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Abstract Conventional Functional connectivity (FC) analy-
sis focuses on characterizing the correlation between two
brain regions, whereas the high-order FC can model the cor-
relation between two brain region pairs. To reduce the number
of brain region pairs, clustering is applied to group all the
brain region pairs into a small number of clusters. Then, a
high-order FC network can be constructed based on the clus-
tering result. By varying the number of clusters, multiple high-
order FC networks can be generated and the one with the best
overall performance can be finally selected. However, the im-
portant information contained in other networks may be sim-
ply discarded. To address this issue, in this paper, we propose
to make full use of the information contained in all high-order
FC networks. First, an agglomerative hierarchical clustering
technique is applied such that the clustering result in one layer
always depends on the previous layer, thus making the high-
order FC networks in the two consecutive layers highly cor-
related. As a result, the features extracted from high-order FC

network in each layer can be decomposed into two parts
(blocks), i.e., one is redundant while the other might be infor-
mative or complementary, with respect to its previous layer.
Then, a selective feature fusion method, which combines se-
quential forward selection and sparse regression, is developed
to select a feature set from those informative feature blocks for
classification. Experimental results confirm that our novel
method outperforms the best single high-order FC network
in diagnosis of mild cognitive impairment (MCI) subjects.
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Introduction

Alzheimer’s disease (AD) is the most prevalent dementia, ac-
counting for about 60–80% of dementia cases among the el-
derly population worldwide. It has been reported that the inci-
dence of AD will double every five years after the age of 65
(Bain et al. 2008), and 1 in every 85 people will be affected by
the year 2050 (Brookmeyer et al. 2007). As a typical neurolog-
ical disorder disease, AD is commonly characterized by some
predominant clinical symptoms, including progressivememory
loss and cognitive deficits, which severely interfere with pa-
tients’ daily lives. This disease is incurable and worsens over
time due to the degeneration of specific nerve cells, presence of
neuritic plaques, and neurofibrillary tangles (McKhann et al.
1984), eventually causing death. Thus, it is important for AD
patients to be diagnosed as early and accurately as possible, so
the effective pharmacological and behavioral treatments can be
provided to potentially delay the progress of AD.

Some works (Johnson et al. 2006; Whitwell et al. 2007)
suggest that the pathological manifestation of AD begins
many years before it can be diagnosed. Mild cognitive
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impairment (MCI), as a prodromal stage of AD, has attracted
much attention becauseMCI subjects tend to convert to clinical
AD with an average conversion rate of 10% to 15% per year
(Misra et al. 2009), and more than 50% within 5 years
(Gauthier et al. 2006; Petersen et al. 2001). Therefore, earlier
diagnosis of MCI is very important for treatment and possible
delaying the progression ofMCI tomoderate and severe stages.
However, identifying MCI subjects from subjects undergoing
normal aging is much more difficult because of the subtlety of
involved cognitive impairment. Through analyzing neuroimag-
ing data with machine learning algorithms (Mitchell 1997), it is
possible to identify subtle diagnostic biomarkers that can effec-
tively distinguish MCI from normal controls (NC). Some suc-
cessfully applied machine learning algorithms include support
vector machine and multiple kernel learning (Cortes and
Vapnik 1995; Jie et al. 2014b; Zhang, et al. 2011), multi-task
and sparse learning (Friedman et al. 2008; Huang et al. 2010;
Suk, et al. 2014a), and the recently emerging deep neural net-
works (Liu et al. 2015; Suk et al. 2015; Suk, et al. 2013; Suk,
et al. 2014b) amongst many others.

Resting-state functional magnetic resonance imaging (RS-
fMRI), a cutting-edge technology at disposal of cognitive neu-
roscience, canmeasure the blood oxygenation level dependent
(BOLD) signal. This signal reflects low-frequency spontane-
ous fluctuations in the resting brain, which are related to in-
trinsic neural activity within the brain (Fox and Raichle 2007).
From RS-fMRI data, it is possible to infer functional connec-
tivity (FC) between structurally separated brain regions. Here,
the FC is defined as the temporal correlation of BOLD signals
measured in different brain areas (Friston et al. 1993). It has
been proven (Greicius 2008) that FC is a useful tool for un-
derstanding the pathological underpinnings of MCI at the
whole-brain level (Rombouts et al. 2005; Sorg et al. 2007;
Wang et al. 2007) and has great potential in providing a sig-
nificant biomarker for the diagnosis of MCI (Wee, et al. 2015;
Wee et al. 2012; Wee et al. 2014). This is because the topo-
logical structure and strength of FC are disrupted due to the
pathological attack of AD (Anderson and Cohen 2013; dos
Santos Siqueira et al. 2014; Fekete et al. 2013; Wang et al.
2007; Zhang et al. 2016a). In most studies, FC is represented
by a graph (Brier et al. 2014; Toussaint et al. 2014) in which a
node corresponds to a brain region and an edge characterizes
the FC strength between different brain regions. Therefore,
constructing FC network based on RS-fMRI holds great
promise for distinguishing MCI from normal aging (Stam
et al. 2009; Stam et al. 2007). Most studies have focused on
estimating FC from BOLD signals by using different statisti-
cal methods. For instance, Pearson’s correlation (Jie et al.
2014b; Wee et al. 2012) can measure the pairwise similarity
of BOLD signals. But this method handles each pair of brain
regions independently, without taking into account the effects of
other brain regions. Partial correlation characterizes the pairwise
correlation and, at the same time, factors out the effects of other

brain regions. Sparse representation (Yu et al. 2016; Suk et al.
2014c; Wee, et al. 2015; Wee et al. 2014; Wright et al. 2009) is
able to approximate the BOLD signals of one brain region by
linearly combining a smallest set of the signals from the rest
brain regions, thus resulting in a sparse FC network.

Traditionally, the FC is estimated based on the entire length
of BOLD time series (Jie et al. 2014a; Jie et al. 2014b; Wee
et al. 2014). It assumes the FC is stationary, by ignoring the
complexity and dynamic property of the brain activities. To
deal with this problem, a sliding window approach has been
utilized in (Wee et al. 2013; Wee, et al. 2015) to partition the
entire BOLD signals (derived from each brain region) into
several overlapping segments. For each segment, a FC net-
work is constructed to characterize the time-varying FC be-
tween two brain regions during a certain time interval.
Consequently, a set of FC networks can be generated and
fused for MCI classification. Nevertheless, as in most tradi-
tional methods, the involved correlation (and thus the FC net-
work) is still low-order in the sense that 1) it is calculated
based on the raw BOLD signals; 2) it only describes how
two brain regions are functionally interacted with each other;
3) it cannot be directly used because of the possible phase
mismatch across different subjects. In our previous study
(Chen et al. 2016), we regarded these low-order FC networks
as a set of FC time series, each of which is associated with a
specific pair of brain regions and characterizes the variation of
their FC over time. Thus, by computing the correlation be-
tween two FC time series (involving up to four brain regions),
a novel high-order FC network can be constructed for each
subject. It should be emphasized that, different from the low-
order case above, the correlation (and thus the FC network)
obtained in such a manner is high-order because 1) it is com-
puted based on FC time series and is thus a high-level feature;
2) it characterizes how different brain region pairs functionally
interact with each other; 3) it owns a merit of invariance,
avoiding the adverse impact of the possible phase mismatch
across different subjects. Moreover, the proposed high-order
FC network is different from either static or dynamic FC.
First, the high-order FC network uses time-varying FC obtain-
ed by the sliding window, which is different from the proce-
dure of computing the static FC. Second, by calculating a
second round of correlation, our method aggregates the
time-varying FCs into a single high-order functional network
(i.e., computing the correlation’s correlation), thus very differ-
ent from those traditional dynamic (low-order) FC computa-
tional approaches.

Note that the scale of high-order FC networks is much
larger than that of low-order FC networks, because the quan-
tity of brain region pairs is much larger than that of brain
regions (e.g., 116 brain regions yield about 1162 brain region
pairs). As a result, the feature vector extracted from the high-
order FC networks is of high-dimensionality, which increases
the model complexity as well as the risk of over-fitting. To
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overcome these problems, a clustering algorithm (Chen et al.
2014; Ward 1963) is first used to group the FC time series
(associated with each pair of brain regions) into U different
clusters, whereU is a predefined number of clusters. Then, the
mean of the FC time series within each cluster is used to
compute high-order FC and further construct high-order FC
networks. This strategy succeeds in reducing the scale of high-
order FC networks as well as the number of features, thus
improving computation efficiency and alleviating over-fitting.
However, we found that the selected value of U will severely
influence the discriminative ability of the resulting high-order
FC networks in diagnosis (Chen et al. 2016), since different
values of U lead to different high-order FC networks. To find
an optimal high-order FC network, a candidate set of high-
order FC networks with different discriminative ability is gen-
erated by varying U (Chen et al. 2016). Then, each high-order
FC network is evaluated independently on the validation data
and the one with the best performance is finally selected, while
others are simply discarded. Although this method achieves
promising results, there is still room for improvement.

In order to boost the diagnosis performance of high-order
FC networks, we hypothesize in this paper that those
discarded high-order FC networks in (Chen et al. 2016), al-
though inferior to the optimal network in overall discrimina-
tive performance, may contain essential and complementary
information for classification. In this sense, choosing a single
optimal high-order FC network while discarding others, may
cause the loss of useful information for diagnosis. Therefore,
inspired by the above insight, we propose a novel hierarchical
high-order FC network and feature fusion framework to take
advantage of all high-order FC networks and further improve
the diagnosis performance. Notably, by selection and integra-
tion of the information contained in the candidate high-order
FC networks in an appropriate way, this method takes full
advantage of all of the available discriminative information
and also avoids over-fitting. This study is featured by two
following aspects:

First, in order to exploit multiple high-order FC net-
works while avoiding large quantity of features, we con-
struct these high-order FC networks in a hierarchical
way, where the network in one layer is closely depen-
dent on the network in the previous layer. In view of this
inherent relationship between two consecutive layers,
the features extracted from the network in each layer
can be decomposed into two feature blocks, depending
on the correlation with the features extracted from the
network in the previous layer. Those highly-correlated
features with respect to the previous layer are redundant
and thus can be eliminated before feature fusion without
losing vital information. In contrast, those less-
correlated features may contain complementary infor-
mation and should be taken into account in feature

fusion. By constructing the hierarchical high-order FC
networks, we can not only generate useful and comple-
mentary features, but also significantly reduce the
redundancy.

Second, considering the layer-wise structure of features,
we propose a novel feature fusion method to utilize the
information contained in all candidate high-order FC
networks. This method elaborately combines the se-
quential forward selection (Jain and Zongker 1997)
and sparse regression (Tibshirani 1996) under the classic
wrapper-based feature selection framework (Kohavi and
John 1997). First, sequential forward selection operates
on feature block from each layer and adds one block
each time. Then, sparse regression operates on the com-
bined feature blocks and attempts to select only a small
number of individual features. Finally, support vector
machine (Chen et al. 2011a; Chen et al. 2011b; Cortes
and Vapnik 1995) with simple linear kernel is trained
based on the selected features, and the classification
performance on validation data is employed to guide
the selection procedure above. This feature fusion meth-
od further removes redundant and uncorrelated features,
with respect to the classification, thus mitigating the
influence of over-fitting.

It is worth noting the existence of the previous work
(Zhou et al. 2011) on modelling the hierarchical structure
of brain anatomical network. However, there are two main
differences from our proposed approach. First, their brain
anatomical network focuses on multi-scale structural rela-
tionship generated based on T1-weighted MRI data, while
our high-order FC networks model multi-scale functional
relationship derived from RS-fMRI data. Second, their
brain anatomical network is still a low-order network
since it considers only the direct pairwise interaction be-
tween brain regions. Our proposed hierarchical high-order
FC network reveals high-order correlations, reflecting
how different pairs of brain regions (involving at least
four brain regions) interact with each other.

Moreover, compared to the previous work (Chen et al.
2016), this study can be viewed as an important extension
with the following novelties: 1) a hierarchical strategy is de-
veloped to generate multiple related high-order FC networks
for containing as more information as possible; 2) due to the
use of hierarchical structure, a feature decomposition tech-
nique is further developed based on correlation analysis of
hierarchical high-order FC networks from consecutive
layers in order to reduce feature redundancy; 3) due to
the complexity of those obtained features, a feature fusion
method (by integration of sequential forward selection
and sparse regression) is developed to select a few dis-
criminative features for classification.
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Data and Methodology

Data Preparation

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset is used in this study. ADNI was launched in 2003 by
the National Institute on Aging, the National Institute of
Biomedical Imaging and Bioengineering, the Food and Drug
Administration, private pharmaceutical companies and non-
profit organizations. The goal of ADNI is to validate the use
of various biomarkers, including MRI, PET imaging and re-
lated neuropsychological assessments for AD clinical trials
and diagnosis.

In this work, 50 MCI subjects and 49 normal controls
(NCs) are randomly selected from ADNIGo and ADNI2
dataset. (For more details about imaging parameters,
please see the ADNI protocols at adni.loni.ucla.edu.)
The patient group consists of 27 early MCI subjects and
23 late MCI subjects. Subjects from both groups were
age-matched and scanned using 3.0 T Philips scanner.
SPM8 software package (http://www.fil.ion.ucl.uk/spm/
software/spm8) was used to preprocess the acquired RS-
fMRI data. The scanning time for each subject is 7 min
(i.e., 140 volumes), and the subjects with more than 2.
5 min of large frame-wise displacement (FD > 0.5) were
not included in this study (i.e., excluded before data in-
clusion). For magnetization equilibrium, the first 3 vol-
umes of each subject were discarded before preprocess-
ing, and then the remaining 137 volumes were used for
subsequent analysis. A rigid-body transformation was
used to correct head motion during the scan; and the sub-
ject with head motion larger than 2 mm or 2° were not
included in this study. The fMRI images were registered
to the Montreal Neurological Institute (MNI) space and
spatially smoothed using a Gaussian kernel with full
width at half maximum (FWHM) = 6 × 6 × 6 mm3. We
did not perform data scrubbing (i.e., removing volumes
with FD > 0.5), as it would introduce additional artifacts
to the subsequent dynamic FC analysis. The RS-fMRI
images were parcellated into 116 regions according to
the Automated Anatomical Labeling (AAL) template.
The mean RS-fMRI time series of each brain region was
band-pass filtered (0.015–0.15 Hz). Head motion param-
eters (Friston24), mean BOLD signal of white matter, and
mean BOLD signal of cerebrospinal fluid were all
regressed out from the RS-fMRI data to further reduce
artifacts.

Framework

The main steps of hierarchical high-order FC networks
construction are shown in Fig. 1 where four brain regions
are denoted by A, B, C, and D. Generally speaking, this

method consists of the following steps: 1) A sliding win-
dow with length N and step size s is applied to partition
the entire BOLD signal into multiple overlapping seg-
ments, each of which characterizes the neural activity of
brain region in a relatively small time interval. 2) For each
subject, a set of low-order FC networks is constructed,
each of which is based on a BOLD signal segment. By
doing so, we actually obtain a set of FC time series, each
describing the temporal variation of correlation between
two brain regions. 3) All subjects’ FC time series associ-
ated with the same brain region pair are concatenated
together to form a long FC time series which is represent-
ed by a point in high-dimensional space. 4) In the high-
dimensional space, the long FC time series from all brain
region pairs are grouped into U clusters by the clustering
algorithm, thus, yielding consistent clustering results
across different subjects. 5) For each subject, the mean
of the FC time series within the same cluster is computed
and then a high-order FC network (HON) is constructed
based on the correlation between the mean FC time series
of different clusters. 6) High-order feature vector (e.g.,
weighted local clustering coefficients in this paper) is ex-
tracted from the constructed high-order network. 7)
Repeating steps 4–6 multiple times with different Us gen-
erates multiple high-order FC networks, each of which
characterizes the high-order correlation at different scales,
and also multiple high-order feature vectors for each sub-
ject. 8) The feature vectors extracted from all high-order
FC networks are analyzed based on correlation and then a
feature subset is selected by a feature selection that com-
bines the sequential forward selection and sparse regres-
sion. 9) Support vector machine (SVM) is trained with the
selected features to classify MCI and NC subjects.

We can observe that the resulting high-order FC net-
work from Steps 4–5 closely depends on the number of
clusters U. By varying U, we can obtain a candidate set of
high-order FC networks, from which their corresponding
features can be extracted. Then, we can ensemble these
networks in a principled way to make full use of all avail-
able features. On one hand, more networks will produce
more features, which may bring benefits to MCI diagno-
sis. On the other hand, more networks also make the re-
lationship among the features more complex and difficult
to analyze. Also, due to the limited sample size in prac-
tice, this will probably cause the curse of dimensionality
and over-fitting. As a result, taking advantage of the in-
formation brought by all high-order FC networks and also
avoiding over-fitting become a crucial problem for the
multiple high-order FC networks ensemble.

To deal with the problems above, we propose hierar-
chical high-order FC networks, as well as an effective
feature fusion method, for MCI classification. First, the
agglomerative hierarchical clustering algorithm is used to
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produce multiple clustering results with different Us.
Then, each clustering result is utilized to generate a
high-order FC network in the corresponding layer.
Second, features are extracted from all high-order FC
networks, and the correlation analysis is performed to
reveal their inherent relationship, based on which fea-
tures in each layer can be decomposed into the redundant
part and the informative part, respectively. Third, a se-
quential forward selection procedure is employed to
combine the informative features from different high-
order FC networks, followed by a sparse regression to
select the individual features beneficial for classification.
The detailed procedure is explained as follows.

Hierarchical Clustering and Feature Decomposition

Suppose the FC time series in high-dimensional space
are progressively grouped into ui and ui + 1 clusters, re-
spectively, in the layer i and layer i + 1, where ui > ui + 1.
Due to the nature of agglomerative hierarchical cluster-
ing, some clusters in the layer i, which are highly sim-
ilar to each other, will be merged to form new clusters
in the layer i + 1, while the remaining clusters are
retained without change. An illustration of the agglom-
erative hierarchical clustering procedure is shown in the
panel of Step 4 and its upper panel in Fig. 1. Notice
that the FC time series in Fig. 1 are generated by the
sliding window approach in Step 1. Due to the hierar-
chical clustering in Fig. 1, we can observe that, from
the layer i to the layer i + 1, the clusters in the blue and
purple ellipses are merged to form new clusters as
shown in red ellipse, while all other clusters are
retained, thus reducing the total number of clusters in

the layer i + 1. Based on the clustering results in the
layer i and the layer i + 1, the high-order FC networks
HONi and HONi + 1 are constructed, respectively, where
one vertex corresponds to one cluster in the correspond-
ing layer, as shown by the high-order FC network in the
panel of Step 5 and its upper panel in Fig. 1.
Subsequently, the feature vectors Feai∈Rui and Feaiþ1∈
Ruiþ1 (i .e., weighted local clustering coefficients
(Rubinov and Sporns 2010; Watts and Strogatz 1998)
in this paper) can be extracted from the high-order FC
networks HONi and HONi + 1, respectively. For this type
of features, each entry in Feai and Feai + 1 corresponds
to a vertex in HONi and HONi + 1, respectively, thus also
corresponding to a cluster in the layer i and the layer
i + 1. Due to the high overlapping between the cluster-
ing results in the layer i + 1 and the layer i, Feai + 1 can
be decomposed as Feai + 1 = [Di + 1, Si + 1], where D and S
respectively indicate the corresponding clusters that are
newly formed from and already exist in the previous
layer. As a result, Si + 1 may be highly correlated with
some features in Feai. This implies that only Di + 1 in
the layer i + 1 may contain useful information, whereas
Si + 1 is redundant with respect to the previous layer.
This observation can be generalized to the case of mul-
tiple layers. Suppose hierarchical high-order FC net-
works are generated from the layer 1 to the layer L.
Following the above analysis, the feature vector Feai
extracted from the layer i can be decomposed into two
parts Feai = [Di, Si] by comparing it with the previous
layer. Note that, to decompose the features in the layer
1, an extra layer 0 is used. For the layer i (≥2), only Di

may contain useful information while Si is redundant
with respect to the previous layer. But for the layer 1,

Fig. 1 Framework of the
proposed hierarchical high-order
FC networks construction
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both S1 and D1 should be reserved to guarantee the
completeness of information contained in all networks.
Therefore, for each subject, the features extracted from
all hierarchical high-order FC networks can be con-
densed and expressed as Fea = [D0, D1, D2, ⋯ , DL]
where D0 = S1. In this paper, each Di is called a feature
block since it is associated with a specific layer.

Selective Feature Fusion

Note that although applying the above agglomerative hi-
erarchical clustering and correlation analysis can reduce
the dimensionality of features to a large extent, the re-
dundancy between different layers may still exist, espe-
cially when taking into account multiple layers. In addi-
tion, not all of the features in Fea are discriminative in
terms of MCI classification. To maximally benefit from
the information contained in Fea and also further reduce
redundancy simultaneously, we propose a feature fusion
method, which combines sequential forward selection
and sparse regression (Liu et al. 2009), under the frame-
work of wrapper-based feature selection (Kohavi and
John 1997). Here, sequential forward selection can find
feature block progressively, while sparse regression can
select individual features that are predictive for classifi-
cation. Specifically, given a current set A of feature
blocks, a new feature block Di from Fea − A can be
selected and combined with A. Then, sparse regression
(Zhang et al. 2016b; Zhang et al. 2017) is performed on
all training samples with this enlarged feature subset to

find a small subset C, which is beneficial for classifica-
tion. Next, the selected features of all training subjects
are used to train a linear SVM model, and the classifica-
tion accuracy on the validation subjects is used to guide
the selection of Di, which means that the one yielding
the optimal accuracy is finally selected. The procedure
above is repeated until a required number of feature
blocks is reached. This procedure is illustrated in the
following Table 1.

Evaluation Protocol

In this study, because of limited samples, the leave-one-
out cross validation (LOOCV) is adopted to evaluate the
performance of different methods. Specifically, given a
total of N subjects, N − 1 subjects are used for training
a SVM classifier and the rest one is used for testing. The
classification results on the testing subject are recorded.
The above procedure is repeated N times, each time leav-
ing out a different subject for testing. Finally, the average
of the N evaluation results is computed to compare the
generalization performance of different methods. For the
hyper-parameter in each method, we tune its value on the
training subjects by using the nested LOOCV. That is, for
each fold of the above LOOCV, we have N − 1 training
subjects. Then, for the N − 1 training subjects, one is left
out for testing and the remaining N − 2 subjects are for
training, using each specific hyper-parameter. This proce-
dure will repeat N − 1 times, each time leaving out a dif-
ferent subject from the N − 1 training subjects. Then, the

Table 1 Sequential forward selection and sparse regression

Initialize = Φ, and the number of feature blocks _

For t = 1: _

= 0

For each in −

=

Perform sparse regression on the training subjects with features in to select a subset ;

Train a linear SVM model on the training subjects with feature subset ;

Obtain accuracy acc of the SVM model on validation data;

If acc >

= ; =

End If

End For

=

End For
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average of N − 1 evaluation results is computed and the
hyper-parameter that gives rise to the best accuracy is
finally selected for this fold.

Experimental Analysis and Results

Feature Correlation Analysis and Feature Decomposition

In this study, all methods were implemented in MATLAB
2012b environment. To generate high-order FC networks,
we use a sliding window with s = 1 and N = 50. To gen-
erate multiple layers, we start from one layer with a rela-
tively large number of clusters (U = 220), for retaining
sufficient information. Then, the sequent layers are added
by gradually reducing U by 30 until the optimal perfor-
mance is achieved. In such a way, it eventually generates
4 high-order FC networks from the layer 1 to the layer 4:
HON1, HON2, HON3, and HON4, where the number of
clusters U equals 220, 190, 160, and 130, respectively.
The feature vectors (i.e., weighted local clustering coeffi-
cients) Fea1 ∈ R220 , Fea2 ∈ R190 , Fea3 ∈ R160, and Fea4 ∈
R130 are extracted from HON1, HON2, HON3, and HON4,
respectively. Since our method is a feature fusion method,
the correlation between features from different high-order
FC networks provides important prior information. To
verify the analysis in Hierarchical Clustering and Feature
Decomposition Section, we show the correlation between
Feai and Feai + 1 (i = 1 , 2 , 3) in Fig. 2. As shown by the
red lines in Fig. 2, most features in Feai + 1 are actually
highly correlated with features in Feai, implying that most
features in the current layer are redundant with respect to
those in the previous layer and thus should be eliminated
before feature fusion. Based on this correlation with the
previous layer, each feature vector Feai (i = 1 , 2 , 3 , 4)
can be decomposed into two feature blocks, as shown in
Fig. 3. As we can see, only about 30 features of each
layer are less correlated with the previous layer. To

guarantee the inclusion of sufficient information and also
reduce the redundancy, five feature blocks S1 ∈ R191 ,D1 ∈
R29 ,D2 ∈ R30 ,D3 ∈ R29, and D4 ∈ R30 are engaged in the
subsequent feature fusion, while others are eliminated. In
short, the total number of features decreases from 700 to
309 by this unsupervised correlation analysis.

Classification Accuracy

For sparse regression, the SLEP toolbox (Liu et al. 2009) is
utilized. The hyper-parameter involved in sparse regression is
determined by the nested LOOCV described in Evaluation
Protocol Section. To construct SVM classifier, the well-
known LIBSVM toolbox (Chang and Lin 2001) is applied
with default hyper-parameter. The proposed sequential for-
ward selection and sparse regression based hierarchical
high-order FC networks feature fusion (HHON-SFS) is com-
pared with some closely related methods, including 1) a sim-
ple feature fusion method (HHON-CON), which directly con-
catenates all features extracted from four high-order FC net-
works, 2) four individual high-order FC networks (HON1,

Fig. 3 Illustration of feature decomposition in each layer

Fig. 2 Correlation between features from neighboring high-order FC networks

Neuroinform (2017) 15:271–284 277



HON2, HON3, and HON4), 3) two low-order FC networks
based on partial correlation (LON-PAC) and Pearson’s corre-
lation (LON-PEC), and 4) sparse representation (SR) and
weighted SR (WSR) based FC networks (Yu et al. 2016),
respectively. To measure the performance of different
methods, we use the following 7 indices: accuracy (ACC),
area under ROC curve (AUC), sensitivity (SEN), specificity
(SPE), Youden’s Index (YI), F-score, and balanced accuracy
(BAC). These statistical measures are defined as (Sokolova
et al. 2006)

ACC ¼ TPþ TN

TPþ TNþ FPþ FN

SEN ¼ TP

TPþ FN

SPE ¼ TN

TNþ FP
YI ¼ SENþ SPE−1

F�score ¼ 2� precision� recall

precisionþ recall

BAC ¼ 1

2
� SENþ SPEð Þ

where precision ¼ TP
TPþFP, recall ¼ TP

TPþFN, and TP, TN, FP,

and FN denote the true positive, true negative, false positive
and false negative, respectively.

The experimental results are shown in Table 2. As we
can see, the high-order FC networks achieve better accu-
racy than the two low-order FC networks. This is consis-
tent with our previous research (Chen et al. 2016), indi-
cating that high-order FC networks provide more discrim-
inative biomarkers for MCI identification. Two sparse
representation based networks, i.e., SR and WSR, remark-
ably improve correlation based networks; however, they
are still inferior to the proposed hierarchical high-order
FC networks. Comparing the four individual high-order
FC networks, we can observe its sensitive performance
to the number of clusters U. For example, too large or
too small U will adversely affect the performance. This

can be understood as follows: large U will cause too many
redundant features, while small U will lead to significant
information loss. We observe that the high-order FC net-
work HON2 (U = 190) achieves better performance than
other individual high-order FC networks (HON1, HON3,
and HON4). Nevertheless, it does not mean the informa-
tion contained in other suboptimal networks is completely
useless, as they can also distinguish MCI and NC subjects
to a certain extent, although their overall accuracies are
lower than HON2. As an attempt to make use of all infor-
mation, HHON-CON directly concatenates Fea1 , Fea2 ,
Fea3, and Fea4 together to form a combined feature vec-
tor of length 700. Although this method involves all fea-
tures, the accuracy falls just between the best one and the
worst one, as indicated by Table 2. This may be due to too
many redundant features that make the relationship be-
tween features more complex, thus causing difficulty in
individual feature selection and also potential over-fitting.
In contrast, the proposed feature fusion method, HHON-
SFS, achieves the best performance among all competitive
methods. On one hand, we attribute this improvement to
the feature correlation analysis and also the resulting

Fig. 4 a Variation of accuracy versus the number of feature blocks; b Number of occurrences of each feature block; c Number of occurrences of each
individual feature

Table 2 Performance comparison of different methods in MCI
classification

Method ACC AUC SEN SPE YI F-score BAC

LON-PEC 57.58 0.6008 58.00 57.14 15.14 58.00 57.57

LON-PAC 60.61 0.6249 58.00 63.27 21.27 59.79 60.63

SR 64.65 0.6155 68.00 61.22 29.22 66.02 64.61

WSR 72.73 0.7318 72.00 73.47 45.47 72.73 72.73

HON1 80.81 0.8567 86.00 75.51 61.51 81.90 80.76

HON2 81.82 0.8743 82.00 81.63 63.63 82.00 81.82

HON3 68.69 0.8094 74.00 63.27 37.27 70.48 68.63

HON4 72.73 0.7857 74.00 71.43 45.43 73.27 72.71

HHON-CON 78.79 0.8702 80.00 77.55 57.55 79.21 78.78

HHON-SFS 84.85 0.9057 88.00 81.63 69.63 85.44 84.82
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feature decomposition, which eliminates many redundant
features. On the other hand, the combination of sequential
forward selection and sparse regression makes it possible
to evaluate the importance of feature blocks and individ-
ual features progressively. As a result, the crucial and
complementary features have more probability to be se-
lected and fused for classification.

Sequential Forward Selection and Individual Feature
Selection

For the sequential forward selection procedure, we vary
the number of feature blocks from one to five and show
the corresponding classification accuracies in Fig. 4(a).

We can see that two feature blocks yield preferable per-
formance. Moreover, it is necessary to choose some fea-
ture blocks according to the specific training subjects,
rather than simply using all feature blocks. The proposed
method can automatically determine which feature blocks
should be selected based on the training subjects. Due to
the use of LOOCV, different training subjects may cause
differences in selection results of feature blocks. If one
feature block is selected due to the nested LOOCV on
the training subjects, but no individual feature is selected
from this block based on the whole training subjects by
sparse regression, this feature block will be eventually
discarded. Therefore, we show the total number of oc-
currences of each feature block in Fig. 4(b). As we can
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Fig. 6 Averaged low-order FC networks built by LON-PAC for (a) MCI and (b) NC subjects
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Fig. 5 Averaged low-order FC networks built by LON-PEC for (a) MCI and (b) NC subjects
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see, S1 is selected in each fold of LOOCV, which means
it contains many features beneficial for disease classifi-
cation. In fact, we can observe from Fig. 3 that, without
S1, the rest feature blocks cannot form a complete high-
order FC network and much information will be lost. S1,
D2 and D4 are also selected many times, while D2 is
never chosen, which indicates that the information
contained in D2 cannot bring remarkable guidance for
classification. For the individual feature selection, the
experimental result is shown in Fig. 4(c). This is consis-
tent with Fig. 4(b), which further confirms that most
features are located in S1, but D2 and D4 also provide
some complementary features for improving classifica-
tion. As a whole, we can see from these results that,

despite the overall performances of individual high-
order FC networks are different, they do contain comple-
mentary information and thus integrating them can boost
the overall performance.

Hierarchical High-Order FC Networks

The averaged low-order FC networks built by LON-PEC
and LON-PAC on MCI and NC subjects are shown in
Figs. 5 and 6, respectively. Similarly, the illustrations of
averaged sparse representation and weighted sparse repre-
sentation based FC networks are shown in Figs. 7 and 8,
respectively. As we can see, the difference between MCI
and NC is imperceptible for low-order FC networks,

(a) (b)
Fig. 8 Averaged FC networks built by WSR for (a) MCI and (b) NC subjects

(a) (b)

Fig. 7 Averaged FC networks built by SR for (a) MCI and (b) NC subjects
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which implies the inferior classification performance. In
contrast, the high-order FC networks in the four layers, as
shown in Figs. 9, 10, 11, and 12, have more remarkable
differences. Specifically, the number of strong high-order
correlations in MCI subjects is generally more than that in
NC subjects, which, to a certain sense, reflects the disor-
der characteristic of neural degenerative disease. This dif-
ference also explains why the high-order FC networks can
better distinguish MCI and NC subjects than the tradition-
al low-order FC networks. This observation is also con-
sistent with our previous research. Moreover, due to the
agglomerative hierarchical clustering, the high-order FC
networks actually have much more overlap between two
consecutive layers.

Limitations

One important issue of the current study is related to the lim-
ited number of subjects used, which may lead to less statistical
power. In addition, the leave-one-out cross validation ap-
proach was used to evaluate the classification performance
of different approaches, which often leads to optimistic per-
formance. This issue can be better overcome by other ap-
proaches such as bootstrapping. In the future, our proposed
method will be further evaluated by the bootstrapping tech-
nique, along larger dataset. Besides, the number of clusters
could be also determined by the bootstrapping technique.

Another limitation is related to the use of Pearson’s
correlation which requires the samples to be independent
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to each other, although it has been used extensively in
RS-fMRI and brain network studies. In our case, the
dynamic FC time series generated by using the sliding
window might violate this requirement, since neighbor-
ing windows are highly overlapped. Thus, the estimated
correlation coefficient could be biased from the Btrue^
correlation and less robust. But, in this study, we just
simply calculate a Bsecond level^ of correlation based
on such dynamic FC time series because of its simplicity
and popularity in brain network construction (e.g., most
of the previous FC analysis studies computed temporal
correlation using the RS-fMRI signals of each pair of
brain regions, without considering the sample dependen-
cy problem). In the future work, how to robustly measure

high-order relationship between dynamic FC time series
using other statistical techniques will be investigated.

Conclusion

In this paper, we propose integrating the information
contained in multiple high-order FC networks for MCI clas-
sification. Hierarchical clustering technique is utilized to gen-
erate multiple high-order FC networks, each of which is locat-
ed in one layer. Due to such hierarchy structure, the features
extracted from the network in each layer can be simplified,
and only the informative feature block is taken into account.
By combining sequential forward selection and sparse
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regression, a novel feature fusionmethod is further developed.
This method is able to selectively fuse informative feature
blocks from different layers and further determine a small
number of distinctive features for early diagnosis. Finally,
support vector machine with simple linear kernel is used for
MCI classification. The experimental results demonstrate the
capability of the proposed approach in making full use of
information contained in multiple high-order FC networks. It
also shows that the appropriate combination of multiple high-
order FC networks can yield much better classification perfor-
mance than any single optimal high-order FC network.
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