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Abstract Automatic and reliable segmentation of hippocam-
pus fromMR brain images is of great importance in studies of
neurological diseases, such as epilepsy and Alzheimer’s dis-
ease. In this paper, we proposed a novel metric learning meth-
od to fuse segmentation labels in multi-atlas based image seg-
mentation. Different from current label fusion methods that
typically adopt a predefined distance metric model to compute
a similarity measure between image patches of atlas images
and the image to be segmented, we learn a distance metric
model from the atlases to keep image patches of the same
structure close to each other while those of different structures
are separated. The learned distance metric model is then used
to compute the similarity measure between image patches in

the label fusion. The proposed method has been validated for
segmenting hippocampus based on the EADC-ADNI dataset
with manually labelled hippocampus of 100 subjects. The
experiment results demonstrated that our method achieved
statistically significant improvement in segmentation accura-
cy, compared with state-of-the-art multi-atlas image segmen-
tation methods.

Keywords Multi-atlas image segmentation . Hippocampus
segmentation .Metric learning . Label fusion

Introduction

Hippocampus is an important subcortical structure whose
function is associated with learning and memory (den Heijer
et al. 2012). Volumetric analysis of the hippocampus based on
magnetic resonance imaging (MRI) has been widely adopted
in studies of neurological diseases, such as epilepsy (Akhondi-
Asl et al. 2011) and Alzheimer’s disease (Wolz et al. 2014).
However, manual segmentation of the hippocampus from
MRI brain images is time consuming (Carmichael et al.
2005) and suffers from high intra-operator and inter-operator
variability (Chupin et al. 2007). Therefore, automatic and re-
liable segmentation of the hippocampus from MR brain im-
ages has been a hot research topic in medical image analysis.

In the last decade, multi-atlas based image segmentation
(MAIS) methods have been developed and widely adopted
in studies of the hippocampus segmentation (Warfield et al.
2004, Heckemann et al. 2006, Artaechevarria et al. 2009, Dill
et al. 2015, Iglesias and Sabuncu 2015). A typical MAIS
method consists of three steps: atlas image selection, atlas
image registration, and segmentation label fusion. In the atlas
image selection step, a subset of atlas images is selected for a
given target image based on a pre-defined measurement of
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anatomical similarity, usually according to image intensities,
e.g., sum of squared differences, correlation, or mutual infor-
mation (Aljabar et al. 2009, Xie and Ruan 2014, Yan et al.
2015). In the atlas image registration step, the spatial corre-
spondence between each atlas image and the target image is
determined and the atlas images and their corresponding label
maps are aligned to the target image (Lötjönen et al. 2010,
Doshi et al. 2016). Finally, in the segmentation label fusion
step, the warped label maps are fused to get a consensus label
map for the target image (Warfield et al. 2004, Artaechevarria
et al. 2009, Coupé et al. 2011, Hao et al. 2014).

Although a variety of atlas image selection strategies and
different image registration techniques can be adopted in an
MAIS method, the existing MAIS methods are typically
characterized by their label fusion strategies. Among the
existing label fusion strategies, weighted voting label fusion
methods have attracted considerable attention. Assuming
that the image registration from atlas images to the target
image is reliable, traditional weighted voting label fusion
strategies combine the corresponding labels based on
predefined weighting models (Rohlfing et al. 2004,
Heckemann et al. 2006, Artaechevarria et al. 2009,
Sabuncu et al. 2010). The simplest method might be the
majority voting which assigns a constant weight value for
all atlases (Rohlfing et al. 2004, Heckemann et al. 2006).
Better segmentation performance can be obtained with more
sophisticated voting strategies, such as local weighted voting
with inverse similarity metric (Artaechevarria et al. 2009)
and local weighted voting with Gauss similarity metric
(Sabuncu et al. 2010). It has been shown that local weighted
voting strategies outperform global methods in segmenting
high-contrast structures, but global techniques are less sen-
sitive to noise when contrast between neighboring structures
is low (Artaechevarria et al. 2009). Some of the weighted
voting label fusion methods can be seen as special cases of a
probabilistic generative model (Sabuncu et al. 2010).

Due to inter-subject anatomical variability, the registered atlas
images are not always aligned with the target image perfectly.
The image registration errors may hamper the label fusion if it is
based on local image similarity measures with an assumption
that voxel to voxel correspondence exists between atlas images
and the target image. Such a problem can be effectively over-
come by nonlocal patch based weighted votingmethods (Coupé
et al. 2011, Rousseau et al. 2011). In the nonlocal patch based
weighted voting methods, all voxels in a searching region are
selected and patches centered at these voxels are extracted as
image patches in each warped atlas image. Voting weights are
then computed according to the intensity similarities between
the atlas image patches and the target image patch.

Many approaches have been proposed to obtain weighting
coefficients for improving segmentation accuracy and robust-
ness of the nonlocal patch based weighted voting methods, for
example reconstruction based methods (Liao et al. 2013, Wu

et al. 2014) and joint label fusion (JLF) method (Wang et al.
2013). Reconstruction based methods computed the recon-
struction coefficients of the target patch from a patch library
by sparse representation (Liao et al. 2013) or local indepen-
dent projection (Wu et al. 2014), and then used them to com-
bine atlas labels to label the target voxel. Since different
atlases may produce similar label errors (Wang et al. 2013),
the JLF method minimized the total expectation of labeling
error by explicitly modeling pair-wise dependency between
atlases as a joint probability of two atlases that make similar
segmentation errors.

The existing MAIS methods typically measure the simi-
larity of image patches based on Euclidean distance metric.
However, Euclidean distance metric is not necessarily opti-
mal for the label fusion since they do not characterize any
statistical distributions of image intensities in the patches.
The statistical distributions of image intensities could be
estimated from the atlas images and their associated segmen-
tation labels, but might vary at different image locations. It
has been reported that patches with similar intensity values
may have different segmentation labels, which will lead to
segmentation errors in MAIS methods (Bai et al. 2015). To
overcome this problem, we present a kernel classification
method for metric learning such that image patches of the
same structure keep close to each other and those of differ-
ent structures are separated. With the obtained metric, we
develop an optimal nonlocal weighted voting label fusion
method. We have validated the proposed method for
segmenting the hippocampus from MRI brain images, and
compared our method with state-of-the-art MAIS tech-
niques, including majority voting method (MV) (Rohlfing
et al. 2004, Heckemann et al. 2006), local weighted voting
with Inverse similarity metric (LW-INV) (Artaechevarria
et al. 2009), local weighted voting with Gauss similarity
metric (LW-GU) (Sabuncu et al. 2010), nonlocal patch based
weighted voting with Gauss similarity metric (NLW-GU)
(Coupé et al. 2011, Rousseau et al. 2011), local label learn-
ing (LLL) (Hao et al. 2014), and the JLF method (Wang
et al. 2013). The experimental results have demonstrated that
our method could achieve better segmentation performance
than the state-of-the-art MAIS methods.

Materials and Methods

Image Dataset

The proposed algorithm was validated for segmenting the hip-
pocampus based on the first release of EADC-ADNI dataset,
consisting MRI scans and their corresponding hippocampus
labels of 100 subjects (www.hippocampal-protocol.net).
These images were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI, RRID:SCR_003007)
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database (adni.loni.usc.edu/), and the subjects are from 3
diagnosis groups, including normal controls (NC), mild
cognitive impairment (MCI), and patients with Alzheimer’s
disease (AD).

The Principal Investigator of the ADNI is Michael W.
Weiner, MD, VA Medical Center and University of
California-San Francisco. ADNI is the result of efforts of
many co-investigators from a broad range of academic insti-
tutions and private corporations, and subjects have been re-
cruited from over 50 sites across the U.S. and Canada. The
initial goal of ADNI was to recruit 800 adults, ages 55 to 90, to
participate in the research, approximately 200 cognitively nor-
mal older individuals to be followed for 3 years, 400 people
with MCI to be followed for 3 years, and 200 people with
early AD to be followed for 2 years. For up-to-date informa-
tion, see www.adni-info.org.

Each of the MRI brain images was manually labeled ac-
cording to a harmonized protocol (Boccardi et al. 2015). All
images have been processed using a standard preprocessing
protocol, including alignment along the line passing through
the anterior and posterior commissures of the brain (AC-PC
line) and bias field correction. And they have been warped
into the MNI152 template space using linear image registra-
tion with affine transformation. We randomly select 40 sub-
jects as training set, and other 60 subjects as testing set.
Clinical scores and demographic information of these subjects
are summarized in Table 1.

Metric Learning for Multi-Atlas Based Image
Segmentation

Given a target image I, and N atlases ~Ai ¼ ~I i; ~Li
� �

; i ¼ 1;

2;…;N , where ~I i is the i-th image and ~Li is its segmentation
label with value 1 indicating foreground and 0 indicating
background, the multi-atlas segmentation method registers

each atlas image ~I i to the target image and propagates the

corresponding segmentation ~Li to the target space, resulting
N warped atlases Ai = (Ii, Li) , i = 1 , 2 , … ,N. Then, it infers
the label of each voxel of the target image from the warped
atlases. Figure 1 shows a flowchart for segmenting an image
with a typical multi-atlas image segmentation method.

Identification of a Bounding Box of Hippocampus

Since all images were aligned to the MNI152 template
using linear image registration with affine transformation
and resampled to have voxel size of 1x1x1mm3, a
bounding box can be identified for both the left and right
hippocampus to cover the hippocampus of unseen target
image. In particular, we scan all the atlases to find the
minimum and maximum x, y, z positions of the hippo-
campus and add 7 voxels in each direction to cover the
hippocampus of unseen testing images.

Atlas Selection and Image Registration

For each target image, we select the top 20most similar atlases
based on normalized mutual information (NMI) between the
target image and the atlas images within the bounding box
(Hao et al. 2014). After the atlas selection, we register each
atlas image to the target image using a nonlinear, cross-
correlation-driven image registration algorithm, namely
ANTs (Avants et al. 2008), with the following command:
ANTS 3 -m CC [target.nii, source.nii, 1, 2] –i 100x100x10
–o output.nii -t SyN[0.25] –r Gauss[3,0]. The nonlinear reg-
istration was applied to the image blocks within the
bounding box.

Initial Segmentation with Majority Voting

To reduce the computational cost, we adopt the majority vot-
ing based label fusion to obtain an initial segmentation result
of the target image. For each voxel, the output of the majority
voting label fusion is a probability value of the voxel belong-
ing to the hippocampus. The segmentation result of voxels
with 100 % certainty (probability value of 1 or 0) can be
directly taken as the final segmentation result (Hao et al.
2014). Then, our method is applied to voxels with probability
values greater than 0 and smaller than 1.

Training Patch Library Construction

To label a voxel of the target image, a set of voxel-wise train-
ing samples is identified from the warped atlases. Since the
registered atlas images are not always aligned with the target
image perfectly, we adopt the nonlocal patch based label fu-
sion framework to construct a training library of image
patches (Coupé et al. 2011, Rousseau et al. 2011). For labeling
a target voxel, voxels in a cube-shaped searching neighbor-
hood V with size (2rs + 1) × (2rs + 1) × (2rs + 1) of each atlas
image are selected, and patches centered at these voxels are
extracted and vectorized to form a patch library P = [p1, p2,
… , pn], where n = N ∙ (2rs + 1)3 is the number of selected
patches. And the segmentation label of each image patch’s
center voxel is used as the image patch’s label, li , i = 1 , 2 ,

Table 1 Demographic data and clinical scores of the subjects

NC MCI AD

Subject Size 29 34 37

Age (years): mean ± std 75.789 ± 6.73 74.23 ± 7.67 73.93 ± 8.18

Males/Females 16/13 20/14 20/17

MMSE: mean ± std 28.92 ± 1.02 26.59 ± 2.72 21.81 ± 4.09
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… , n. Thus, we construct a training datasetΔ = {(pi, li)| i = 1,
2, … , n}, where pi is the i-th image patch in the patch library
P and li is the label of its center voxel.

Metric Learning

Learning a distance metric from training samples is an impor-
tant machine learning topic. Many methods have been pro-
posed to learn distance/similarity metrics (Xing et al. 2002).
Among them, learning a Mahalanobis distance metric for k-
nearest neighbor classification has been successfully applied
to many computer vision problems (Guillaumin et al. 2009).
In this study, we adopt a supervised metric learning method to
learn a Mahalanobis distance metric from the training dataset
of image patches (Wang et al. 2015).

Given any two samples (pi, li) and (pj, lj) from the training
dataset Δ, we obtain a doublet (pi, pj) with a label h, where
h = − 1 if li = lj, and h = 1 otherwise. For each training sample
pi, we find its m1 nearest similar neighbors, denoted by

psi;1;…; psi;m1

n o
, and its m2 nearest dissimilar neighbors, de-

noted by pdi;1;…; pdi;m2

n o
, and construct (m1 +m2) doublets:

pi; p
s
i;1

� �
;…; pi; p

s
i;m1

� �
; pi; p

d
i;1

� �
;…; pi; p

d
i;m2

� �n o
ð1Þ

By collecting all possible doublets, we build a doublet set,
denoted by z1;…; zNdf g, where zj = (pj , 1, pj , 2) , j = 1 , 2 ,
… ,Nd, and the label of zj is denoted by hj. Given the doublet
set z1;…; zNdf g, we use a kernel method to learn a classifier

g zð Þ ¼ sgn
X

j

h jα jK z j; z
� �þ b

 !
ð2Þ

where zj is the j-th doublet, hj is its label, z ¼ pk1 ; pk2
� �

is a testing doublet, K(∙, ∙) is a degree-2 polynomial ker-
nel, defined as.

K zi; z j
� � ¼ pi;1−pi;2

� �T p j;1−p j;2

� �h i2
ð3Þ

Then, we have

∑ jh jα jK z j; z
� �þ b ¼ pk1−pk2

� �TM pk1−pk2
� �þ b; ð4Þ

where M =∑jhjαj(pj , 1 − pj , 2)(pj , 1 − pj , 2)
T is the matrix to be

learned in the Mahalanobis distance metric. OnceM is obtain-
ed, the kernel decision function g(z) can be used to determine
whether pk1 and pk2 are similar or dissimilar to each other.

To learn M in the Mahalanobis metric, we adopt a support
vector machine (SVM) model:

minM ;b;ξ
1

2
Mk k2F þ C

X
j

ξ j; s:t:h j p j;1−p j;2

� �T
M pj;1−pj;2

� �
þ b

� �

≥1−ξ j; ξ j≥0;∀ j;

ð5Þ

where ‖∙‖F is the Frobenius norm. The Lagrange dual problem
of the above doublet-SVM model is

maxα−
1

2

X
i; j

αiα jhih jK zi; z j
� �þX

i

αi; s:t:; 0≤αl ≤C;∀l;
X
l

αlhl ¼ 0

ð6Þ

The optimization problem can be solved using SVM
solvers. In the current study, we implemented the metric learn-
ing method based on LibSVM and metric learning codes
(Chang and Lin 2011, Wang et al. 2015).

To ensure M to be positive semi-definite, we compute a
singular value decomposition of M =UΛV, and preserve only
the positive singular values in Λ to form another diagonal
matrix Λ+. Then, we let M+ =UΛ+V.

Label Fusion with the Learned Metric

With the learned Mahalanobis distance metricM, we obtain a
new metric space by introducing a norm ‖∙‖M:
xk kM ¼

ffiffiffiffiffiffiffiffiffiffiffi
xTMx

p
. And the distance between two samples is

defined by d(x, y) = ‖x − y‖M.

Atlases

Target image

Register to a
template space

Cut the ROI,
select atlases

Estimated
Segmentation

Label
fusion

Warp atlases to
the target image

Fig. 1 The flowchart for segmenting a target image with the multi-atlas based image method
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Given a target image patch px and training image patches
pi , i = 1 , 2 , … , n, we compute their distances by

di ¼ d px; pið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
px−pið ÞTM px−pið Þ

q
; i ¼ 1; 2;…; n ð7Þ

According to these distances, we select k nearest training

samples ps j ; ls j
� �

j j ¼ 1; 2;…; k
n o

to form a nearest neigh-

borhood set N k pxð Þ, and assign their similarity weights to be
one, others to be zero:

w px; pið Þ ¼ 1; pi∈N k pxð Þ
0; pi∉N k pxð Þ

	

Then, we use L xð Þ ¼
∑
n

i¼1
w px;pið Þli

∑
n

i¼1
w px;pið Þ

to compute the target

voxel’s label. Finally, the estimated label of L xð Þ is
thresholded to obtain a binary segmentation label L xð Þ ¼
1; L xð Þ > 0:5f 0; L xð Þ < 0:5:
In the weighted voting label fusion, two strategies are

available to achieve label fusion: single-point estimation
strategy and multi-point strategy. In the single-point estima-
tion strategy the label estimated from each image patch is
applied to its center voxel. In the multi-point estimation
strategy, the label estimated from each patch is applied to
all voxels covered by the image patch itself (Rousseau
et al. 2011, Wang et al. 2013, Sanroma et al. 2015).
Since each voxel has multiple estimated labels from image
patches that cover the voxel itself, majority voting of the
multiple estimated labels can be adopted to compute a final
segment label.

Experiments

We optimized the parameters of our method based on the
training dataset, and then evaluated the segmentation perfor-
mance based on the testing dataset. We adopted 9 segmenta-
tion evaluation measures to evaluate the image segmentation
results (Jafari-Khouzani et al. 2011). By denoting A as the
manual segmentation, B as the automated segmentation, and
V(X) as the volume of segmentation result X, these evaluation
measures are defined as:

Dice ¼ 2
V A

\
B

� �
V Að Þ þ V Bð Þ ; Jaccard ¼

V A
\

B
� �
V A∪Bð Þ

Precision ¼
V A

\
B

� �
V Bð Þ ;Recall ¼

V A
\

B
� �
V Að Þ

MD ¼ meane∈∂A minf∈∂Bd e; fð Þð Þ

HD ¼ max H A;Bð Þ;H B;Að Þð Þ; where H A;Bð Þ
¼ maxe∈∂A minf∈∂Bd e; fð Þð Þ

HD95:similar to HD,except that 5% data points with the
largest distance are removed before calculation,

ASSD ¼ meane∈∂A minf∈∂Bd e; fð Þð Þ þmeane∈∂B minf∈∂Ad e; fð Þð Þð Þ=2

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

A þ D2
B

q
card ∂Af g þ card ∂Bf g; where D

2
A

¼
X
e∈∂A

minf∈∂Bd e; fð Þð Þ

In the above definition, ∂A denotes the boundary voxels of
A, d(∙, ∙) is the Euclidian distance of two points, card{∙} is the
cardinality of a set.

Optimization of Parameters

The proposed method has following parameters: patch radius
rp, searching radius rs, regularization parameter C in SVM,
numbers of the nearest similar and dissimilar neighbors m1,
m2 for constructing doublets, and number of the nearest neigh-
bors k for selecting the most similar samples for label fusion.
According to (Wang et al. 2015), we setC = 1,m1 =m2 = 1.We
also fixed the searching radius rs = 1 (within a searching neigh-
borhood of 3 × 3 × 3), since a nonlinear image registration al-
gorithm was used to warp atlas images to the target image.

The other two parameters rp and k were determined empir-
ically in {1, 2, 3} and {3, 9, 27}, respectively, based on the
training set with 40 leave-one-out cross-validation experi-
ments. Figure 2 shows average segmentation accuracy mea-
sured by the Dice index across 40 leave-one-out cross-

r
p

k

1 2 3

27

9

3

0.8794 0.87450.8819

0.8835 0.8801 0.8748

0.8821 0.8772 0.8721

Fig. 2 Average segmentation accuracy measured by Dice index for
segmentation results obtained in 40 leave-one-out cross-validation
experiments with different combinations of parameters rp and k
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validation experiments with different combinations of param-
eters, indicating that the optimal segmentation performance
could be obtained with rp = 1 and k = 9.

Comparison with Existing MAIS Methods

The proposed method, referred to as nonlocal patch based
weighted voting with metric learning (NLW-ML) hereafter,
was compared with 6 state-of-the-art MAIS methods, includ-
ing MV (Rohlfing et al. 2004, Heckemann et al. 2006), LW-
INV (Artaechevarria et al. 2009), LW-GU (Sabuncu et al.
2010), NLW-GU (Coupé et al. 2011, Rousseau et al. 2011),
LLL (Hao et al. 2014), and JLF (Wang et al. 2013).

The parameters of all these methods were optimized based
on the same training dataset with the same parameter selection
strategy. For LW-GU, patch radius rp and σx in the Gauss
similarity metric need to be determined.With cross-validation,
the optimal value of rp was 2 selected from {1, 2, 3}, and σx
was adaptively set as σx ¼ minxi P xð Þ−P xið Þk kf 2 þ εg
; i ¼ 1::N , where ε is a small constant to ensure numerical
stability with a value 1e-20. LW-INV has 2 parameters, name-
ly patch radius rp and γ in the inverse function model. The
optimal values were rp = 2 and γ = − 3, obtained from the
range of {1, 2, 3} and {−0.5, −1, −2, −3} respectively. NLW-
GU has 3 parameters, namely searching radius rs, patch radius
rp, and σx in the Gauss similarity metric model. Similar to the
NLW-ML, the searching radius rswas set to be 1. Based on the
same cross-validation strategy, the optimal value of rp was 1

selected from {1, 2, 3}, and σx was adaptively set as σx ¼
minxs; j P xð Þ−P xs; j

� �

 

�
2 þ εg ; s ¼ 1::N ; j∈V , where ε is a

small constant to ensure numerical stability with a value 1e-20.
The only difference between NLW-GU and LW-GU

was the image patches that they used. Particularly,
NLW-GU used nonlocal image patches, i.e., the searching
radius rs > 0 was used to extract image patches. In con-
trast, LW-GU used local image patches, i.e., the searching
radius rs = 0. Since both of the NLW-GU method and the
proposed NLW-ML method use non-local image patches,
the only difference between them is the distance metric
for measuring similarity between image patches. In the
experiment, we found that the multi-point estimate strate-
gy was better than the single-point strategy in all of these
label fusion methods. Thus, we only report the results
obtained with the multi-point strategy.

Similar to NLW-ML and NLW-GU, the searching radi-
us rs for LLL and JFL was set to be 1. Other parameters
of these two methods were optimized based on the same
training set with the same parameter optimization strategy
as adopted by the proposed method. For the LLL method,
the optimal patch radius rp and the optimal number of
training samples K were rp = 3 and K = 300, selected from
{1, 2, 3} and {300, 400, 500}, respectively. Sparse linear
SVM classifiers with default parameter (C = 1) were built
to fuse labels in the LLL method. The single-point label
fusion strategy was used in the LLL method. For the JLF
method, the optimal patch radius rp and the optimal

Table 2 Segmentation results of different label fusion methods (mean ± std)

MV LW-INV LW-GU NLW-GU LLL JLF NLW-ML

Dice L 0.856 ± 0.031 0.868 ± 0.026 0.868 ± 0.025 0.877 ± 0.028 0.878 ± 0.025 0.880 ± 0.024 0.881 ± 0.026

R 0.860 ± 0.033 0.872 ± 0.025 0.872 ± 0.025 0.881 ± 0.026 0.882 ± 0.024 0.884 ± 0.023 0.885 ± 0.024

Jaccard L 0.750 ± 0.047 0.767 ± 0.039 0.768 ± 0.038 0.782 ± 0.043 0.784 ± 0.039 0.786 ± 0.037 0.788 ± 0.040

R 0.755 ± 0.048 0.775 ± 0.038 0.774 ± 0.037 0.788 ± 0.040 0.790 ± 0.038 0.794 ± 0.036 0.795 ± 0.037

Precision L 0.861 ± 0.048 0.873 ± 0.035 0.873 ± 0.033 0.878 ± 0.036 0.879 ± 0.035 0.879 ± 0.032 0.880 ± 0.035

R 0.864 ± 0.052 0.876 ± 0.038 0.875 ± 0.037 0.885 ± 0.039 0.883 ± 0.038 0.882 ± 0.036 0.884 ± 0.037

Recall L 0.854 ± 0.049 0.865 ± 0.040 0.865 ± 0.039 0.878 ± 0.045 0.880 ± 0.040 0.882 ± 0.036 0.884 ± 0.039

R 0.859 ± 0.044 0.871 ± 0.032 0.871 ± 0.031 0.879 ± 0.038 0.883 ± 0.034 0.889 ± 0.029 0.889 ± 0.032

HD L 3.157 ± 0.853 3.086 ± 0.862 3.038 ± 0.855 3.205 ± 0.909 3.057 ± 0.906 3.076 ± 0.784 3.069 ± 0.831

R 3.255 ± 0.894 3.019 ± 0.877 3.038 ± 0.867 3.215 ± 0.902 3.005 ± 0.703 3.227 ± 1.100 3.238 ± 1.095

HD95 L 1.345 ± 0.478 1.178 ± 0.465 1.145 ± 0.419 1.222 ± 0.476 1.145 ± 0.375 1.093 ± 0.352 1.114 ± 0.381

R 1.332 ± 0.441 1.163 ± 0.340 1.141 ± 0.287 1.246 ± 0.386 1.163 ± 0.256 1.101 ± 0.237 1.177 ± 0.289

MD L 0.284 ± 0.054 0.261 ± 0.037 0.263 ± 0.037 0.239 ± 0.046 0.241 ± 0.042 0.252 ± 0.048 0.238 ± 0.045

R 0.278 ± 0.063 0.253 ± 0.047 0.257 ± 0.048 0.227 ± 0.050 0.230 ± 0.047 0.237 ± 0.051 0.226 ± 0.048

ASSD L 0.334 ± 0.077 0.294 ± 0.060 0.290 ± 0.056 0.287 ± 0.069 0.278 ± 0.055 0.265 ± 0.052 0.270 ± 0.059

R 0.328 ± 0.071 0.285 ± 0.048 0.284 ± 0.047 0.279 ± 0.056 0.273 ± 0.044 0.260 ± 0.043 0.265 ± 0.048

RMSD L 0.632 ± 0.123 0.582 ± 0.106 0.577 ± 0.099 0.581 ± 0.119 0.563 ± 0.094 0.551 ± 0.090 0.556 ± 0.103

R 0.628 ± 0.110 0.572 ± 0.078 0.570 ± 0.074 0.576 ± 0.095 0.557 ± 0.064 0.550 ± 0.074 0.556 ± 0.080

The best mean index values are shown in bold
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parameter β in the pairwise joint label difference term
were rp = 1 and β = 1, selected from {1, 2, 3} and {0.5,
1, 1.5, 2}, respectively.

Table 2 summarizes segmentation results of the testing im-
ages obtained by the segmentation methods under comparison,
including MV, LW-INV, LW-GU, NLW-GU, LLL, JLF, and
NLW-ML. For each segmentation evaluation measure, the best
value is shown in bold. These results indicated that the pro-
posed method achieved the best overall performance.
Specifically, Wilcoxon signed rank tests indicated that the pro-
posed method performed significantly better than MV, LW-
INV, LW-GU, NLW-GU, LLL (p < 0.001) and JLF
(p < 0.05) in terms of Dice and Jaccard index values of their
segmentation results. The results also demonstrated that NLW-
GU performed better than LW-GU, indicating that the non-
local patch based methods had better performance than tradi-
tional methods that adopted only corresponding image patches
for label fusion (Coupé et al. 2011, Rousseau et al. 2011).

Figure 3 shows box plots of Dice and Jaccard index values
of segmentation results obtained by different methods,

indicating that our proposed method performed consistently
better than other label fusion methods. The superior perfor-
mance of our method was also confirmed by the visualization
results, as shown in Fig. 4.

Discussion

The proposed method is a voting based label fusion method
(Liao et al. 2013, Wu et al. 2014, Tong et al. 2015, Wu et al.
2015) with an integrated learning component (Hao et al.
2012b, Hao et al. 2014, Wang et al. 2014, Bai et al. 2015,
Zhu et al. 2015). The voting based label fusion methods com-
pute the voting weights by comparing the target image patch
with each atlas image patches, and use them to combine atlas
labels. In contrast, machine learning based methods utilize
machine learning techniques to build a mapping between the
segmentation label and the image appearance. The voting
based methods typically assume that image patches with sim-
ilar intensity information have the same segmentation label.

Fig. 3 Comparison of different methods for segmenting left hippocampus (denoted by red boxes) and right hippocampus (denoted by green boxes) with
respect to Dice index and Jaccard index. In each box, the central mark is the median and edges are the 25th and 75th percentiles

Fig. 4 Hippocampal segmentation results obtained by different methods.
One subject was randomly chosen from the dataset. The first row shows
the segmentation results produced by different methods, the second row
shows their corresponding surface rendering results, and the difference

between results of manual and automatic segmentation methods was
showed in the third row (red: manual segmentation results, green:
automated segmentation results, blue: overlap between manual and
automated segmentation results)
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Although this assumption is valid in most cases, a recent study
has shown that similar image patches could bear different
labels (Bai et al. 2015). The machine learning based methods
overcome this limitation by learning a mapping function be-
tween the image patch and the label. The proposed method
combines advantages of the existingmethods by first adopting
a classification method to learn the relationship between im-
age patches and segmentation labels and then fusing the labels
based on weights obtained with the learned distance metric.

The metric learning is essentially a preprocessing step in
pattern recognition, aiming to learn from a given training
dataset a distance metric, with which data samples can be
more effectively classified (Weinberger and Saul 2009). In this
study, we empirically demonstrated that the metric learning in
conjunction with a k-NN classifier could lead to better perfor-
mance for segmenting the hippocampus fromMRI scans than
state-of-the-art MAIS methods, including the LLL and JFL
methods. We postulate that its promising performance might
due to that the k-NN classifier could potentially capture non-
linear relationship that better model the image patches of
background and hippocampus than linear models built by
the other methods, such as the sparse linear SVM adopted in
the LLL method. In fact, many metric learning methods have
been demonstrated to achieve state-of-the-art performance on
pattern recognition problems (Weinberger and Saul 2009).

In our method, we used nonlinear image registration to
register image blocks of the hippocampus. Our results dem-
onstrated that a small patch size was good enough to capture
inter-subject anatomical differences. Since the metric learning
could adaptively learn a distance metric for image patches
from training data, our method is not sensitive to the patch
size as the traditional patch based methods.

The computational burden for image registration is a major
issue in the multi-atlas segmentation methods. To avoid the
high computational cost of non-rigid image registration, non-
local patch-based image labeling strategies were proposed so
that linear image registration could be used to align the image
to be segmented and the atlas images (Coupé et al. 2011).
However, a non-local image patch searching procedure has
to be adopted to identify similar image patches in the label
fusion step, which often leads to higher computational cost
than using non-rigid image registration in the atlas image reg-
istration (Rousseau et al. 2011). More recently, an optimized
patch match strategy was proposed to improve the segmenta-
tion (Giraud et al. 2016). In the current study, we adopted an
atlas selection strategy to reduce the computational cost asso-
ciated with the nonlinear image registration (Aljabar et al.
2009, Hao et al. 2014). Particularly, the most informative
atlases were first selected before the nonlinear image registra-
tion. Following (Hao et al. 2014), we selected 20 atlas images
for segmenting each target image. The computational com-
plexity of our label fusion method is similar to classification
based methods (Hao et al. 2014, Bai et al. 2015). For a

MATLAB based implementation of our algorithm, it took
~20 min to fuse labels for segmenting one side of the hippo-
campus on a personal computer with 4 cores of 3.4GHZCPU.

It is straightforward to extend the metric learning method
for multi-class classification problems in that the metric learn-
ing maximizes margin between differences of intra-class and
inter-class samples. However, for most brain region segmen-
tation problems with multiple regions to be segmented we
could formulate the multi-class classification problem as mul-
tiple one-against-the-rest binary classification problems. Such
a setting might be better to handle unbalanced training sam-
ples since we build local classifiers for different voxels of the
brain instead of a global one for the whole brain voxels.

Our future work will integrate the supervised metric learn-
ing method and more sophisticated weighted voting label fu-
sion methods, such as joint label fusion (Wang et al. 2013), in
which label error is measured by the distance of patches with a
predefined distance metric. Furthermore, our method can also
be adopted in the shape constrained segmentation framework
(Hao et al. 2012a). We will also combine our method with
functional MRI image based hippocampus parcellation
(Cheng and Fan 2014).

Conclusion

In the paper, we propose a novel nonlocal patch based weight-
ed voting label fusion method with a learned distance metric
for measuring similarity between image patches. The valida-
tion experimental results have demonstrated that the proposed
method could achieve better segmentation performance than
start-of-the-art MAIS methods, indicating that the learned dis-
tance metric for measuring similarity of image patches could
improve the segmentation performance.
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