ASD. In
this current work, we used SIMPLS method which calculates
the PLS factors directly as linear combinations of the original
variables. The rationale behind this method is to reduce the
overall inter-site variance by using PLS approximation of the
predictor matrix X. We hypothesize that using PLS approxi-
mation our classification framework will be robust.

Classification and Feature Selection Framework

Classification algorithms were implemented using MATLAB
2014a. We used Support Vector Machine (SVM) classifier
(Vapnik 1995), which is a widely used method for binary
classification in fMRI studies. We performed a cross-site val-
idation approach to address the issue of site acquisition effect.
More specifically, a leave-one-site-out CV (LOSOCV) was
performed in such a way that the data from each site was in
its own fold. In this way we are training the model using 5
sites and testing with the one site to avoid any double drip-
ping. In each training fold for LOSOCV, we performed anoth-
er 10-fold CV to determine the best α (elastic net) and k (ttest)
parameters. Inside each 10-fold CV training fold another 10-
fold CV was performed to determine the parameter C for
SVM and lambda for Elastic Net. Once we found the connec-
tivities using training subjects with best alpha and k parame-
ters, we used these connections to train the SVM model and
tested with the hold-out site for prediction.

We used PLS approximation for predictor variables and
binary outcome of patient status ASD vs control as input to
SVM algorithm. For elastic net features we selected non-zero
coefficient of elastic net parameters as important features and
ranked t-stat for t-test feature selection. The framework is
given in Fig. 1. The implementation of PLS was done by
PLSREGRESS functions in MATLAB software with a fixed
number of components selected from a range of values {5, 10,
15, 20, 25, 30, 35} with highest percentage of variance ex-
plained by the model. We have chosen 30 components that
explain most of the variance in the observed response
variables.

Consensus Features

Since we used a 10-fold CV strategy, the feature ranking was
based on different training dataset in each cross validation
(CV) fold. Therefore the feature (functional connections)

contributions to classification were not evenly distributed. In
this study we adopted the concept of consensus functional
connectivity (Fair et al. 2012, Bhaumik et al., 2016), which
is defined as the functional connectivity feature appearing in
the final feature set of each CV iteration. We computed the
percentages of occurrences of features that contributed to
identification of depressed patients across all iterations of the
cross validation. The functional connectivities which ap-
peared in more than 70% of the 10-fold process are selected
for each site and indicated the most discriminative features
between those with ASD and TD subjects. We reported those
connectivities (Table 5) which appeared in 3 or more sites in
our results section.

Assessment of Classification Result

To evaluate the quality of the classification result, we will
report three established measures, accuracy, sensitivity and
specificity. The accuracy of a classifier is defined as the ratio
of total number of correctly classified subjects and total sub-
jects. The sensitivity and specificity evaluates the performance
of a classifier to identify positive and negative instances,
respectively.

Results

First we employed a two sample t-test with Benjamin-
Hochberg (Benjamini et al. 1995) correction using our data
set to find any significant (p < .05) functional connectivity
differences between healthy controls and ASD. The signifi-
cant connections were calculated using data from all sites but
one site. We also reported significant connections combing
data from all sites. The connections between Primary
Auditory Cortex and bilateral Somatosensory Association
Cortex have been seen as significant in the four data sets
removing KKI, OLIN, SDSU and STANFORD respectively
as well as combined sites (Table 2). Our MANCOVA analysis
suggests that overall there is a site effect (F (5,366) = 4.97,
P = .0002) on brain connectivities.

Classification Accuracy

Relatively moderate classification accuracies from holdout
site have been achieved for different experimental strategies.
First we found the connectivities using 10-fold CV with best
alpha and k parameters and an internal 10-fold CV for SVM
parameter C.We then used these connections to train the SVM
model and tested with the hold-out site for prediction. The
datasets from KKI (64%), OLIN (63%) and SDSU (64%)
can achieve accuracymore than 60% using elastic net strategy.
The sites PITT and STANFORD dataset could reach an accu-
racy of 61% and 70% respectively (Table 3) using t-test
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strategy. Prediction accuracies of all sites are always lowered
in LASSO compared to t-test or Elastic Net except OLIN site.
Previous result (Chen et al. 2016) also showed the similar
classification accuracies for NYU (63%) and SDSU (60%)
sites in cross-site evaluation.

While comparing overlapping confidence intervals be-
tween sites there is clearly significant differences in accuracy
between STANFORD and other sites for ttest. Paired t-test

showed no significant differences between ttest and Elastic
Net for all sites.

The prediction accuracies are decreased when we applied
PLS strategy to account for site variation (Table 4). Using t-
test strategy, the accuracies were decreased in KKI (2%), PITT
(19%) and STANFORD (8%) sites. On the other hand, the
accuracies were decreased in KKI (10%), NYU (7%), OLIN
(3%), PITT (9%) and SDSU (3%) sites using Elastic Net

10-fold CV

LOSOCV

no

yes

Data

Test (1 site)Train (5 sites)

Choose  or k

Feature Selection*

Select Features

Train SVM * Predict SVM

Average Accuracy

More
ork?

Best feature subset
with highest accuracy

Train SVM * Predict SVM

Classification results for the test site

PLS
Approximation

*SVM and Elastic Net parameters were determined using another 10-CV

Train Test

Fig. 1 Classification framework
(LOSOV)
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strategy. However no significant differences between SVM
with PLS and without PLS for any feature selection algorithm.

Functional Networks Associated with Top Features

The most discriminative connections based on consensus
functional connections are shown in Table 5 across all sites.
These connections were selected more than 70% of training
folds during classification. The connections which appeared
in 3 or more sites are shown here. Several regions were noted
to participate in two or more informative connections:
Dorsolateral Prefrontal Cortex, Somatosensory Association
Cortex, Primary Auditory Cortex, Inferior Temporal Gyrus
and Temporopolar Area.

Discussions

To our knowledge, this is the first study to find the effect of
partial least square regression (PLS) in conjunction with SVM
algorithm using preprocessed Autism Brain Imaging Data
Exchange (ABIDE) dataset, which is available online. Our
goal was to overcome the issues of multi-site, multi-protocol
variability by increasing sample sizes collected from these

sites. We employed a cross-site evaluation strategy to gener-
alize the classifier’s performance. We further evaluated differ-
ent state-of-art feature selection strategies to find the important
functional connectivities in classification of ASD versus TD
subjects. Previous studies employed MVPA approach and
achieved nearly 90% accuracy (Ecker et al. 2010, Uddin
et al. 2011) when data set collected at a single center. These
studies depend on specific scan parameters and are hard to
utilize on other datasets. A multi-center study (Nielsen et al.
2013) achieved poorer accuracy (60%) than for single site
results. Recent study showed (Chen et al. 2016) that using
cross-site evaluation strategy the highest accuracy can be ob-
tained for NYU and SDSU sites are 63% and 60% respective-
ly. Our results showed similar accuracies for these two sites,
60% and 64% respectively. To overcome the problem of het-
erogeneity of sites we adopted PLS strategy and the accuracies
obtained for these two sites are 53% and 61% respectively.
Our results indicated that there is an effect of PLS strategy on
classifier’s performance.

Our results showed that several regions occurred in two or
more informative connections are Dorsolateral Prefrontal
Cortex, Somatosensory Association Cortex, Primary
Audi tory Cor tex , Infe r io r Tempora l Gyrus and
Temporopolar Area. Autism spectrum disorder had been di-
agnosed by emphasizing the impairments seen and the wide
range of their severity (Tyszka et al. 2013). Several basic pro-
cessing deficits have been seen in autism including social
cognition, both interpersonal social processes and self-
referential thought (Lombardo et al. 2007, Uddin 2011), im-
paired global feature processing (Anderson et al. 2011a, b),
impaired reward processing (Chevallier et al. 2012; Damiano
et al. 2012; Lin et al. 2012), motivation (Chevallier et al.
2012), and sensorimotor impairment (Perry et al. 2007). The
social and self-referential cognitive processes have been
linked with a pair of cortical midline brain regions, the ven-
tromedial prefrontal cortex (VMPFC) and posterior cingulate
cortex (PCC), which serve as hubs of the default mode net-
work (DMN) (Greicius et al. 2003; Raichle et al. 2001). A
critical component of social communication is processing au-
ditory information. People with autism spectrum disorders

Table 3 Evaluation of SVM for different sites (average and 95% C.I)

ttest Elastic Net

Test-Site Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

KKI 0.58 (.56,.60) 0.5 (.46,.54) 0.64 (.61,.67) 0.64 (.62,.66) 0.36 (.32,.40) 0.66 (.63,.69)

NYU 0.6 (.59,.61) 0.68 (.67,.69) 0.54 (.53,.55) 0.6 (.59,.61) 0.68 (.67,.69) 0.55 (.54,.56)

OLIN 0.51 (.48,.54) 0.5 (.45,.55) 0.53 (.46,.60) 0.63 (.60,.66) 0.65 (.60,.70) 0.6 (.54,.66)

PITT 0.61 (.59,.63) 0.6 (.57,.63) 0.63 (.59,.67) 0.58 (.56,.60) 0.53 (.50,.56) 0.63 (.59,.67)

SDSU 0.58 (.55,.61) 0.36 (.29,.43) 0.73 (.69,.77) 0.64 (.61,.67) 0.36 (.29,.43) 0.82 (.79,.85)

STANFORD 0.7 (.68,.72) 0.65 (.60,.70) 0.75 (.71,.79) 0.58 (.56,.60) 0.55 (.50,.60) 0.6 (.55,.65)

Table 2 Significant connections for each site removed and combined
sites (t-test with BH correction)

Region1_Regionn 2 Sites

PHC(L)_ DACC(R) KKI

PAC(L)_ IFPO(R) KKI

IPG (L)_ TEMPPOL(R) OLIN,STANFORD

IFCPO(R)_ PAC(L) KKI

SOMAC(L) _ PAC(R) KKI,OLIN,SDSU,STANFORD,COMBINED

SOMAC(R)_PAC(R) KKI,OLIN,SDSU,STANFORD,COMBINED

DPC(R)_ DPC(L) NYU

PHC Perirhinal cortex; DACC Dorsal anterior Cingulate Cortex; PAC
Primary Auditory Cortex; IFCPO IFC pars opercularis; IPG Inferior
Prefrontal Gyrus; TEMPPO Temporopolar Area; SOMAC
Somatosensory Association Cortex; DPC Dorsolateral Prefrontal Cortex

202 Neuroinform (2018) 16:197–205



typically have problems processing this information. The au-
ditory cortex is the region of the brain that is responsible for
processing of auditory (sound) information. As language def-
icits are a core feature of ASD, the study of auditory process-
ing is essential to considering the roots of ASD as well as to
conceptualize rational interventions. Investigators argued that
autism is better characterized as a disorder of higher cortical
functions, and specifically of the dorsolateral prefrontal cortex
(Minshew and Goldstein 1993, Ozonoff et al. 1991, Rogers
and Pennington 1991). Studies (Bertone et al. 2005, Dakin
and Frith 2005, Tommerdahl et al. 2008, Dinstein et al.
2012) found that Somatosensory ASD has long been associ-
ated with sensory abnormalities. The middle temporal gyrus
and inferior temporal gyrus are involved in a number of cog-
nitive processes, including semantic memory processing, lan-
guage processes (middle temporal gyrus), visual perception
(inferior temporal gyrus), and integrating information from
different senses. Temporopolar area is located primarily in
the most rostral portions of the superior temporal gyrus and
the middle temporal gyrus and so responsible for language
processes. The other regions are orbitofrontal cortex, which
is responsible for cognitive processing; angular Gyrus, in-
volved in a number of processes related to language, number
processing and spatial cognition and attention; supramarginal

gyrus, receives somatosensory, visual, and auditory inputs
from the brain (Dubac 2014); Dorsal anterior cingulate cortex
(dACC), is a brain region that serves cognition and motor
control and responsible for abnormalities in the structural or
functional connections of the ACC and its sub-regions con-
tribute to ASD (Zhou et al. 2016). Our results suggest that the
functional connections distinguished two groups are heavily
related to speech and language. Inferior prefrontal, premotor
cortex, supramarginal gyrus and auditory cortex together
make a strong case for that. These results are expected based
on existing literature.

Our study suggests that leave-one-site out cross valida-
tion can be a potential strategy to moderately classify
ASD from healthy controls. Classification accuracies were
comparable for two sites NYU and SDSU with a recent
study (Chen et al. 2016) without PLS. However, adopting
PLS as a site variation correction, the accuracies de-
creased but not significantly. Higher accuracies obtained
without PLS indicate an effect of site variability. In future,
we need to collect data for other sites from ABIDE dataset
and evaluate these strategies. We would like to evaluate
our proposed domain adaptation strategy for other classi-
fiers and different preprocessing strategies used in ABIDE
consortium.

Table 4 Evaluation of SVM for different sites using PLS (average and 95% C.I, underlined significance at .05 level)

ttest Elastic Net

Test-Site Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

KKI 0.56 (.55,.58) 0.41 (.37,.45) 0.67 (.64,.69) 0.55 (.53,.56) 0.41 (.37,.45) 0.64 (.61,.66)

NYU 0.60 (.59,.61) 0.68 (.67,.69) 0.54 (.53,.55) 0.60 (.59,.61) 0.68 (.67,.69) 0.55 (.54,.56)

OLIN 0.51 (.48,.54) 0.50 (.45,.55) 0.53 (.46,.60) 0.63 (.60,.66) 0.65 (.60,.70) 0.60 (.54,.66)

PITT 0.42 (.40,.44) 0.17 (.14,.19) 0.70 (.67,.74) 0.49 (.47,.51) 0.13 (.11,.16) 0.89 (.87,.91)

SDSU 0.64 (.61,.67) 0.54 (.47,.61) 0.78 (.74,.82) 0.61 (.58,.64) 0.57 (.50,.64) 0.77 (.73,.81)

STANFORD 0.63 (.60,.65) 1.00 (1.00,1.00) 0.25 (.21,.29) 0.60 (.58,.62) 0.90 (.87,.93) 0.30 (.26,.34)

Table 5 Consensus functional
connectivities Region1 Region2

(L) Piriform Cortex (L) Orbitofrontal Cortex

(L) Inferior Temporal Gyrus (R) Secondary Visual Cortex

(L) Inferior Prefrontal Gyrus (R) Temporopolar Area

(L) Premotor Cortex (R) Supramarginal Gyrus

(L) Somatosensory Association Cortex (R) Primary Auditory Cortex

(R) Dorsolateral Prefrontal Cortex (L) Dorsolateral Prefrontal Cortex

(L) Perirhinal cortex (R) Dorsal anterior Cingulate Cortex

(R) Somatosensory Association Cortex (R) Primary Auditory Cortex

(L)Temporopolar Area (L) Inferior Temporal Gyrus

(L) Angular gyrus (L) Dorsal Posterior Cingulate Cortex
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Information Sharing Statement

We provide our entire source code written in Matlab at the
l i n k h t t p s : / / g i t h u b . c om / a s h i s h p r a d h a n 1 0 0 8 /
PredictingASDbyCrossSiteEval. This link contains the
dataset and Matlab code used for this paper. A demo code
has been provided to guide the users to run the code and
reproduce the results. Please keep in mind that the source
code has not been optimized for speed and RAM use.
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