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Abstract We present a comparative split-half resampling
analysis of various data driven feature selection and classi-
fication methods for the whole brain voxel-based classifica-
tion analysis of anatomical magnetic resonance images. We
compared support vector machines (SVMs), with or with-
out filter based feature selection, several embedded feature
selection methods and stability selection. While compar-
isons of the accuracy of various classification methods
have been reported previously, the variability of the out-
of-training sample classification accuracy and the set of
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selected features due to independent training and test sets
have not been previously addressed in a brain imaging con-
text. We studied two classification problems: 1) Alzheimer’s
disease (AD) vs. normal control (NC) and 2) mild cog-
nitive impairment (MCI) vs. NC classification. In AD vs.
NC classification, the variability in the test accuracy due to
the subject sample did not vary between different methods
and exceeded the variability due to different classifiers. In
MCI vs. NC classification, particularly with a large train-
ing set, embedded feature selection methods outperformed
SVM-based ones with the difference in the test accuracy
exceeding the test accuracy variability due to the subject
sample. The filter and embedded methods produced diver-
gent feature patterns for MCI vs. NC classification that
suggests the utility of the embedded feature selection for
this problem when linked with the good generalization per-
formance. The stability of the feature sets was strongly
correlated with the number of features selected, weakly
correlated with the stability of classification accuracy, and
uncorrelated with the average classification accuracy.

Keywords Magnetic Resonance Imaging · Machine
Learning · Feature selection · Alzheimer’s Disease ·
Classification · Multivariate pattern analysis

Introduction

Given a training set of brain images and the associated
output variables (for example, the diagnosis of the sub-
ject), machine learning algorithms try to solve the model
that generated the output variables based on the input data
(brain images). The idea is that the inferred model predicts
accurately and automatically the outputs corresponding to
inputs not belonging to the training set. This not only has
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direct applications to the design of imaging biomarkers
for various brain disorders, but the inferred models can be
also analysed as multivariate, discriminative representations
of the brain feature of interest. It has been demonstrated
that these multivariate representations can provide comple-
mentary information to the ordinary massively univariate
analysis, both in anatomical and functional imaging (Jimura
and Poldrack 2012; Davis et al. 2014; Khundrakpam et al.
2015; Mohr et al. 2015). However, these two analysis tech-
niques and their interpretation differ (Haufe et al. 2014) and
they possess distinct advantages and disadvantages (Davis
et al. 2014; Kerr et al. 2014).

A fundamental problem in using voxel-based supervised
classification algorithms for brain imaging applications is
that the dimensionality of data (the number of voxels in the
images of a single subject) far exceeds the number of train-
ing samples available (subjects whose response variable is
known). Rigorous solutions to this problem, termed fea-
ture or variable selection, include regularization and subset
selection (Hastie et al. 2009). The reasons for using fea-
ture selection (FS) are two-fold: 1) using only a selected
subset of features tends to improve the classification perfor-
mance by eliminating the non-informative features, and 2),
recognizing only the significant features contributing to the
classification can be analysed as a multivariate representa-
tion of the brain disorder of interest (Kerr et al. 2014). While
comparisons of the accuracy of various classification meth-
ods have been reported previously (Cuingnet et al. 2011;
Chu et al. 2012; Bron et al. 2015; Sabuncu et al. 2015), the
stability of the out-of-training sample classification accu-
racy and the set of selected features due to independent
training and test sets have not been previously addressed in
an anatomical brain imaging context. This paper addresses
two questions: 1) How do the variability among the subject
pool alter the classification accuracy and the selected feature
set and 2) do different feature selection and classification
techniques differ in their generalization performance?

Data driven FS selection methods are often divided into
filter, wrapper and embedded methods (Huttunen et al.
2012; Mwangi et al. 2014). Especially, embedded FS meth-
ods have been increasingly applied and developed for
brain imaging applications (Grosenick et al. 2008; Ryali
et al. 2010; Huttunen et al. 2013a; Casanova et al. 2011b;
Khundrakpam et al. 2015). Embedded FS algorithms solve
the learning and variable selection problems jointly by opti-
mizing a suitably regularized objective function consisting
of a data term and a regularization term whose trade-off
is controlled by regularization parameters. Importantly, a
regularization term can be designed so that the feature selec-
tor possesses the grouping effect (Carroll et al. 2009; Zou
and Hastie 2005), forcing simultaneous selection of fea-
tures that contain correlated information, and takes into

account the spatial structure in data inherent to brain imag-
ing (Grosenick et al. 2013; Van Gerven et al. 2010; Michel
et al. 2011; Baldassarre et al. 2012; Cuingnet et al. 2013).
These brain imaging specific regularizers utilizing the
spatial structure in the data often outperform standard regu-
larizers, not taking the spatial structure in data into account,
in terms of interpretability of the classifiers (Fiot et al. 2014;
Mohr et al. 2015).

The typical logic of the embedded FS is to train a classifi-
cation model for various values of regularization parameters
and then select the best of these classification models, usu-
ally using the out-of-the-training-set predictive performance
as the selection criterion. Thus, embedded FS can be seen
as a two-stage problem, where, in the first stage, one trains
a series of classifiers and, in the second stage, selects the
best of these classifiers. The research effort in brain imaging
community has been strongly focused on the first of these
stages and very little effort has been placed on studying the
second stage. A particular problem in the second stage is
that many feature selection techniques in brain imaging rely
on the cross-validation (CV) based estimation of the gener-
alization error to select the regularization parameters. This
is problematic because CV-based error estimates with small
sample sizes have an extremely large variance. This fact
was first demonstrated already by Glick (1978) but it still
remains as little known caveat in small sample classifica-
tion analysis (Dougherty et al. 2010). Stability selection is
a relatively new feature selection approach that utilizes the
above mentioned variability (Meinshausen and Bühlmann
2010). The key idea is that, using random subsamping of
the data, one selects those features that are most frequently
selected on the subsamples of data. Although this idea has
been applied in neuroimaging applications (Ye et al. 2012;
Rondina et al. 2014), its suitability for neuroimaging has
received little direct attention.

A closely related question concerns the replicability of
the selected voxel sets. More specifically, the question is
how much do the error rates and selected features depend
on the subject-set studied and to what extent the classifiers
represent generalizable discrimination pattern across the
classes. In a very interesting study, Rasmussen et al. (2012)
demonstrated that within the context of fMRI choosing
the regularization parameters relying only on the predictive
accuracy has a negative impact on the replicability of the
discrimination patterns between the two tasks.

In this paper, we study different linear whole-brain voxel-
based classifiers (listed in Table 1) for the Alzheimer’s
disease (AD) and mild cognitive impairment (MCI) classi-
fication based on structural MRI. The studied classification
methods include embedded FS methods based on penalized
logistic regression, support vector machines with or without
filter based FS, and stability selection followed by the SVM
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Table 1 Learning algorithms studied in this work. CV and BEE after the abbreviation refer to the criterion used to select λ and possibly α2

Abbreviation Algorithm

EN-VA Logistic regression with elastic-net penalty;variable α2, α1 = 1 − α2, α3 = 0

EN-05 Logistic regression with elastic-net penalty with α1 = α2 = 0.5 fixed, α3 = 0

LASSO Logistic regression with LASSO penalty α1 = 1, α2 = α3 = 0

LASSOSTAB LASSO with stability selection (see Section “Stability Selection”).

EN-05STAB Elastic net with stability selection (see Section “Stability Selection”).

GN GraphNet with α1 = 1, α2 = 1;α3 = 1 for 4 mm data, α3 = 10 for 8 mm data

SVM-Fx SVM with t-test filter selecting x (125 or 1000) best ranked voxels

SVM-FFDR SVM with t-test filter selecting voxels surviving a given FDR threshold

SVM-ALL SVM with all voxels

The regularization parameter (λα2 in our notation) for all SVM algorithms was selected by cross-validation on the training set. The stability
selection algorithms were followed by SVM classification

classification. We also contrast non-parametric CV based
model selection to a recent parametric classification error
estimation based model selection (Huttunen et al. 2013b;
Huttunen and Tohka 2015). We proceed with an experi-
mental setup based on split-half resampling similar to the
one used in the NPAIRS framework (Strother et al. 2002).
The subjects are randomly divided in two non-overlapping
sets, test and train, and random divisions are repeated 1000
times. We study both the replicability of the selected vari-
ables (voxels) and the error rates of the classifiers. We vary
the number of subjects used for training the classifiers and
the number of variables.

We chose MRI-based AD/MCI classification applica-
tions for several reasons. 1) They are well studied prob-
lems that can be solved accurately using linear classifiers
(Cuingnet et al. 2011; Bron et al. 2015; Chu et al. 2012). 2)
A large enough (at least 200 subjects per class) high qual-
ity dataset is available (ADNI) (Weiner et al. 2012) that is
a necessity for performing the analysis. We note that this
requirement cannot be fulfilled for stable vs. progressive
MCI classification with ADNI1 data (Moradi et al. 2015).
3) The uses of supervised machine learning are more var-
ied in functional imaging because of the additional time
dimension and more complex experimental designs. We use
voxel based morphometry (VBM)-style feature extraction
as it has proved effective for this and related applications
(Gaser et al. 2013; Moradi et al. 2015; Cuingnet et al. 2011;
Bron et al. 2015; Retico et al. 2015), and unlike region of
interest (ROI) based methods, provides a feature set that
retains the high-dimensional nature of the data and allows to
draw conclusions perhaps extendable to other whole brain
pattern classification approaches.

We note that computing the results presented in this study
required approximately 6 years of CPU time.

Classification and Feature Selection

Linear Classifiers

The image of the subject i is denoted by xi = [xi1, . . . , xiP ]
where xij is the gray matter density at the voxel j . Only
voxels within the brain mask are considered. The observa-
tion matrix is denoted by X ∈ R

N×P , whose rows xi are the
images with corresponding class labels y = (y1, . . . , yN)T

with yi = {−1, 1}. −1 is interpreted as not healthy (AD
or MCI) and 1 is interpreted as normal control. The obser-
vation matrix is normalized so that (1/N)

∑
i xij = 0 and

(1/N)
∑

i (xij )
2 = 1. We use Nc to denote the number of

training examples from the class c.
The predicted class label ŷ for the feature vector x is

given by ŷ = sign(β0 + βT x) .= g(x), where the classifier
parameters β0 ∈ R and β = (β1, β2, . . . , βP )T ∈ R

P are
learned from training data.

Filters for Feature Selection

Filters form the simplest approach to feature selection. Fil-
ters work as a pre-processing step for classifiers and are
completely independent of the classification, which is often
interpreted as their downside (Guyon and Elisseeff 2003).
We here consider only a simple t-test based filter (Inza et al.
2004). For each feature j , a t-score is computed

tj = |μ−1(j) − μ1(j)|
√

0.5(σ 2−1(j) + σ 2
1 (j))

, (1)

where μc(j) and σ 2
c (j) are mean and variance of the feature

j for the class c, respectively, and we have assumed that the
classes are balanced. Based on the t-scores tj , the features
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are ranked and the ones with the highest t-scores are selected
to be used in classification. We used two different kinds of
selection thresholds in this study. We either selected 125 or
1000 highest ranking features or selected these according to
a false discovery rate (FDR) corrected threshold (Genovese
et al. 2002). This filter method is particularly interesting to
this work since it resembles the standard statistical analysis
used in VBM.

Embedded Feature Selection

In the embedded FS, the idea is to jointly train the clas-
sifier and select the relevant features. This can be formu-
lated as a cost function optimization, where the data term
D(X, y, β, β0) models the likelihood of training data given
the classifier parameters and the regularization terms penal-
ize a priori unlikely classification parameters. The general
form of the cost function used in this paper is Grosenick
et al. (2013)

C(β, β0) = D(X, y, β, β0) + λ

(

α1||β||1 + (α2/2)||β||2

+α3(

P∑

i=1

1

2|Ni |
∑

j∈Ni

(βi − βj )
2)

⎞

⎠ , (2)

where λ and αi, i = 1, 2, 3 are the parameters that are
selected by a model selection criteria and Ni is the 6-
neighborhood of the voxel i. In above, if α2 = α3 = 0,
the sparsity promoting LASSO penalty follows (Tibshirani
1996). If α3 = 0, then elastic-net penalty follows (Zou and
Hastie 2005), and if all αi are allowed to take non-zero val-
ues, we talk about GraphNet penalty (Grosenick et al. 2013).
If α1 = α3 = 0, we have a regularizer that does not promote
sparsity that is used in the SVM (Hastie et al. 2004). Note
that it is possible to adopt a convention that

∑
j αj = 1.

For logistic regression models (Friedman et al. 2010)

D(X, y, β, β0) = (1/N)

N∑

i=1

LogPr(yi |xi )

and

Pr(c | x) = 1

1 + exp
[
c(β0 + xT β)

] .

for c ∈ {−1, 1} and for SVM models (Hastie et al. 2004)

D(X, y, β, β0) =
N∑

i=1

[1 − yi(β0 + βT xi )]+

where [x]+ = max(0, x).
Different parameter values (λ, αj ) produce different clas-

sifiers and the idea of the embedded FS methods is to train
several classifiers with different parameter values and then

select the best classifier according to some model selection
criteria. Particularly, the product λα1 controls the strength of
the L1 regularization effectively deciding how many voxels
to select.

Parameter Selection Based on Error Estimation

Cross-validation

K-fold cross-validation is the most widely used technique
for the parameter selection in the embedded FS. The training
set is divided into K equally sized sets (folds), K − 1 of
which are used for the classifier training and the remaining
one for testing the classifier. This is iterated over the K folds,
having a different fold as the test fold during each iteration.
Then, the K obtained test accuracies are averaged and the
parameter combination giving the highest average accuracy
is selected. In this work, we always set K = 10 according
to Kohavi (1995).

Bayesian Error Estimation

The non-parametric error estimation techniques (such as CV
or bootstrap) suffer from excess variability of the error esti-
mates especially in small sample situations (Dougherty et al.
2010). The parametric Bayesian error estimator (BEE) was
recently proposed as an alternative to non-parametric error
estimation techniques (Dalton and Dougherty 2011) and we
have demonstrated that it can be applied to model selection
also when its parametric assumptions are only approxi-
mately satisfied (Huttunen et al. 2013b; Huttunen and Tohka
2015).

The BEE is defined as the minimum mean squared esti-
mator (MMSE) minimizing the expectation between the
error estimate and the true error (Dalton and Dougherty
2011). If we assume Gaussian model for the class-
conditional density, a closed form expression can be derived
for the posterior expectation of the classification error in
the binary classification case under mild assumptions about
the covariance structure. The method is attractive, because
the errors are estimated directly from the training data, and
no iterative resampling or splitting operations are required.
This also means substantial savings in the computation
time. The closed form equations for BEE are complex and
we refer to Dalton and Dougherty (2011), Huttunen and
Tohka (2015) for them. The model selector we use is the
BEE with the full covariance and the proper prior with
the hyper-parameters set exactly as in Huttunen and Tohka
(2015). For the completeness, the hyper-parameter values
along with a short explanation of their meaning are avail-
able in the supplement. The implementation of the BEE
model selector is available at https://sites.google.com/site/
bayesianerrorestimate/.

https://sites.google.com/site/bayesianerrorestimate/
https://sites.google.com/site/bayesianerrorestimate/
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Stability Selection

Stability selection is a recently proposed approach by Mein-
shausen and Bühlmann (2010) for addressing the problem of
selecting the proper amount of regularization in embedded
FS algorithms. This approach is based on subsampling com-
bined with the FS algorithm. The key idea of this method is
that, instead of finding the best value of the regularization
and using it, one applies a FS method many times to random
subsamples of the data for different value of the regulariza-
tion parameters and selects those variables that were most
frequently selected on the resulting subsamples.

Given a set of regularization parameters �, fixed param-
eters αi , the number of iterations M , and the threshold value
πthr , the stability selection performs following steps:

1) For each regularization parameter λ ∈ �,

– Draw a subsample of training data Di of size �N
2 �,

where N is the number of training data, without replace-
ment.

– Run the regularized logistic regression on Di using
parameter λ (see Eq. 2) and obtain βi . Keep the selected
features Sλ(Di) = {j : βλ

j �= 0}.
– Repeat the above step M times and compute the selec-

tion probability for all features j = {1, ..., p},

�λ
j = 1

M

M∑

i=1

1{j ∈ Sλ(Di)}, (3)

where the 1{.} is the indicator function.

2) Calculate the stability score for each variable j =
{1, ..., p},
Sstable(j) = max

λ∈�
(�λ

j ) (4)

3) Finally, select the features with higher stability score than
πthr .

In this work, we used R = 1000 iterations and the studied
regularization parameter values were � = {k × 0.005; k =
1, 2, ..., 60} for LASSO (α1 = 1, α2 = α3 = 0) and
� = {k × 0.01; k = 1, 2, ..., 60} for elastic-net (α1 = α2 =
0.5, α3 = 0). The GraphNet penalty was not considered
with the stability selection as the computation time would
have been prohibitive. The experiments were done with two
different threshold values πthr = {0.1, 0.2}, meaning that a
feature was selected if at least for one value of λ ∈ �, it was
selected 100 (πthr = 0.1) or 200 (πthr = 0.2) times among
1000 subsampling experiments. We present the results only
for the better threshold value, which was πthr = 0.2 for
8mm data and πthr = 0.1 for the 4 mm data. After the
stability selection, we still have to select the classifier for
classifying the data based on selected features. We decided
to use SVM in accordance to Ye et al. (2012).

Materials

ADNI Data

Data used in this work is obtained from the Alzheimers
Disease Neuroimaging Initiative (ADNI) database http://
adni.loni.usc.edu/. The ADNI was launched in 2003 as
a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biolog-
ical markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimers disease
(AD). For up-to-date information, see www.adni-info.org.

We used MRIs from 200 AD subjects, 400 MCI subjects,
and 231 normal controls for whom baseline MRI data (T1-
weighted MP-RAGE sequence at 1.5 Tesla, typically 256 x
256 x 170 voxels with the voxel size of 1 mm x 1 mm x 1.2
mm) were available.

Pre-processing

As described by Gaser et al. (2013), Moradi et al. (2015)
preprocessing of the T1-weighted images was performed
using the SPM8 package (http://www.fil.ion.ucl.ac.uk/spm)
and the VBM8 toolbox (http://dbm.neuro.uni-jena.de), run-
ning under MATLAB. All T1-weighted images were cor-
rected for bias-field inhomogeneities, then spatially normal-
ized and segmented into grey matter (GM), white matter,
and cerebrospinal fluid (CSF) within the same generative
model (Ashburner and Friston 2005). The segmentation
procedure was further extended by accounting for partial
volume effects (Tohka et al. 2004), by applying adaptive
maximum a posteriori estimations (Rajapakse et al. 1997),
and by using an hidden Markov random field model (Cuadra
et al. 2005) as described previously (Gaser 2009). This pro-
cedure resulted in maps of tissue fractions of WM and GM.
Only the GM images were used in this work. Following the
pipeline proposed by Franke et al. (2010), the GM images
were processed with affine registration and smoothed with
8-mm full-width-at-half-maximum smoothing kernels.

After smoothing, images were resampled to 4 mm and
8mm isotropic spatial resolution, producing two sets of the
images with different resolutions. This procedure generated,
for each subject, 29852 or 3747 aligned and smoothed GM
density values that were used as MRI features. Image down-
sampling is often used in machine learning to reduce the
number of redundant features in order to improve the clas-
sification performance. For example, Franke et al. (2010)
concluded that the voxel size had negligible effect on age
estimation accuracy. For this study, even more important
reason for downsampling is the reduction in computational
time and the memory requirements for classifier training.

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
http://www.adni-info.org
http://www.fil.ion.ucl.ac.uk/spm
http://dbm.neuro.uni-jena.de
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Normal aging and AD have partially overlapping effects
on the brain (Fjell et al. 2013; Dukart et al. 2011), and there-
fore age effect removal has been suggested to improve the
classification performance in the AD related classification
tasks (Dukart et al. 2011; Moradi et al. 2015). Briefly, given
a set of pre-processed images of normal controls (repre-
senting the GM density values), we estimated the effects of
normal aging to each voxel separately using linear regres-
sion. Then, the learned regression coefficients are used to
remove aging effect in any image. The procedure applied is
detailed by Moradi et al. (2015), where the rationale behind
it is also more thoroughly described. We performed the AD
vs. NC experiments for both the images with and without
age-removal.

Methods

Experimental Procedure

We performed a split-half resampling type analysis that
was introduced by Strother et al. (2002) for their NPAIRS
framework and applied by Rasmussen et al. (2012) to study
classification analysis of fMRI data. Specifically, we sam-
pled without replacement NC = 100 or NC = 50 subjects
from each of the two classes so that N = 200 or N = 100
and the classification problems were balanced. This proce-
dure was repeated R = 1000 times. We denote the two
subject samples (split halves; train and test) Ai and Bi for
the iteration i = 1, . . . , R and drop the index where it is not
necessary. The sampling was without replacement so that
the split-half sets Ai and Bi were always non-overlapping
and are considered as independent train and test sets. Each
learning algorithm, listed in Table 1, was trained on the split
Ai and tested on the split Bi and, vice versa, trained on Bi

and tested on Ai . This was done with each image set (4
mm, 8 mm, Age removed 4 mm, Age removed 8 mm for
the AD vs. NC problem and age removed 4 mm and age
removed 8 mm for the MCI vs. NC problem). Thus, each
algorithm was trained and tested 24000 times. All the train-
ing operations (estimation of regression coefficients for age
removal, parameter selections) were done in the training
half. The test half was used only for the evaluation of the
algorithms.

We recorded the test accuracy (ACC) of each algorithm
(the fraction of the correctly classified subjects in the test
half) averaged across R = 1000 re-sampling iterations.
Moreover, we computed the average absolute difference in
ACC between the two split-halves, i.e.,

	ACC = 1

R

R∑

i=1

|ACC(Ai, Bi) − ACC(Bi, Ai)| , (5)

where ACC(Ai, Bi) means accuracy when the training set
is Ai and the test set is Bi . We additionally recorded the
average area under the curve (AUC) for the test subjects.
As expected for balanced problems, AUC correlated almost
perfectly with ACC and to simplify the exposition of the
results, we decided not to present AUCs in the paper.

Statistical testing on ACCs was done to confirm whether
the generalization performance of the classifiers differed.
Note that just performing the standard t-test or some non-
parametric alternative (e.g., a permutation test) on test-
accuracies is not correct if we are interested in the true
generalization ability to new subjects (not part of the
ADNI sample). This is because different replications of
the train/test procedure are not independent (Bouckaert
and Frank 2004; Nadeau and Bengio 2003). As we per-
formed 1000 replications on different split-halves, we used
1000x2 CV approach known as the corrected repeated 2-
fold CV t-test (Bouckaert and Frank 2004). This corrected
t-test, which is an improvement of 5X2 CV test of Diet-
terich (1998) and McNemar’s test (see Bouckaert and Frank
2004), relies on the covariance correction of Nadeau and
Bengio (2003). The test can be assumed to be conservative
in our setting as the correction factor of Nadeau and Bengio
(2003) was derived using the assumption that the classifiers
are stable with respect to a change in the training set. This is
not the case here, and thus the correction overestimates the
correlation between the accuracies of different replication
rounds. However, we feel that this conservative test is bet-
ter for the purposes of this work than a liberal uncorrected
test, however, for this reason we report the significance at
p = 0.1 level in addition to the standard p = 0.05 level. We
used similar correction in the case where an unpaired t-test
had to be used, that is, when comparing the ACCs of clas-
sifiers trained with a different number of subjects. Finally,
where it was appropriate, we combined the test-statistics
using a simple average t method (Lazar et al. 2002), which
is nearly equivalent to Stouffer’s statistic due to the high
degrees of freedom.

Hypothesis tests on 	ACC were performed using a per-
mutation test. This assumes the independence of ACC dif-
ferences between different replications and therefore these
tests might be more liberal than the nominal alpha level
indicates.

Feature Agreement Measures

We used two measures to quantify the agreement of the
selected voxels between two non-overlapping datasets: Dice
index and modified Hausdorff distance. The Dice index
measures the similarity of two sets (or binarized maps) of
selected voxels and is widely used performance measure for
evaluating image segmentation algorithms and has been also
used to compare fMRI activation maps (Pajula et al. 2012).
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The Dice index between the voxel sets VA and VB is defined
as Dice (1945)

DICE(VA, VB) = 2|VA ∩ VB |
|VA| + |VB | (6)

and it varies between 0 (when the two sets do not share any
voxels/features) and 1 (when VA = VB ). The Dice index
has a close the relationship to Kappa coefficient (Zijdenbos
et al. 1994) and we will interpret the Dice values according
to well-known but subjective Kappa categorizations (Pajula
et al. 2012).

The Dice index does not take into account the spatial
closeness of the voxels and returns the value 0 if the data
indicates close-by (but not exactly matching) voxels. Also,
for this reason, the Dice index might favor dense voxel sets
over sparse sets. Therefore, we introduced another similarity
measure, modified Hausdorff distance (mHD), which takes
into account spatial locations of the voxels (Dubuisson and
Jain 1994). Let each of the voxels a be denoted by its 3-D
coordinates (ax, ay, az). Then, the mHD is defined as

H(VA, VB) = max(d(VA, VB), d(VB, VA)), (7)

where

d(VA, VB) =
∑

a∈VA

min
b∈VB

||a − b||.

The rationale of using modified Hausdorff distance
instead of the (original) Hausdorff distance is that the val-
ues of the original Hausdorff distance are large even in the
presence of small differences between the voxel sets and
typically remains constant when difference increases. The
modified Hausdorff distance does not suffer from such a
problem; we refer to Dubuisson and Jain (1994) for details.
The permutation test was applied for comparison of the
feature agreement measures between different algorithms.

Studied Classification Methods and their
Implementation

We studied several learning algorithms that are summa-
rized in Table 1. The elastic net and LASSO based methods
were implemented with the GLMNET package ((Friedman
et al. 2010); http://web.stanford.edu/hastie/glmnet matlab/)
with the default parameters and default grid to search for
the optimal λ. The SVMs were implemented with LIb-
SVM ((Chang and Lin 2011); http://www.csie.ntu.edu.tw/
cjlin/libsvm/) and the regularization parameter was always
selected based on CV in the training set. The stability selec-
tion was based on an in-house Matlab implementation fol-
lowing the guidelines of Ye et al. (2012) and it was followed
by SVM classification. For this reason, when referring to
Elastic-Net or LASSO later on, we do not typically mean
stability selection. The GraphNet was implemented based
on an in-house C code implementing the cyclical coordinate

descent of Friedman et al. (2010), which uses a quadratic
approximation to the log-likelihood, and then coordinate
descent on the resulting penalized weighted least-squares
problem. However, the coordinate descent is modified to
account for the spatial regularizer.1 For stability selection
and GraphNet, we had to fix certain parameter values for
computational reasons. For stability selection, these were
fixed following suggestions by Ye et al. (2012). For Graph-
Net, these were fixed using a small-scale pilot study on the
AD vs. NC problem with Nc = 100. We selected the param-
eter values for the main experiment so that the numbers of
selected features were appropriate , i.e., classification accu-
racy was not used as the parameter selection criterion but
the same data as for the main experiment was used. Note
that slightly different parameter values were appropriate for
4 mm and 8 mm data. The studied parameters for the grid
search for all the algorithms are provided in the supple-
ment, where full details about parameter tuning experiments
can be found. We performed full-scale experiments for the
GraphNet with α1 = 1, α2 = 0, α3 = {1, 10} called
Sparse Laplacian in Baldassarre et al. (2012). However, all
the results (ACC, 	ACC, mHD, and Dice) were practically
equal to those of GraphNet with parameters as in Table 1,
and therefore, they are omitted from the paper.

With SVMs, the filter parameters, the number of fea-
tures to select (we selected 1000 features for 4 mm voxel
size and repeated the experiments selecting 125 as well as
1000 features for 8 mm voxel size) and the FDR thresh-
olds, were selected based on our previous experience on the
similar classification problems (Moradi et al. 2015; Moradi
et al. 2014). We were unable to find a single FDR-threshold
which would have worked well for all settings and chose
the values: q = 0.0005 for NC = 100 and q = 0.005 for
NC = 50 in the AD vs. NC classification (the same values
were used for both 4 mm and 8 mm data); For the MCI vs.
NC problem, when NC was 100, we used q = 0.005 for 4
mm data and q = 0.05 for 8 mm data and when NC = 50,
we used q = 0.5 to prevent empty feature sets that often
resulted with normal q thresholds. The rationale for these
selections is explained in more detail in the supplement.

Results

Classification Accuracy and its Variability

AD vs. NC

The average ACC and 	ACC for the AD vs. NC problems
are listed in Table 2. We discuss only the results with the

1This is akin to the implementation in the Donders Machine Learning
Toolbox https://github.com/distrep/DMLT

http://web.stanford.edu/ hastie/glmnet_matlab/
http://www.csie.ntu.edu.tw/ cjlin/libsvm/
http://www.csie.ntu.edu.tw/ cjlin/libsvm/
https://github.com/distrep/DMLT
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Table 2 The average ACCs and 	ACC for the AD vs. NC experiments. The columns ACC refer to the averages over the R = 1000 resamplings

NC = 50, 4 mm NC = 100, 4 mm NC = 50, 8 mm NC = 100, 8 mm

ACC 	ACC ACC 	ACC ACC 	ACC ACC 	ACC

EN-VACV 0.821 0.041 0.844 0.028 0.823 0.041 0.846 0.027

EN-VABEE 0.815 0.039 0.842 0.027 0.817 0.039 0.841 0.026

EN-05CV 0.820 0.040 0.844 0.027 0.824 0.041 0.846 0.027

EN-05BEE 0.811 0.039 0.837 0.027 0.814 0.039 0.837 0.026

LASSOCV 0.813 0.042 0.840 0.029 0.817 0.041 0.842 0.028

LASSOBEE 0.799 0.043 0.828 0.027 0.801 0.042 0.827 0.027

LASSOSTAB 0.809 0.044 0.829 0.034 0.805 0.047 0.822 0.034

EN-05STAB 0.814 0.041 0.827 0.030 0.813 0.041 0.827 0.032

GNCV 0.822 0.043 0.847 0.029 0.820 0.044 0.838 0.030

GNBEE 0.814 0.039 0.838 0.026 0.807 0.038 0.830 0.026

SVMF-FDR 0.819 0.044 0.841 0.029 0.817 0.049 0.840 0.030

SVMF-1000 0.829 0.043 0.847 0.028 0.809 0.044 0.839 0.031

SVMF-125 – – – – 0.827 0.044 0.846 0.029

SVM-ALL 0.802 0.038 0.830 0.027 0.798 0.040 0.825 0.027

Mean 0.814 0.041 0.838 0.028 0.814 0.042 0.836 0.029

– means that a measure is not available. Slightly different parameter settings are used for GN, SVM-FDR and stability selection depending on the
data dimensionality (4 mm voxels vs. 8 mm voxels.)

age removal because it improved the average ACC with all
the classifiers. The improvement remained non-significant
with respect to generalization performance at the p = 0.05
level (corrected t-test) with any of the classifiers, but the
combined effect measured using the average t-statistic was
highly significant (p < 10−5). The improvement in ACC
was from 0.004 (GNBEE with 8mm data and Nc = 100)
to 0.021 (LASSOSTAB with 4mm data and Nc = 50) and
the average improvement in ACC was 0.014. The classi-
fication accuracies without age removal are given in the
supplementary Table S1.

The average ACC varied from 0.798 (SVM-ALL, 8 mm,
Nc = 50) to 0.847 (GN1CV, 4 mm, NC = 100) and
showed little dependence on whether 4 mm or 8 mm data
was used (mean ACC was 0.838 for 4 mm data and 0.835
for 8 mm data when NC = 100, the difference was not
significant in terms of generalization performance, neither
with individual classifiers nor when studying average t-
statistic). The accuracy was improved by 0.023 (on average)
when doubling the number of training subjects. Adding
more subjects improved the classification accuracy with all
the classifiers, but the improvement remained non signifi-
cant. However, the average t was again highly significant
(p < 10−5) suggesting that the addition of subjects was
useful as expected.

The average variability of classification accuracies
between independent samples 	ACC was greater than
the difference between the average classification accuracy

between any two classifiers: the smallest 	ACC among
independent samples was 0.026 by GraphNet combined
with BEE with Nc = 100 while the largest difference
of the classification accuracy among two different classi-
fiers was 0.025 (between EN-VACV and SVMALL with
Nc = 50 and 8 mm data). The Fig. 1 illustrates this
phenomenon. It shows the scatter plot between the ACC
difference of EN-05CV classifier in the two independent
splits of the data and the ACC difference between EN-
05CV and SVMALL trained with the same data. Even in
the case, where the difference between classifiers was max-
imal (8 mm and Nc = 50 red balls in the figure), the ACC
differences between the classifiers were about at the same
level as the ACC differences due to different train and test
sets.

The average 	ACC was reduced by one third (from
0.043 to 0.029 with 4 mm data and 0.042 to 0.028 with 8
mm data) when going from Nc = 50 to Nc = 100. The
reduction was significant with all the classifiers according
to the permutation test (p < 10−5). There were no striking
differences between 	ACC values of different methods;
however, 	ACC for the feature selection methods that do
not try to estimate classification error (filters and stabil-
ity selection) was higher on average than for the methods
that select features based on the estimate of the classifi-
cation accuracy (CV and BEE based methods). However,
the differences were significant at p = 0.05 level only for
certain setups, for example, elastic-net based methods with
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Fig. 1 The ACC difference of EN-05CV classifier in the
two independent splits of the data (ACCEN−05CV (Ai, Bi) -
ACCEN−05CV (Bi, Ai)) plotted against the ACC difference
between EN-05CV and SVMALL trained with the same data
(ACCEN05−CV (Ai, Bi) - ACCSV MALL(Ai, Bi)). The size of the
balls correspond to the number of replications with a certain ACC
difference. Left panel: For the AD vs. NC problem, the train and test

sample had equal or larger influence on ACC than the classifier choice
even with the classifiers with the largest difference in average ACC.
Right: For the MCI vs. NC problem (green balls), the situation was
different than for the AD vs. NC problem (blue balls): the choice of
the classifier was important as the green balls are consistently in the
positive half of y-axis

Nc = 50 and 4 mm data showed significantly smaller
	ACC than the filter based methods (SVMF-1000 and
SVMF-FDR).

MCI vs. NC

The classification between MCI and NC subjects can be
considered as a much harder problem than the AD vs. NC
classification. We did not consider LASSO-based meth-
ods or the elastic net with variable α (EN-VA) to simplify
the analysis of the results.2 The results concerning the
classification accuracy are presented in Table 3.

The average classification accuracy varied from 0.674
(SVMF-125, NC = 50 8 mm voxel size) to 0.847 (EN05-
CV, NC = 100, 4 mm voxel size). Unlike in the AD vs.
NC problem, the choice of the method mattered in this case.
GraphNet and Elastic Net were clearly the most accurate
methods: With NC = 100 the generalization performance
improvement was always significant at p = 0.05 level
when comparing Elastic-Net or Graphnet method to any
SVM-based method with 4 mm data; with 8 mm data, the
differences were significant at p = 0.05 level against SVMs
with filters (SVMF-1000 and SVMF-FDR) and at p = 0.1
level against SVMALL and stability selection. This is visi-
ble in the scatter plot of the right panel of Fig. 1, where the
green balls corresponding to the MCI vs. NC problem lie
predominantly in the positive half of the y-coordinate. With
the smaller number of subjects NC = 50 and 4 mm data,

2Briefly, as the LASSO does not enforce grouping, it is sometimes
considered as inappropriate for neuroimaging applications (Carroll
et al. 2009). The performance of EN-VA was very similar with EN-
05 in the AD vs. NC problem. For these reasons, we decided not to
perform the experiments for these methods for MCI vs. NC problem.

the performance of Elastic-Net and GraphNet still remained
superior, however, the improvement was typically signifi-
cant only at p = 0.1 level. With 8 mm data and NC = 50,
the performance differences were not significant except for
SVMF-125 which was less accurate than the embedded
methods at p = 0.1 level. The Elastic Net based stability
selection, which used the SVM classifier, performed simi-
larly to the other SVM-based methods and featured poorer
classification performance than the standard Elastic Net.
The CV and BEE based models for the parameter selection
performed similarly in the terms of the average classifica-
tion performance. Again, and not surprisingly, the addition
of subjects improved the performance of all classifiers. With
GraphNet and Elastic Net, the average ACC was higher with
4 mm data than with 8 mm data, however, the improve-
ment was not statistically significant due to high variability
between independent samples.

The average variability of the classification accuracy
	ACC was higher (means 0.038 (NC = 100) and 0.052
(NC = 50) for 4 mm data and 0.037 (NC = 100) and 0.051
(NC = 50) for 8 mm data) than with the AD vs. NC prob-
lem with the same setups (means 0.041 (NC = 50) and
0.028 (NC = 100) for 4 mm data and 0.029 (NC = 50)
and 0.042 (NC = 100) for 8 mm data). Typically, 	ACC

did not vary much between the methods. However, with
NC = 50, the methods that select the parameters based on
CV-error estimate (EN-05CV and GNCV) produced higher
	ACC than the other methods (p < 0.001 always). With
EN-05CV, 	ACC decreased to the level of other meth-
ods when more subjects were added. In contrast, even with
NC = 100, 	ACC for GraphNet using the CV-based model
selection was higher than 	ACC for other methods. Espe-
cially, the ACC difference was large in the iterations i where
the differences between MCI classes of Ai and Bi were
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Table 3 The average ACCs and 	ACC for MCI vs. NC experiments, see Table 2 for notation

NC = 50, 4 mm NC = 100, 4 mm NC = 50, 8 mm NC = 100, 8 mm

ACC 	ACC ACC 	ACC ACC 	ACC ACC 	ACC

EN-05CV 0.785 0.058 0.836 0.033 0.739 0.057 0.797 0.038

EN-05BEE 0.782 0.053 0.833 0.032 0.746 0.050 0.800 0.034

GNCV 0.767 0.070 0.810 0.057 0.732 0.059 0.789 0.037

GNBEE 0.775 0.050 0.828 0.031 0.739 0.045 0.794 0.031

EN-05STAB 0.695 0.051 0.753 0.036 0.689 0.049 0.747 0.034

SVMF-FDR 0.700 0.044 0.720 0.043 0.692 0.046 0.710 0.039

SVMF-1000 0.684 0.052 0.719 0.041 0.684 0.054 0.721 0.045

SVMF-125 – – – – 0.674 0.051 0.706 0.040

SVMALL 0.704 0.042 0.758 0.030 0.700 0.045 0.753 0.031

Mean 0.736 0.052 0.782 0.038 0.711 0.051 0.757 0.037

large. For analyzing the differences in the MCI groups,
we used the information from the three year follow-up of
these patients, specifically the information whether or not
they converted to AD within the 3 year time window (see
Moradi et al. 2015). We could not find a clear answer to the
question why Graphnet with the CV-based model selection
was particularly sensitive to differences in MCI classes.

Selected Features

As listed in Table 4, the LASSO methods produced the most
sparse voxel set, followed by Elastic-net, and then Graphnet.
The filter-based SVMs were designed to give dense voxel
sets and it is not particularly informative to analyze the num-
bers of features selected by the filter methods as the user has
a direct control over the sparsity of the classifier.

The elastic net with variable α2 tended to select
more voxels than its fixed α2 counterpart indicating that
model selection strategies favored more dense models. The
approach used for the parameter selection in the embedded
FS methods had a marked influence on the number vox-
els selected. The stability selection and CV yielded similar
numbers of features whereas the BEE favored more dense
models than the other two model selection strategies. For
both 4 mm and 8 mm data, the voxel sets were slightly more
numerous for the MCI vs. NC problem than for the AD vs.
NC problem with the embedded FS methods.

The selection probabilities of the voxels by different
methods are illustrated in Fig. 2 through two axial planes
passing through hippocampus. For the AD vs. NC problem,
the embedded variable selection methods focused on hip-
pocampus and superior temporal cortex and the filter-based

Table 4 Numbers of voxels selected with different classifiers

NC = 50, 4 mm NC = 100, 4 mm NC = 50, 8 mm NC = 100, 8 mm

AD MCI AD MCI AD MCI AD MCI

EN-VACV 214 – 269 – 121 – 144 –

EN-VABEE 666 – 1002 – 402 – 543 –

EN-05CV 113 109 145 173 72 77 91 131

EN-05BEE 229 225 308 305 142 161 192 225

LASSOCV 32 – 50 – 29 – 44 –

LASSOBEE 57 – 98 – 53 – 91 –

LASSOSTAB 28 – 66 – 17 – 37 –

EN-05STAB 294 250 411 369 103 100 143 159

GNCV 212 225 255 369 358 655 476 1107

GNBEE 814 829 1080 1104 1544 1647 1742 1835

SVMF-FDR 4631 13247 7556 1058 577 1662 942 515

Columns AD refer to the AD vs.NC problem and columns MCI refer to the MCI vs. NC problem. Note that parameters for GN, SVM-FDR, and
stability selection were different for 4 mm and 8 mm data and thus the numbers of selected voxels are not comparable between 4 mm and 8 mm
data
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AD vs. NC

MCI vs. NC

Fig. 2 The probability of voxels being selected for different classifica-
tion methods over 2000 training replications (Nc = 100 and 4 mm data
was used). Axial slices at MNI coordinates z = −18 mm (showing

Hippocampus, upper row) and z = −10 mm (showing Hippocampus
and mid-temporal cortices,bottom row) are shown

methods equally included voxels from the middle temporal
and frontal cortices. In addition, it can be seen that GNBEE
included voxels from cerebellum. All these locations have
been implicated to be involved in AD pathology previously
(Weiner et al. 2012) and have been found to be effective
in classifying between AD patients and normal controls
(Casanova et al. 2011b). For the MCI vs. NC problem, the
voxel selection probability patterns were somewhat differ-
ent: for all the methods, the selected voxels concentrated in
the frontal regions more than in the AD vs. NC problem.
Also, filter and embedded feature selection methods seem-
ingly disagreed which frontal voxels to include - the filters
favoring medial frontal gyrus and the embedded methods
favoring the middle frontal gyrus.

Stability of Selected Feature Sets

The feature selection stability measured with Dice coeffi-
cient (Tables 5 and 6) varied from 0.009 (LASSOBEE, AD
vs. NC, 4 mm, Nc = 50) to 0.710 (with SVM-F1000, AD
vs. NC, 8 mm, Nc = 100). The Dice coefficients for the
off-the-shelf embedded feature selection methods (LASSO
and Elastic-net) were very low. The stability of feature sets
was increased by taking the spatial context account (Graph-
net) and the most stable feature sets were those based on the
fixed number of features to be selected (SVMF-1000). The
stability selection increased the Dice coefficients compared
to the error estimation based parameter selection - how-
ever, typically GraphNet algorithms produced higher Dice
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Table 5 The average mHD and Dice values for AD vs. NC experiments

NC = 50, 4 mm NC = 100, 4 mm NC = 50, 8 mm NC = 100, 8 mm

mHD Dice mHD Dice mHD Dice mHD Dice

EN-VACV 4.431 0.050 3.931 0.063 2.374 0.092 2.113 0.109

EN-VABEE 3.235 0.060 2.499 0.087 1.430 0.146 1.146 0.189

EN-05CV 4.438 0.048 3.951 0.059 2.272 0.101 2.073 0.120

EN-05BEE 3.586 0.041 3.084 0.047 1.763 0.090 1.554 0.101

LASSOCV 6.040 0.014 5.192 0.023 3.060 0.064 2.670 0.072

LASSOBEE 4.908 0.009 4.008 0.015 2.431 0.043 2.003 0.049

LASSOSTAB 5.725 0.041 4.093 0.057 3.010 0.121 2.299 0.155

EN-05STAB 3.000 0.125 2.509 0.164 1.786 0.163 1.557 0.182

GNCV 5.235 0.113 4.318 0.183 2.530 0.201 2.310 0.243

GNBEE 2.643 0.079 2.254 0.093 0.626 0.435 0.557 0.486

SVMF-FDR 1.319 0.440 0.614 0.669 1.011 0.440 0.506 0.668

SVMF-1000 1.648 0.345 1.141 0.490 0.490 0.605 0.343 0.710

SVMF-125 – – – – 1.296 0.332 0.934 0.477

mean 3.851 0.114 3.133 0.163 1.852 0.218 1.543 0.274

The values refer to the averages over the R = 1000 resamplings. mHDs are expressed in voxels; the values in millimeters can be obtained by
multiplying the mHD in voxels by the voxel size. The standard deviations of mHD and Dice values across 1000 resamplings are presented in the
supplement. Other notation is as in Table 2

coefficients than the EN-05STAB. Not surprisingly, the
larger the voxel-size and Nc, the higher the Dice coefficient.
All the quoted differences in the Dice coefficient value were
significant (p < 10−5).

While the Dice index values were very low for the off-the
shelf embedded methods and also somewhat discourag-
ing for the GraphNet and stability selection methods for
4mm data (indicating ’slight agreement’ in the Landis-Koch
categorization which is applicable for Dice indeces in addi-
tion to Kappa coefficients Pajula et al. 2012), the modified
Hausdorff distances showed the feature-selection stability
of several embedded methods in a more positive light (see
Tables 5 and 6). For problems with Nc = 100 and 4 mm

data, average mHDs for the embedded methods varied from
5.2 voxels (21 mm, LASSOCV, AD vs. NC) to 2.1 voxels
(8.3 mm, GN1BEE) compared to the range between 0.614
and 3.355 voxels (2.5 mm and 14 mm) for the filter meth-
ods. mHD values are easy to interpret, a value of 2.25 voxels
(GN1BEE, AD vs. NC, 4 mm Nc = 100) means that, on
average, the maximal distance from voxel selected in one
subject sample was 2.25 voxels (10 mm) to a voxel selected
in an independent subject sample. The average mHD values
for selected methods are visualized in Fig. 3 in millimeters.
With the MCI vs. NC problem, the most stable embed-
ded methods featured lower mHD values than SVMF-FDR,
which, in the sense of the selection stability, is equivalent

Table 6 The average mHD and Dice values for MCI vs. NC experiments

NC = 50, 4 mm NC = 100, 4 mm NC = 50, 8 mm NC = 100, 8 mm

mHD Dice mHD Dice mHD Dice mHD Dice

EN-05CV 4.484 0.050 3.423 0.070 2.346 0.072 1.693 0.127

EN-05BEE 3.404 0.046 2.887 0.062 1.641 0.091 1.389 0.135

GNCV 6.433 0.057 4.529 0.076 3.195 0.152 1.293 0.328

GNBEE 2.463 0.077 2.075 0.105 0.578 0.463 0.521 0.516

EN-05STAB 3.093 0.118 2.511 0.146 1.847 0.119 1.435 0.189

SVMF-FDR 0.879 0.501 3.355 0.181 0.708 0.499 1.327 0.300

SVMF-1000 2.345 0.154 1.906 0.255 0.715 0.420 0.612 0.502

SVMF-125 – – – – 1.816 0.146 1.460 0.259

mean 3.300 0.143 2.955 0.128 1.606 0.245 1.216 0.295

The standard deviations of mHD and Dice values across 1000 resamplings are presented in the supplement. See Table 5 for notation
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Fig. 3 The average mHDs in
millimeters when NC = 100.
Note how mHD values were
similar in the AD vs. NC and
MCI vs. NC problems for the
embedded and stability selection
methods, but for the filter FS
methods, the mHD values were
higher for the more difficult
MCI vs. NC problem

to the standard massively univariate hypothesis testing with
FDR based multiple comparisons correction. In terms of
the mHD values, the BEE based parameter selection was
more stable than the CV-based parameter selection with any
embedded method (p < 10−5 always). The variability of
the mHD and Dice values of GNCV with 4 mm data was
far greater than for other methods. The reason was the same
as for the excess variability in the classification accuracy,
namely, that GNCV was sensitive to the slight variations in
the subject characteristics.

As hypothesized earlier correlation between the average
number of voxels selected (noF) and the average Dice coef-
ficient across methods was strong: it varied from 0.67 to
0.98 across the eight conditions (two classification prob-
lems, two NC , and two voxel sizes) and was, as an example,
0.83 for AD vs. NC with 4 mm data and Nc = 100. Also,
the negative correlation between average NoF and average
mHD was strong: it varied from -0.51 to -0.86 across eight
conditions (-0.70 for AD vs. NC with 4 mm data and Nc =
100). Hence, the dense voxel selection produced more stable
feature sets. The average NoF and 	ACC were not found be
correlated. The correlation between them averaged across
conditions (computed by the z-transform method Kenny
1987) was -0.11 (two-sided p = 0.46 according to the test
outlined by Kenny (1987)). Thus, it appears that increasing
or decreasing the number of voxels selected resulted in no
improvement to the variability of classification accuracy.

Not surprisingly, we observed no correlations between
the average classification accuracy and either average Dice
coefficient or the average mHD. Instead, we observed a
significant correlation between average mHD and 	ACC.
The correlation averaged by the z-transform method (Kenny
1987) over eight conditions was 0.39 which is significant
(p < 0.005) according to the test outlined by Kenny (1987).

However, the variability in the correlation coefficient was
high (from -0.04 to 0.97) between the conditions, with the
value 0.97 stemming from the MCI vs. NC problem with 4
mm data and NC = 50, where the embedded methods suf-
fered from the high variability. Also, it needs to be noted that
similar correlation was not observed between the average
Dice coefficient and 	ACC.

The Fig. 4 shows the probability of the voxel being
selected in one split-half but not in the other. The com-
parison of this Figure to Fig. 2 reveals that the voxels that
were probable to be selected were also the most likely to be
selected differently between two independent replications.

Discussion

We have presented a comparative analysis of FS methods
for whole brain voxel-based classification analysis of struc-
tural neuroimaging data. The methods were compared with
respect to their classification accuracy and its variation due
to independent subject samples as well as the stability of
the selected features between different subject samples. We
focused on two related and well studied problems: AD vs.
NC classification and MCI vs. NC classification with the
ADNI data. The compared FS and classification methods
included filter-based FS followed by SVM based classifica-
tion, standard embedded FS methods (LASSO and Elastic-
net), stability selection followed by SVM classification,
and neuroimaging specific embedded FS (GraphNet). Fur-
ther, with embedded FS methods, we analyzed two different
model selection criteria, non-parametric cross-validation
and parametric Bayesian error estimation.

Comparisons of different classification methods on
AD related classification tasks have been presented, for
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AD vs. NC

MCI vs. NC

Fig. 4 The probability of voxels for being selected in one split-half
while not for the other one over 1000 replications (Nc = 100 and 4 mm

data was used). Axial slices at MNI coordinates z = −18 mm (show-
ing Hippocampus, top row) and z = −10 mm (showing Hippocampus
and temporal lobes,bottom row) are shown

instance, by Bron et al. (2015), Cuingnet et al. (2011) and
Sabuncu et al. (2015). As these comparative studies have
used the classification accuracy, or related quantities, on
the whole test sample as the figure of merit, they do not
address the questions related the variability of the classi-
fiers with respect to subject sample, which was the focus
of this work. Rasmussen et al. (2012) studied the selec-
tion of regularization parameters for the embedded FS in
fMRI using an NPAIRS framework and concluded that
the selection regularization parameters should not be based
solely on the classification performance if the interpretation
of the resulting classifiers is the final goal. The ques-
tions we have addressed are related but different, namely,
how do the variability among the subject pool alter the

classification accuracy and features set selected and if some
feature selection methods are better than others in terms of
the generalization performance.

Chu et al. (2012) studied different FS techniques com-
bined with SVMs (filters and recursive feature elimina-
tion) on ADNI structural MRI data and concluded that the
FS does not have positive influence on the classification
accuracy. Our results concerning the classification accu-
racy match with those of Chu et al. (2012) in the AD vs.
NC classification, where the performance of SVM-ALL
(which does not use any feature selection) was at the same
level as with the classifiers incorporating feature selection.
Also, more generally, the variation due to subject sam-
ple was more important than the variation due to selected
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classification method with the AD vs. NC problem. This is
also in line with Chu et al. (2012). On the contrary, embed-
ded FS methods outperformed the SVM based methods with
the MCI vs. NC problem, particularly when the training set
was large enough, and the performance improvement with
a large training set was several times larger than the vari-
ability in the classification accuracy due to subject sample.
This indicates that data-driven FS can improve the classi-
fication accuracy. Note that Chu et al. (2012) did not find
FS to be useful for the MCI vs. NC problem. However,
this seems to be due to the fact that they studied only fil-
ter based FS methods and recursive feature elimination and
these do not work as well as the embedded FS methods for
this problem according to our results (see also Kerr et al.
(2014) for similar conclusions). We did not find signifi-
cant differences in the classification performance between
the imaging specific embedded technique (GraphNet) and
a more general embedded technique (Elastic Net). Interest-
ingly, the performance of the stability selection was similar
to SVM-ALL, indicating that it did not provide similar gains
in classification accuracy as more traditional embedded FS
methods.

The variability of the classification accuracy due to sub-
ject sample (	ACC) was almost the same for all methods
within the same problem with few exceptions (particu-
larly GraphNet with CV). Not surprisingly, the variability
increased with decreasing number of subjects and increas-
ing the problem difficulty (the variability was greater in
the MCI vs. NC problem than in the AD vs. NC problem).
Instead, the voxel size did not have statistically significant
effect on 	ACC. In general, 	ACC measures were a pos-
itive surprise, compared to the variability reported in Glick
(1978), Dougherty et al. (2010), and although also this work
has demonstrated that classification accuracy has a non-zero
variance that must be taken into account, the variance was
on a tolerable level with the sample sizes studied in this
work. The GraphNet with the CV based model selection
resulted in higher 	ACC values than the other methods in
certain circumstances. This was the problem of model selec-
tion as the GraphNet equipped with the parametric BEE
model selector did not suffer from the same problem. Other-
wise, we did not observe the BEE model selection to differ
from the CV based model selection in terms of the classifi-
cation accuracy or 	ACC. However, as the BEE is several
times faster to compute than the CV error estimate (see
Huttunen and Tohka 2015), the BEE model selection crite-
rion is attractive for neuroimaging purposes.

The selected feature sets were not particularly stable
when the stability was assessed with the Dice index which
measures the set similarity without considering the spatial
distances between the voxels. Especially, with embedded
methods reproducibility of the feature sets as measured with
Dice index was poor. The filter based methods produced

more stable feature sets. Surprisingly, while the stability
selection improved the Dice measure over the traditional
model selection methods focusing on the prediction accu-
racy, the improvement was smaller than expected as the
stability selection tries to select models that are maximally
stable. However, the stability selection considers each voxel
independently that might not be optimal in neuroimaging
applications and which may explain rather low Dice values.
When accounting for the spatial nature of the data with mod-
ified Hausdorff distance (Dubuisson and Jain 1994), the FS
stability appeared in a better light. For example, for AD vs.
NC problem with 4 mm data and Nc = 100, the mHD val-
ues varied from 0.614 voxels to 5.192 voxels and for several
methods mHD was below 12 mm which can be considered
tolerable.

There was a strong linear relation between the sparsity
of the classifier and instability of the features, measured
either with Dice index or the modified Hausdorff distance.
Generally, the more dense the models were the more repro-
ducible they were; this phenomenon has also been noticed
in the context of fMRI classification analysis (Rasmussen
et al. 2012). Especially this is clearly seen when compar-
ing SVMF-1000 (selecting 1000 features) to SVMF-125
(selecting 125 features). However, selecting more features
did not result in less variation in the classification accuracy
let alone in a better classification accuracy. Likewise, we
did not observe the average classification accuracy and fea-
ture stability measures to be correlated. However, we found
correlations between 	ACC and the modified Hausdorff
distance, which indicates that the feature variability, when
quantified with a measure taking spatial nature of the data
into account, explained at least some of the variability in the
classification accuracy.

Different types of feature selection techniques (filters vs.
embedded methods and stability selection) seemingly dis-
agreed on which voxels to select, especially in the MCI
vs. NC problem. This is interesting, because filter based
methods are (in a sense) equivalent to standard massively
univariate analysis, where voxel-wise statistical maps are
constructed considering each voxel independently and then
thresholded while accounting for multiple comparisons.
While the two approaches are different and in many ways
complementary, the improved predictive performance of the
embedded feature selection methods for the MCI vs. NC
problem offers additional evidence that multivariate classifi-
cation methods could be a useful addition for neuroscientific
interpretation, supporting similar conclusions in Jimura and
Poldrack (2012), Davis et al. (2014), Khundrakpam et al.
(2015), Mohr et al. (2015). In this respect, it is important to
bear in mind that machine learning produces so-called back-
ward models and the classifier weights (or selected voxels)
have a different meaning than the parameter estimates in
the forward models produced by a standard mass-univariate
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analysis (Haufe et al. 2014). Especially, truly multivariate
feature selection can select features that are not by them-
selves diagnostic but control for various nuisance factors
(Kerr et al. 2014; Haufe et al. 2014).

An application specific finding was that the age-removal
procedure (Moradi et al. 2015) improved the classification
performance with every classifier. Although the perfor-
mance improvement did not reach significance according
to the corrected repeated t-test, the average t over all the
classifiers was significantly different from zero, verifying
the findings in the AD vs. NC classification of Dukart
et al. (2011) and in the MCI-to-AD conversion predic-
tion of Moradi et al. (2015). The rationale for age-removal
stemmed from strong evidence of overlapping effects of
normal aging and dementia on brain atrophy (Fjell et al.
2013; Dukart et al. 2011). We note that there was no strati-
fication according to age or gender when dividing the data
into two sets Ai and Bi . This was because we wanted
reproduce the normal variability between different sub-
ject samples: a research group rarely has the possibility to
exactly reproduce demographics of the sample acquired by
a different research group in a different centre. Obviously,
in addition to age, there might be other confounds (such as
personal health parameters studied in Franke et al. 2014),
whose removal from MRI could improve the classification
accuracy and a recent study (Klöppel et al. 2015) jointly
removed the effects of age, gender and intracranial volume
for the diagnosis of dementia.

An obvious limitation of this study is that we have
considered only dementia related applications of machine
learning within brain MRI. While we have made a specific
effort to avoid using application related information in the
classifier design (except for age removal), it is still not clear
how well the findings of this study generalize to the studies
of other brain diseases. Also, the ADNI study has stringent
inclusion/exclusion criteria (Petersen et al. 2010), for exam-
ple depressed subjects were excluded, and it might be that
the variabilities in the classification accuracy reported in this
study might underestimate the variabilities in the classifi-
cation accuracies in more heterogeneous, community based
samples.

Conclusions

The question that this work addressed was how much classi-
fication accuracy and selected features in machine learning
analysis of MRI depend on the subject sample. This ques-
tion is important as the machine learning analysis is increas-
ingly used in brain imaging and it is essential to know how
reliable and reproducible these analyses are. The results
in this paper support the use of advanced machine learn-
ing techniques in anatomical neuroimaging, but also raise

serious concerns related to certain methods and underline
the need of care when interpreting the machine learning
results. In brief, the main specific findings of this study
were: 1) the embedded feature selection methods (GraphNet
and Elastic Net) resulted in higher generalization perfor-
mance than the filter based ones or stability selection in
the MCI vs. NC problem; 2) the variability in classifica-
tion accuracy due to independent samples did not typi-
cally depend on the feature selection method and was at
an acceptable level; 3) the removal of the age confound
improved the classification performance; 4) the feature sta-
bility was not correlated with the average classification
performance, but a slight correlation with the stability of
classification performance was observed.
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