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Abstract Quantified volume and count of white-matter
lesions based on magnetic resonance (MR) images are
important biomarkers in several neurodegenerative diseases.
For a routine extraction of these biomarkers an accurate
and reliable automated lesion segmentation is required. To
objectively and reliably determine a standard automated
method, however, creation of standard validation datasets is
of extremely high importance. Ideally, these datasets should
be publicly available in conjunction with standardized eval-
uation methodology to enable objective validation of novel
and existing methods. For validation purposes, we present
a novel MR dataset of 30 multiple sclerosis patients and
a novel protocol for creating reference white-matter lesion
segmentations based on multi-rater consensus. On these
datasets three expert raters individually segmented white-
matter lesions, using in-house developed semi-automated
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lesion contouring tools. Later, the raters revised the seg-
mentations in several joint sessions to reach a consensus
on segmentation of lesions. To evaluate the variability,
and as quality assurance, the protocol was executed twice
on the same MR images, with a six months break. The
obtained intra-consensus variability was substantially lower
compared to the intra- and inter-rater variabilities, showing
improved reliability of lesion segmentation by the proposed
protocol. Hence, the obtained reference segmentations may
represent a more precise target to evaluate, compare against
and also train, the automatic segmentations. To encourage
further use and research we will publicly disseminate on
our website http://lit.fe.uni-lj.si/tools the tools used to cre-
ate lesion segmentations, the original and preprocessed MR
image datasets and the consensus lesion segmentations.

Keywords Clinical image dataset · White matter lesion ·
Image segmentation · Intra- and inter-rater variability ·
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Introduction

Quantification of white-matter lesions based on magnetic
resonance (MR) images in terms of volume and count rep-
resents important neuroimaging biomarkers, which may be
used as predictive factors or surrogates of clinical signs in
a number of neurological and cerebrovascular diseases, and
mental disorders (Debette and Markus 2010). In multiple
sclerosis (MS) patients, for instance, inflammatory activ-
ity in the white-matter is visible as hyperintense lesions in
T2-weighted (T2w), proton density weighted (PDw) and
fluid attenuated inversion recovery (FLAIR) MR sequences,
some of which are chronic lesions and appear hypointense
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on T1-weighted (T1w) sequence. Uher et al. (Uher et al.
2016) established that at the baseline MR exam, T2w lesion
number, T1w and T2w/FLAIR lesion volumes were among
the best predictors of sustained disability progression in
MS patients over the 12-year observation period, while
they also play an important role in monitoring disease pro-
gression and response to treatment (Popescu et al. 2013;
Stangel et al. 2015). To quantify neuroimaging biomark-
ers like lesion volume and count, accurate and reliable
detection and segmentation of the lesions in MR images is
required.

Lesions can be segmented manually, however, this task is
tedious and time-consuming. Even more critical is the sub-
jective nature inherent to both the process of lesion detection
and lesion contouring that leads to large intra- and inter-rater
variabilities, a notorious characteristic of manual lesion seg-
mentations (Grimaud et al. 1996; Zijdenbos et al. 2002;
Styner et al. 2008). Hence, it is long known that routine
manual segmentations are not accurate and reliable enough
for the extraction of biomarkers (Filippi et al. 1995). To
provide more objective and consistent lesion segmentations,
automated methods have been intensively developed over
the last two decades (Garcia-Lorenzo et al. 2013; Llado
et al. 2012). Main challenges for automated methods lie in
their robustness to MR acquisition imperfections (MR bias
field, partial volume effect and image noise), and high bio-
logical variability of brain anatomy and lesion pathology.
Despite substantial methodological advancements that aim
to address the aforementioned challenges, it is not yet clear,
which method or even a class of automated methods (e.g.
unsupervised and supervised) can be considered a standard
for the biomarkers’ extraction (Vrenken et al. 2013).

A standard lesion segmentation method can only be
established based on objective and rigorous validation on
gold standard datasets with highly accurate lesion segmen-
tations. In spite of known deficiencies most researchers still
use manual lesion contouring (Llado et al. 2012). To mit-
igate the influence of errors in single-rater segmentations,
some researchers validate the automated methods against
multiple rater segmentations (Styner et al. 2008). Another
approach is to merge manual segmentations through a con-
sensus of multiple raters (Anbeek et al. 2004). One can also
fuse the segmentations automatically, for instance, using the
STAPLE algorithm (Warfield et al. 2004; Commowick and
Warfield 2009). Potential practical drawbacks are that a suf-
ficiently large number of rater segmentations are required,
especially since rater performance may vary substantially
according to anatomical location of lesions and across time
due to rater fatigue or other subjective reasons.

Besides engaging multiple raters, a clinical dataset should
also involve a substantial number of patient images so as
to capture as much biological and pathological variability.

Clearly, production of such a gold standard dataset is a diffi-
cult and laborious enterprise, often beyond the capability of
each individual research team. For this reasons, public dis-
semination of gold standard datasets along with protocols
and tools for their creation is of high importance, since it
enables other research teams to produce new datasets in a
consistent manner. In conjunction with standardized evalua-
tion methodology such datasets are indispensable tools that
enable objective and rigorous comparison of multiple lesion
segmentation algorithms.

Public Datasets

A public MR simulator called BrainWeb (Cocosco et al.
1997) enables the creation of synthetic images of T1w,
T2w and PDw MR sequences, but there exists only one
brain template that contains simulated MS lesions. The
BrainWeb dataset can therefore only be used to provide
proof-of-concept for new segmentation methods.

The first publicly available dataset of clinical MR images
was created for the purpose of a challenge on MS lesion
segmentation (Styner et al. 2008). The dataset consists of
52 cases of MS patients imaged with conventional brain
MR sequences T1w, T2w and FLAIR on two 3T Siemens
scanners at different sites. Each case was independently seg-
mented by expert raters at the two sites and the resulting
segmentations were used as gold standard. Unfortunately,
the rater segmentations exhibit rather large inter-rater vari-
abilities with typical values of relative volume difference of
68%, mean surface distance of 4.85 mm and overlap error of
75% (Garcia-Lorenzo et al. 2013). It is not clear whether the
raters agreed upon a common segmentation protocol, which
generally helps to improve rater agreement (Rovaris et al.
1999). Considering the large variabilities, it is arguable if
such a gold standard segmentations provide for a reliable
validation of automated methods.

Another dataset of clinical MR images of MS patients
was disseminated within a challenge on longitudinal lesion
segmentation (Pham 2015). The dataset consists of 20 cases
of MS patients, each imaged in 3–5 time points by a 3T MR
scanner using conventional T1w, T2w, PDw, and FLAIR
sequences. Altogether there were 80 datasets and in each
the lesions were manually segmented by two trained raters.
As of yet, a public website for data dissemination is under
development.

The most recent challenge on MS lesion segmentation
(Barillot et al. 2016) provides 53 datasets from 4 differ-
ent sites and 4 different 3T/1.5T MRI scanners. Each set
contains FLAIR, pre- and post-contrast T1w and DP/T2w
sequences. In each case seven independent experts manu-
ally segmented the lesions and a consensus segmentation
was created by fusing the segmentations using an automatic
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LOP STAPLE algorithm (Akhondi-Asl et al. 2014). The
obtained consensus segmentation is intended for evaluation
of automated methods.

All three publicly available clinical datasets are dissemi-
nated without an exact protocol specification of how raters
performed manual segmentations and which tools they used,
while even a more critical deficiency is that the resulting
gold standard segmentations were not subject to any objec-
tive quality assurance. Any gold standard method, even the
consensus, should itself be carefully validated and the qual-
ity assurance step should answer the question: ”What is the
variability of the consensus segmentation?” Given that the
idea of creating the consensus is to integrate, and possi-
bly even harmonize, expert knowledge of different raters, it
seems reasonable to assume that the variability between two
consensus segmentations, obtained by the exact same proto-
col, would exhibit smaller variability compared to inter- and
intra-rater variability. If this is confirmed, the so obtained
reference lesion segmentations would represent a more pre-
cise and reliable target to evaluate and compare against the
segmentations obtained from automated methods.

Contributions

In this paper, we describe a protocol for creating gold stan-
dard white-matter lesion (WML) segmentations applied on
MR datasets of 30 MS patients, which were acquired on
a 3T MR scanner with conventional sequences. On these
datasets three expert raters performed segmentations of
WMLs, which they then revised in several joint sessions to
create a consensus-based gold standard segmentation. The
idea was to let the raters critically re-evaluate their segmen-
tations and reach an agreement on expert opinion of what is
and what is not a lesion.

To delineate WMLs raters used in-house developed semi-
automated medical image visualization and segmentation tools.
The protocol was executed twice, with a six months break,
whereas the second time consensus segmentations were recre-
ated partially on a subset of axial slices of the MR images
in order to evaluate the variability of rater and consensus
segmentations. The obtained intra-consensus variability
was substantially lower compared to the intra- and inter-
rater variabilities, showing improved lesion segmentation
consistency by the proposed lesion segmentation protocol.

To encourage other researchers to reproduce and expand
the results of this study, we will publicly disseminate on
our website http://lit.fe.uni-lj.si/tools the tools used to cre-
ate lesion segmentations, the original and preprocessed MR
image datasets and the consensus lesion segmentations.
This will also allow interested researchers to train, test
and objectively and reliably evaluate existing and novel
state-of-the-art (automated) lesion segmentation methods.

Materials and Methods

Image Acquisition

A cohort of 30 MS patients were imaged by a 3T
Siemens Magnetom Trio MR system at the University
Medical Center Ljubljana (UMCL). Each patient’s MR
scans consisted of a 2D T1-weighted (turbo inversion
recovery magnitude, repetition time (TR)=2000 ms, echo
time (TE)=20 ms, inversion time (TI)=800 ms, flip angle
(FA)=120◦, sampling=0.42×0.42×3.30 mm), a 2D T2-
weighted (turbo spin echo, TR=6000 ms, TE=120 ms,
FA=120◦, sampling=0.57×0.57×3.00–3.30 mm) and a 3D
FLAIR image (TR=5000 ms, TE=392 ms, TI=1800 ms,
FA=120◦, sampling=0.47×0.47×0.80 mm). These MR
sequences, which are part of a clinical protocol for imaging
the MS patients at the UMCL, adhere to current MAGN-
IMS1 consensus guidelines (Rovira et al. 2015) for baseline
and follow-up evaluation of the MS patients.

All 30 subjects have given written informed consent at
the time of enrollment for imaging and the UMCL approved
the use of MRI data for this study. The authors confirm that
the data were anonymized prior to analysis. Table 1 gives a
summary of patient demographic and treatment information
at the time of imaging.

Image Preprocessing

Prior to performing lesion segmentation, each subject’s
T1w, T2w, and FLAIR images were preprocessed. First,
the brain region was masked in the T1w image (Iglesias
et al. 2011), followed by mutual-information based regis-
tration of the T1w and T2w images onto the FLAIR image
using affine transformations (Klein et al. 2010). Based on
the computed transformations, the T1w and T2w images,
and the T1w brain mask were resampled into FLAIR
image space using cubic and nearest neighbor interpolation,
respectively. Finally, intensity inhomogeneity correction
(Tustison et al. 2010) was performed on each of the masked
T1w, T2w and FLAIR images. The voxels lying within
the brain mask were considered in lesion segmentation.
Using this preprocessing steps the lesion segmentations
were obtained in native FLAIR image space.

Semi-Automated Lesion Segmentation

In order to facilitate the segmentation of lesions we have
developed a specialized software named BrainSeg3D that
enables their accurate and efficient delineation in 3D MR
images. For this purpose the BrainSeg3D, which is based on
an open-source medical image processing and visualization

1Magnetic resonance imaging in MS www.magnims.eu

http://lit.fe.uni-lj.si/tools
www.magnims.eu
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Table 1 Patient demographic and treatment information

Gender Age MS phenotype Therapy

23 female 25 to 64 years 24 RR 1 Avonex

7 male Median: 39 years 2 SP 3 Betaferon

(female 39, male 33) 1 PR 1 Copaxone

2 CIS 1 Extavia

1 unspecified 5 Gilenya

1 Myfenax

2 Rebif

6 Tysabri

1 unspecified

9 no therapy

RR–relapsing remitting; SP–secondary progressive; PR–progressive
relapsing; CIS–clinically isolated syndrome

platform Seg3D (CIBC 2016), provides an interactive local
semi-automated segmentation tool. The BrainSeg3D is
freely available for download at http://lit.fe.uni-lj.si/tools.

For improved detection of lesions the rater could visu-
alize the co-registered T1w, T2w and FLAIR images in
side-by-side view. The semi-automated lesion segmentation
required a rater to inspect the MR images slice-by-slice,
position the mouse cursor over a lesion and define the radius
of a local circular region such that the lesion was completely
or partially captured together with some of its surrounding
structures (Fig. 1b). In the rater-highlighted circular region
an automated segmentation was executed in real-time and
the MR images were interactively overlayed with the seg-
mentation result, which the rater could then either accept
or reject by clicking the mouse (Fig. 1c). For more details
please refer to BrainSeg3D manual in the e-Supplements.

The local automated segmentation extracted hyperin-
tense lesions from the FLAIR image by K-means clustering
of the intensity values within the local region. Three clus-
ters were found by default, whereas the initial cluster centers
were obtained by the K-means++ algorithm (Arthur and
Vassilvitskii 2007). Alternatively, a rater could also man-
ually select seed points in the MR images, by which he
or she determined the number of clusters and the initial
cluster centers for the K-means. The clusters obtained by
K-means produced a multi-label segmentation, which was
post-processed by the 3 × 3 median filter and connected
component analysis, followed by extraction of the compo-
nent that included the center of the local region. This com-
ponent represented a tentative binary segmentation, which
was interactively overlayed onto the MR images for the rater
to accept or reject. Figure 1 shows three examples of the
semi-automated lesion segmentation.

The described segmentation approach was found very
efficient for creating accurate lesion segmentations and,
compared to manual segmentation of WMLs, its use was
shown to reduce both intra- and inter-rater segmentation
variability (Lesjak et al. 2015).

Lesion Segmentation Protocol

The segmentation protocol is illustrated in Fig. 2. Lesion
segmentations were created by three raters. One rater was
a second-year radiology intern, while the other two raters
were senior neuroradiologists with more than 10 years of
experience in assessing MR scans of MS patients.

Prior to segmenting lesions the raters agreed to a com-
mon segmentation protocol. Lesion segmentation was to be
created in the space of FLAIR image and mainly performed
on the axial cross-sections, whereas the co-registered T1-
and T2-weighted images were displayed side-by-side to the
FLAIR image. The axial plane was selected since T1- and
T2-weighted images were acquired in axial planes with
3 mm slice thickness and thus had best resolution in the
axial cross-sections. Raters focused on the detection and
segmentation of T2w/FLAIR hyperintense lesions within
the white-matter. Since the definition of “hyperintense” is
somewhat subjective, the raters agreed that a FLAIR hyper-
intense location is characterized by the FLAIR intensity
greater than the FLAIR intensity of closest gray-matter
region. Additional criteria for detecting a lesion were the
pattern of abnormality, location, and enhancement features,
which should be characteristic for MS.

To deal with MR artifacts such as MR signal over-
shoots around the lateral ventricles, which lead to lesion-like
periventricular FLAIR hyperintensities, the presence of true
lesions with somewhat ovoid shape steming from the ventri-
cle wall was to be confirmed on sagittal and coronal cross-
sections. Furthermore, due to pulsation of the cerebrospinal
fluid (CSF) lesion-like hyperintense FLAIR artifacts may
also appear within the ventricles, but which were rejected
based on cross-checking the lesion location on the T1w
image. To reduce false lesion detection due to partial volum-
ing, for instance at the white- and gray-matter border in
FLAIR, the potential lesion locations were to be inspected
in coronal and saggital views before confirming the lesion
presence. Similarly, the presence of juxtacortical lesions
was to be confirmed on sagittal and coronal cross-sections,
as regions, which are hyperintense compared to the nearest
cortical FLAIR intensity and extend across the cortical tis-
sue border observed on the T1w image. The hyperintense
regions within the cortex on FLAIR were not to be seg-
mented, as well as hypointense lesions in the cortex and
white matter on FLAIR images that might be observed on
MRI scans due to other possible brain pathology.

http://lit.fe.uni-lj.si/tools
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(a) (b) (c)

Fig. 1 Three examples (in rows) of using the interactive semi-
automated segmentation tool: a axial cross-section of FLAIR image
with superimposed b circular region (green) and overlayed result of

a local automated segmentation (blue). Rater-selected seed points are
shown as yellow dots. c Upon rater acceptance the local segmentation
is propagated to lesion segmentation mask (red)

Hyperintense white-matter lesions may also appear due
to reasons unrelated to MS, e.g. white-matter ischemia
resulting from aging. Distinguishing these lesions from the
lesions related to MS based solely on the MR images is dif-
ficult and patient’s clinical symptoms and background (e.g.
cerebrovascular risk factors) may help resolve the lesion ori-
gin. Since the majority of patients were young (median age
was 39 years, cf. Table 1), with clinically-definite diagnosis
of MS and without clinical evidence of other diseases asso-
ciated to white-matter lesions, the raters did not explicitly
consider the lesion origin. Judgement whether a hyperin-
tense white-matter lesion is related to MS or not was based
on their personal knowledge and experience.

Initially, each rater independently segmented the lesions on
all 30 datasets. For this purpose raters used the BrainSeg3D’s
semi-automated tool described in the previous section. Dur-
ing the segmentation process, rater had to capture each
lesion within a circular region around the mouse cursor
and then accept the overlayed tentative segmentation with a
mouse click. Segmentation in the circular region was based
on clustering contained FLAIR intensity values into three
classes. Three classes were sometimes not sufficient to seg-
ment lesions in certain brain regions, e.g. typically around
gyri, sulci and the brainstem, therefore, in such situations,
the rater manually selected seed point locations to determine
the class number and corresponding class intensities.
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Fig. 2 Protocol used to create and validate consensus WML segmen-
tations. To create consensus WML segmentations (left) three raters
independently segment each of the FLAIR images. Their segmenta-
tions are then merged using a “boolean OR” operation creating the
initial consensus segmentation. Afterwards, the raters jointly refined
the initial consensus segmentation by 1) removing falsely detected
lesions (eg. segmented MR artifacts), 2) adding previously missed

lesions and 3) by revising and refining lesion contours (see text in
“Lesion Segmentation Protocol” for details). To validate the consensus
segmentation, the same segmentation protocol is executed on a subset
of axial slices (right) to obtain a second set of consensus segmenta-
tions. These are then compared to the first consensus segmentations to
assess the overall variability of the consensus segmentation protocol
(see text in “Validation of Consensus Segmentation” for more details)

In the following, all three raters held several joint
sessions, in which they mutually resolved discrepancies
between the individual lesion segmentations on each of the
30 datasets. The goal of these joint sessions was to create the
so-called consensus segmentation of the lesions. For each
subject’s dataset, the independent lesion segmentations of
all three raters were first merged using boolean OR oper-
ation (ie. each voxel that was identified as belonging to a
lesion by any rater, was marked as belonging to a lesion in
the merged segmentation) to obtain the most sensitive WML

segmentation, which represented an initial consensus seg-
mentation. This segmentation was then carefully revised by
raters, who used the same tools as for creating individual
segmentations. The first joint session focused on resolv-
ing questionable lesion locations, in which there was no
overlap between a connected component in the consensus
segmentation and at least one of the three independent seg-
mentations. The second session focused on detecting lesions
that were not included in the consensus segmentation. In the
last session the raters revised the consensus segmentations,
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making sure that the WML contour borders were as accu-
rate as possible and that none of the image slices were
skipped during previous segmentation steps. Figure 3 shows
two examples of the final consensus lesion segmentations,
while an animated preview of consensus lesion segmenta-
tion visualized in 3D and in corresponding axial slices of
the FLAIR image with overlayed masks is available as part
of the Supplementary Material.

All 30 MR datasets were segmented according to the
lesion segmentation protocol.

Validation of Consensus Segmentation

In order to evaluate the quality of consensus segmentations,
the same three raters were asked to execute the proposed
segmentation protocol (Fig. 2) in two independent rounds on
each of the 30 MR datasets. In the first round the raters were
required to segment lesions in the whole FLAIR image,
while in the second round each case was segmented only in
a subset of five axial FLAIR cross-sections so as to speed-up
the experiment. Furthermore, to remove possible rater bias
due to the effect of learning the second round was performed
six months after the first round was completed.

The subset of axial cross-sections considered in the second
round was selected automatically in all datasets such that the
axial coordinate of each of the five cross-sections per dataset
lied in the interval between 5% and 95% of the axial range
of subject’s brain mask. In this way, the cross-sections at

the extreme supra- and infra-tentorial part of the brain that
rarely contain lesions were not considered. On 15 datasets,
the cross-sections were selected completely at random from
the mentioned interval. On the other 15 datasets, stacks of
five consecutive cross-sections were considered such that
the central axial coordinate of the stack was selected ran-
domly from the interval. The use of both scattered and
stacked axial cross-sections ensured that the segmenta-
tions were not biased in favor of either lesion detection or
lesion delineation, thereby harmonizing their impact on the
assessment of accuracy and reproducibility of consensus
segmentation.

The purpose of this experiment was to determine whether
the obtained consensus lesion segmentations exhibit better
agreement (or lower variability) compared to the indi-
vidual rater segmentations. Hence, we assessed the vari-
ability between the two consensus segmentations, which
were obtained on same datasets on two separate occa-
sions, by comparing the lesion masks on the selected axial
cross-sections. The inter- and intra-rater variabilities were
assessed based on the individual segmentations of the three
raters. For comparison, the inter-rater variability was also
assessed based on the 2008 MS lesion segmentation chal-
lenge training datasets (Styner et al. 2008), in which 10
cases have manual reference segmentations made by two
independent raters. To assess the variability improvements
of consensus segmentations over that of intra- and inter-
rater, intra-consensus variability (ie. variability between the

Fig. 3 Axial, sagittal and coronal cross-sections of the FLAIR image, and 3D visualization (from left to right) of consensus segmentation of
white-matter lesions for two subjects, one with severe (top) and the other with moderate (bottom) total lesion load
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original consensus segmentations and the segmentations of
the second consensus created on the subset of axial slices
six months later) was also computed.

The variability between any two lesion segmentations
was assessed by Dice similarity coefficient (DSC) (Dice
1945) and average symmetric surface distance (SSD). Intra-
consensus variability was obtained by averaging DSC and
SSD across all 30 datasets, while to measure inter- and intra-
rater variabilities, all pair-wise comparisons were made
between the three raters and then the obtained DSCs and
SSDs were averaged across all 30 datasets. Another mea-
sure of variability was Pearson’s coefficient (r) (Pearson
1895), which was computed between total lesion loads
(TLLs) from all 30 datasets from any pair of segmentations
methods. The corresponding inter- and intra-rater variabil-
ities were measured by averaging all pair-wise Pearson’s
coefficients for the three raters.

Furthermore, we analyzed the anatomical distribution
of the differences between the TLL and lesion count as
measured on the individual rater segmentations and the
consensus segmentation on all 30 datasets. On each sub-
ject’s FLAIR image the individual lesions were obtained
by connected component analysis of the segmentations and
then assigned into one of four anatomical regions: periven-
tricular, juxtacortical, infratentorial and deep white-matter.
These anatomical regions, with the exception of the spinal
cord that was not imaged, were chosen as they play an
important role in determining the dissemination of lesions
in the brain, which is a key factor in the 2010 McDonald
diagnostic criteria for MS (Polman et al. 2011).

To obtain consistent assignments of lesions into the four
anatomical regions, the corresponding labels were deter-
mined automatically based on a patient-specific atlas com-
puted for the T1w image. The patient-specific atlas was
obtained using a publicly available method based on a
multi-atlas co-registration and label fusion (Cardoso et al.
2015). The patient-specific atlas contained 145 different
brain labels, a subset of which were grouped into cortex, lat-
eral ventricles and the cerebellum and brainstem. Individual
lesions were classified as periventricular or juxtacortical if
there were lesion voxels within 2 mm of the lateral ventri-
cles or cortex, respectively. Infratentorial lesions were those
located in the cerebellum or brainstem, while other lesions
were marked as deep white-matter lesions.

Validation of Segmentation Tools

To evaluate the variability of semi-automated vs. manual
segmentation tools, we performed an additional experi-
ment, in which we randomly selected 413 of the total
of 3316 lesions (approximately 1/8) from all 30 datasets.
Then two independent raters segmented one axial slice per
lesion using FLAIR images. The axial slices were chosen is

such way that they intersected the center of lesions (or as
close as possible). Each rater segmented the lesions’ axial
slices twice using manual and twice using semi-automated
segmentation tools in the BrainSeg3D. Finally, intra- and
inter-rater variability of segmentation obtained by manual or
semi-automated tools were assessed by computing the DSC.

Results and Discussion

Consensus-based vs. Individual Lesion Segmentations

Table 2 shows that according to DSC, Pearson’s r and
SSD the intra-consensus variability was lower compared
to both the inter- and intra-rater variability on the same
datasets. This indicates that the employed lesion segmen-
tation protocol produced very consistent and reproducible
lesion segmentations.

The inter- and intra-rater variabilities on our datasets
were (DSC in the range 0.67 – 0.73) comparable to a pre-
vious report (0.71–0.81) by (Zijdenbos et al. 1994). Therein
the authors also used semi-automated segmentation tools,
but the MR datasets were acquired using 2D sequences
on 1.5T scanner as compared to our 3D sequences on a
3T scanner. The slightly higher variability observed on our
datasets might be because there are generally more lesions
visible on 3T than on 1.5T MR images (Di Perri et al. 2009)
and because the use of 3D versus 2D FLAIR imaging also
increases the sensitivity to lesions (Patzig et al. 2014).

The 2008 MS lesion segmentation challenge (Styner
et al. 2008) employed comparable MR datasets to ours,
namely 3D acquisition mode on a 3T Siemens MR scanner,
however, there the inter-rater variability was 0.237 in terms
of DSC. This rather low DSC value indicates a very poor
agreement between the raters. Nevertheless, this was one of
the first publicly available MR datasets with reference lesion
segmentations and even today it is still extensively used to

Table 2 Variability in terms of average Dice similarity coefficient
(DSC) and average symmetric surface distance (SSD) assessment
within each rater (intra-rater), between the raters (inter-rater) and
between consensus segmentations (intra-consensus)

Segmentation variability DSC Pearson’s r SSD

Intra-consensus 0.776 0.779 1.06

Intra-rater 0.676 0.710 1.73

Inter-rater 0.724 0.731 1.32

Inter-rater (MS challenge 2008) 0.237 0.275 5.86

The reported Pearson’s r is given between total lesion loads of the seg-
mentations. Values are averaged across all 30 datasets and, in case of
intra- and inter-rater variabilities also across all three raters. Inter-rater
variability for MS Challenge datasets was computed for 10 training
cases
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train and tune, quantitatively evaluate and compare state-
of-the-art automated lesion segmentation methods. Clearly,
public datasets with more accurate and reliable reference
segmentations are needed to advance the development and
objectively evaluate, compare and rank the automated lesion
segmentation methods.

The employed process of merging the WML segmenta-
tions of individual raters into final consensus segmentation
notably increased the overall sensitivity of lesion detec-
tion (Fig. 4). This somehow indicates the subjectiveness of
the individual lesion detection and segmentation process.
Figure 4 shows another compelling evidence of rater sub-
jectiveness (and possibly rater fatigue); for MR scans with
small lesion load (up to 2 ml), some raters were too sen-
sitive, and some less, compared to the consensus, while
for larger lesion loads (above 2 ml) the raters consistently
segmented less lesions, thus leading to lower TLL. Over-
all, the TLL of consensus segmentation was significantly
higher in comparison to TLL of any single rater’s segmen-
tation (p < 0.05, Wilcoxon signed-rank test). According
to consensus segmentations, the dataset contains a total of
3316 segmented WMLs with an overall TLL of 567 ml. The
median TLL per patient was 15.2 ml (min: 0.337 ml, max:
57.5 ml, inter-quartile range: 31.1 ml). The distribution of
WML volumes across the 30 datasets is shown in Fig. 5,
while their spatial distribution, obtained by mapping all the
final consensus segmentations onto the T1w images of the
MNI152 atlas (Fonov et al. 2009) through a two-stage affine
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Fig. 4 Total lesion load (TLL) based on individual rater and consen-
sus lesion segmentations on each of the 30 datasets. The TLL obtained
from each rater’s segmentation was normalized by consensus-based
TLL. For easier interpretation the patients are ordered by increasing
consensus TLL. The consensus segmentation exhibits higher overall
sensitivity and higher TLL of lesion detection compared to any single
rater. For MR scans with TLL above 2 ml the raters consistently seg-
mented less lesions, possibly indicating rater fatigue while contouring
cases with large TLL, while with TLL below 2 ml, subjective errors
dominated the TLL in both directions
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Fig. 5 Distribution of white-matter lesion number with respect to the
volume of individual lesion across 30 datasets. According to consen-
sus segmentations the dataset contains a total of 3316 WMLs with
sizes ranging from 2μl to 250μl (5th and 95th percentile respectively),
median size of 17 μl and an overall TLL of 567 ml

and deformable B-spline T1w–to–T1w registration (Klein
et al. 2010), is shown in Fig. 6.

A rater’s judgement about the presence of a lesion is
clearly subjective and is probably a process too complex
to define rigorously by a set of simple rules. Namely, it
is heavily dependent on prior knowledge and experience
of the rater and involves a number of other more or less
subjective judgements. For instance, the rater has to simul-
taneously consider the intensity, the spatial location and
context of the lesion and its shape, and the spatial distribu-
tion and shapes of other lesions, and also the demographic
and clinical data in order to successfully differentiate a
demyelinating MS lesions from an MRI artifact or lesions
due to small-vessel ischemia, Susac’s or CADASIL syn-
drome, progressive multifocal leukoencephalopathy (PML),
etc. The reason we have decided to include a hyperintensity
threshold is to impose a somehow more objective crite-
rion onto the raters so as to better differentiate between the
focal white-matter lesions, which are typically hyperintense
with respect to the gray matter, and the dirty white-matter.
These are areas of the white-matter, where demyelination is
already in progress, but which show only a slight increase of
the intensity. If the decision to include or exclude the dirty
white-matter was left to the raters, without any differenti-
ation criterion, then there could potentially be even more
discrepancy between the raters’ segmentations. We feel that
the use of a hyperintensity threshold is valid since the role
of dirty white-matter and whether it should be considered as
demyelinated tissue is not yet clear in the MS community.

The main benefit of performing consensus segmenta-
tion, although still based on subjective judgement, is the
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High probabilityLow probability

Fig. 6 Spatial probability map of white-matter lesion (WML) appearance
as a heat-map overlayed on the T1w template image. The probability
map was created from co-registered consensus segmentations of the

30 datasets, obtained through non-linear registration of corresponding
T1w image of to each dataset to T1w template image of the MNI2009c
atlas (Fonov et al. 2009)

increased sensitivity and repeatability of WML detection
and their quantification. A revision of segmentations per-
formed during the creation of consensus mostly identified
new lesions previously missed by some raters and, in far
fewer cases (especially those with small lesion load), differ-
ences in lesion contours or false positives due to erroneously
segmented MRI artifacts. The consensus segmentation pro-
tocol is otherwise a complex process that was made efficient
and relatively simple by delegating one task at a time to the
raters. At the time consensus, when the majority of lesions
were already delineated, the raters focused on three specific
tasks: 1) resolve inter-rater segmentation discrepancies, 2)
detect new lesions and 3) perform fine lesion contouring.
Using this directed focus allowed for high efficiency, but
also contributed to higher quality of the gold standard, since
questionable and additional lesions, and lesion contours
were resolved one-by-one through expert agreement.

Table 3 shows the differences between the individual
rater segmentations and the final consensus segmentation in
terms of number of missed WMLs and their total volumes
grouped by specific anatomical location. Clearly, the raters’
sensitivity to detect lesions varies greatly between different
anatomical locations. The lesions, which are most likely to
be missed are those in the infratentorial and juxtacortical

regions. In the respective regions an individual rater missed
46–68% and 9–49% of lesions with respect to the consen-
sus segmentations. This means that on average each rater
missed about 15.6 juxtacortical and 3.8 infratentorial lesions
per patient MR dataset, which is clearly alarming if one
wants to confirm the diagnosis or assess disease progres-
sion according to the current MS diagnostic criteria (Polman
et al. 2011).

This study did not attempt to directly address certain
interesting questions, such as What is the optimal number of
raters to create the gold standard? and How the number of
raters affect gold standard quality? However, from Fig. 4
and Table 3 we can infer that, while segmentations of a
single rater are insufficient, since he or she tends to miss
a substantial number of lesions, each additional rater adds
valuable information. This further implies that more raters
would likely produce a more accurate and reliable gold stan-
dard. However, with higher number of raters one would
sooner or later reach a plateau, where due to inter-rater
variabilities of individual lesion contours the variability of
multi-rater consensus would no longer decrease steadily.

We have engaged three expert raters in our study, while
the majority of previously published researches engaged
at most two raters for validation purposes (Garcia-Lorenzo

Table 3 Total lesion load
(TLL) and count of
white-matter lesions (WMLs)
with respect to their anatomical
location. The table contains
both the consensus values as
well as the absolute values and
relative differences for each of
the raters

Segmentation Periventricular Juxtacortical

TLL (ml) Count TLL (ml) Count

Consensus 397 421 110 959

Difference to rater 1 114 (29 %) 101 (24 %) 33.7 (30 %) 469 (49 %)

Difference to rater 2 100 (25 %) 62 (15 %) 22.7 (21 %) 367 (38 %)

Difference to rater 3 99.8 (25 %) 21 (5 %) 21.2 (19 %) 82 (9 %)

Segmentation Infratentorial Deep white-matter

TLL (ml) Count TLL (ml) Count

Consensus 13.8 167 46.3 1769

Difference to rater 1 5.06 (37%) 109 (65 %) 11.0 (24 %) 538 (30 %)

Difference to rater 2 4.51 (33 %) 114 (68 %) 9.16 (20 %) 536 (30 %)

Difference to rater 3 8.46 (61 %) 77 (46 %) 4.54 (10 %) -4 (0.2 %)
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et al. 2013). It should be noted, that the number of raters
to engage is inevitably a compromise between the amount
of available resources (experts, time, costs) and the qual-
ity of gold standard. In our case, for instance, the use of
semi-automated compared to manual tools reduced the time
required to perform the segmentation by 25%, however, a
single rater still needed around 300 hours (37 days if work-
ing 8 hours per day) to segment the lesions of all 30 patient
datasets. This shows that production of (consensus-based)
gold standard segmentations is very labor intense. From our

experience and the reported results engaging three raters
seems to be a good compromise between the obtained gold
standard quality and the resources required.

One possible shortcoming of the present study is that
the reproducibility of consensus lesion segmentation was
evaluated with the same team of expert raters. It would be
interesting to compare the consensus segmentation made
by another team of experts, using the same semi-automated
tools and following the proposed lesion segmentation proto-
col. Hence, to encourage other researchers to reproduce and

Fig. 7 Variability of
semi-automated vs. manual
segmentation tools. Lesion
contours were created twice (top
figure in red and green) by two
raters either using manual or
semi-automated segmentation
tools. These contours were used
to compute intra- and inter-rater
DSC values. Box plots (bottom)
show the median values, 1st and
3rd quantiles and minimum and
maximum values of DSC
computed over all 413
segmented lesions as described
in “Validation of Segmentation
tools”
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expand the results of this study, we will publicly dissemi-
nate our semi-automated tools and MR image datasets on
our website http://lit.fe.uni-lj.si/tools. Furthermore, to train,
test and objectively and reliably evaluate novel or state-of-
the-art (automated) lesion segmentation methods we will
also disseminate the consensus lesion segmentations along
with the original and preprocessed MR image datasets. In
the future, we aim to expand this public repository with
more MR datasets acquired on different scanners and sites
along with corresponding reference lesion segmentations
and establish an on-line system for an objective evaluation
of (automated) lesion segmentation methods.

Manual vs. Semi-automated Lesion Segmentation

The obtained median DSC values were 0.85 and 0.82 for
intra- and inter-rater variability using manual tools, while
the respective values obtained with the semi-automated
tools were 0.92 and 0.89. Note that the DSC values obtained
in this experiment are somewhat higher than those reported
over all lesion segmentations (Table 2). This is because
in this experiment the raters knew the lesion locations in
advance, hence, there were no missed lesions, which oth-
erwise can have a strong impact on DSC. Corresponding
distributions of the DSC values across all 413 lesion seg-
mentations and an example of the actual difference in lesion
contours in Fig. 7 clearly show the advantage of using
semi-automated instead of manual lesion contouring tools.

The conclusion of this experiment is that, instead of man-
ual tools, the semi-automated tools should be used to reduce
intra- and inter-rater variability. Hence, to reduce error prop-
agation within a multi-rater consensus-based segmentation
protocol the raters were required to use semi-automated
tools for lesion contouring.

Conclusions

In this paper, we presented a novel dataset for validation
of lesion segmentation methods in MR images and a novel
protocol for creating reference white-matter lesion segmen-
tations based on multi-rater consensus. The dataset consists
of MR images of 30 patients with MS acquired on a 3T
Siemens MRI machine using conventional MR imaging
sequences. The reference lesion segmentations were created
for each case by three independent raters, who used in-
house developed MR image visualization and segmentation
tools. The segmentation protocol required from each rater to
segment each of the 30 cases. The obtained segmentations
were later jointly merged into a consensus segmentation
by the same three raters, thereby integrating and harmo-
nizing their expertize. To evaluate the variability of rater
and consensus segmentations, and as a quality assurance

step, the segmentation protocol was executed twice on the
same MR images, with a six months break. The obtained
intra-consensus variability was substantially lower com-
pared to the intra- and inter-rater variabilities, showing
improved reliability of lesion segmentation by the proposed
protocol. Hence, we conclude that the obtained reference
segmentations represent a more precise and reliable target
to evaluate and compare against the segmentations obtained
from automated white-matter lesion segmentation methods.

Information Sharing Statement

The MR images of 30 MS patients for this study were
acquired on a 3T Siemens Magnetom Trio MR system at
the University Medical Centre Ljubljana (UMCL). All 30
subjects have given written informed consent at the time
of enrollment for imaging and the UMCL approved the
use of MRI data for this study. The authors, who have
obtained approval from the UMCL to use the data, confirm
that the data was anonymized (patient information removed,
defacing of MR images). The semi-automated tools and the
anonymized MR datasets in original and preprocessed form
as used in this study, and the consensus-based reference seg-
mentations of the lesions, will be made publicly available
on our website http://lit.fe.uni-lj.si/tools.
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Pečarič, MD, from the University Medical Centre Ljubljana for per-
forming the lesion segmentations.

References

Akhondi-Asl, A., Hoyte, L., Lockhart, M.E., Warfield, S.K. (2014). A
logarithmic opinion pool based staple algorithm for the fusion of
segmentations with associated reliability weights. IEEE Transac-
tions on Medical Imaging, 33(10), 1997–2009.

Anbeek, P., Vincken, K.L., van Osch, M.J.P., Bisschops, R.H.C., van
der Grond, J. (2004). Probabilistic segmentation of white matter
lesions in MR, imaging. NeuroImage, 21(3), 1037–1044.

Arthur, D., & Vassilvitskii, S. (2007). K-means++: the advantages of
careful seeding. In Proceedings of the eighteenth annual ACM-SIAM
Symposium on Discrete algorithms, SODA ’07 (pp. 1027–1035).
Philadelphia: Society for Industrial and Applied Mathematics.

Barillot, C., Commowick, O., Guttmann, C., Styner, M., Warfield, S.
(2016). MS Segmentation challenge. Last accessed: 20 oct, 2016.
https://portal.fli-iam.irisa.fr/msseg-challenge/overview.

Cardoso, M.J., Modat, M., Wolz, R., Melbourne, A., Cash, D.,
Rueckert, D., Ourselin, S. (2015). Geodesic information flows:
spatially-variant graphs and their application to segmentation and
fusion. IEEE Transactions on Medical Imaging, 34(9), 1976–
1988. https://doi.org/10.1109/TMI.2015.2418298.

CIBC (2016). Seg3d: Volumetric image segmentation and visualiza-
tion. Scientific computing and imaging institute (SCI), download
from: http://www.seg3d.org.

Cocosco, C.A., Kollokian, V., Kwan, R.K.S., Pike, G.B., Evans, A.C.
(1997). BrainWeb: online interface to a 3d MRI simulated brain
database. NeuroImage, 5, 425.

http://lit.fe.uni-lj.si/tools
http://lit.fe.uni-lj.si/tools
https://portal.fli-iam.irisa.fr/msseg-challenge/overview
https://doi.org/10.1109/TMI.2015.2418298
http://www.seg3d.org


Neuroinform (2018) 16:51–63 63

Commowick, O., & Warfield, S. (2009). A continuous STAPLE for
scalar, vector, and tensor images: an application to DTI anal-
ysis. IEEE Transactions on Medical Imaging, 28(6), 838–846.
https://doi.org/10.1109/TMI.2008.2010438.

Debette, S., & Markus, H.S. (2010). The clinical importance of
white matter hyperintensities on brain magnetic resonance imag-
ing: systematic review and meta-analysis. BMJ, 341, c3666.
https://doi.org/10.1136/bmj.c3666.

Di Perri, C., Dwyer, M.G., Wack, D.S., Cox, J.L., Hashmi, K., Saluste,
E., Hussein, S., Schirda, C., Stosic, M., Durfee, J., Poloni, G.U.,
Nayyar, N., Bergamaschi, R., Zivadinov, R. (2009). Signal abnor-
malities on 1.5 and 3 Tesla brain mri in multiple sclerosis patients
and healthy controls. A morphological and spatial quantitative
comparison study. NeuroImage, 47(4), 1352–1362.

Dice, L.R. (1945). Measures of the amount of ecologic associa-
tion between species. Ecology, 26(3), 297–302. https://doi.org/
10.2307/1932409. ArticleType: research-article / Full publication
date: Jul., 1945 / Copyright ©1945 Ecological Society of America.

Filippi, M., Horsfield, M.A., Bressi, S., Martinelli, V., Baratti, C.,
Reganati, P., Campi, A., Miller, D.H., Comi, G. (1995). Intra- and
inter-observer agreement of brain MRI lesion volume measure-
ments in multiple sclerosis. A comparison of techniques. Brain: A
Journal of Neurology, 118( Pt 6), 1593–1600.

Fonov, V., Evans, A., McKinstry, R., Almli, C., Collins, D. (2009).
Unbiased nonlinear average age-appropriate brain templates from
birth to adulthood. Neuroimage, 47(Supplement 1), S102.

Garcia-Lorenzo, D., Francis, S., Narayanan, S., Arnold, D.L., Collins,
D.L. (2013). Review of automatic segmentation methods of
multiple sclerosis white matter lesions on conventional mag-
netic resonance imaging. Medical Image Analysis, 17(1), 1–18.
https://doi.org/10.1016/j.media.2012.09.004.

Grimaud, J., Lai, M., Thorpe, J., Adeleine, P., Wang, L., Barker,
G.J., Plummer, D.L., Tofts, P.S., McDonald, W.I., Miller, D.H.
(1996). Quantification of MRI lesion load in multiple sclerosis: A
comparison of three computer-assisted techniques. Magnetic Res-
onance Imaging, 14(5), 495–505. https://doi.org/10.1016/0730-72
5X(96)00018-5.

Iglesias, J., Liu, C.Y., Thompson, P., Tu, Z. (2011). Robust brain
extraction across datasets and comparison with publicly available
methods. IEEE Transactions on Medical Imaging, 30(9), 1617–
1634. https://doi.org/10.1109/TMI.2011.2138152.

Klein, S., Staring, M., Murphy, K., Viergever, M., Pluim, J.P.W.
(2010). Elastix: A toolbox for intensity-based medical image regis-
tration. IEEE Transactions on Medical Imaging, 29(1), 196–205.

Lesjak, Z., Galimzianova, A., Likar, B., Pernuš, F., Špiclin, Z. (2015).
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