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Abstract There is a compelling need for early, accurate diag-
nosis of Parkinson’s disease (PD). Various magnetic resonance
imaging modalities are being explored as an adjunct to diagno-
sis. A significant challenge in using MR imaging for diagnosis
is developing appropriate algorithms for extracting diagnosti-
cally relevant information from brain images. In previous work,
we have demonstrated that individual subject variability can
have a substantial effect on identifying and determining the
borders of regions of analysis, and that this variability may
impact on prediction accuracy. In this paper we evaluate a new
statistical algorithm to determine if we can improve accuracy of
prediction using a subjects left-out validation of a DTI analysis.
Twenty subjects with PD and 22 healthy controls were imaged
to evaluate if a full brain diffusion tensor imaging-fractional
anisotropy (DTI-FA) map might be capable of segregating PD
from controls. In this paper, we present a new statistical algo-
rithm based on bootstrapping. We compare the capacity of this
algorithm to classify the identity of subjects left out of the
analysis with the accuracy of other statistical techniques, in-
cluding standard cluster-thresholding. The bootstrapped analy-
sis approach was able to correctly discriminate the 20 subjects
with PD from the 22 healthy controls (area under the receiver
operator curve or AUROC 0.90); however the sensitivity and
specificity of standard cluster-thresholding techniques at vari-
ous voxel-specific thresholds were less effective (AUROC
0.72–0.75). Based on these results sufficient information to
generate diagnostically relevant statistical maps may already
be collected by currentMRI scanners.We present one statistical

technique that might be used to extract diagnostically relevant
information from a full brain analysis.
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Introduction

There is a compelling need for early and accurate diagnosis of
Parkinson’s disease (PD). Various MR imaging modalities are
being explored to enhance diagnosis (Skidmore et al. 2011a, b,
c; Gorell et al. 1995; ShalomMichaeli et al. 2007; Vaillancourt
et al. 2009; Péran et al. 2010; Ma et al. 2010; Brodoehl et al.
2012; Focke et al. 2011; Haller et al. 2012). Methodologies for
developing predictions from imaging datasets vary. For exam-
ple, some groups focus on individual regions, ignoring the vast
majority of the image in order to focus on, for example, regions
such as the substantia nigra (Gorell et al. 1995; Vaillancourt
et al. 2009), or olfactory regions (Brodoehl et al. 2012). In some
cases, multiple modalities are used to look at a single regions or
a small number of regions to boost diagnostic yield (Péran et al.
2010). These region-specific approaches assume consistency of
effects amongst all PD patients, which may not be a valid
assumption. A few groups have attempted to perform full brain
analyses to evaluate group differences using all the available
imaging information (Skidmore et al. 2011a, b, c; Ma et al.
2010; Focke et al. 2011; Haller et al. 2012). However, while
multiple methods show robust group-level differences between
individuals with PD and individuals without PD, prediction of
diagnosis on an individual level is usually less robust, and only
a few studies are attempting to examine sensitivity or specificity
for diagnosis (Skidmore et al. 2011a, b, c; Haller et al. 2012).
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One possible limitation for generating predictive imaging
maps may relate to the statistical techniques used for the
analysis of imaging data. For example, cluster thresholding
is a longstanding and accepted technique used to evaluate
significance in imaging datasets (Forman et al 1995).Methods
used by Forman et al. have been generally adopted for statis-
tical testing of imaging data for the purposes of hypothesis-
testing, and this method is still in widespread use (Leunissen
et al. 2013; Monti et al. 2013; Junger et al. 2013; Gallivan
et al. 2013). However, the variability of the results derived by
this technique to the voxel-wise thresholding criteria is well
recognized (Nichols and Hayasaka 2003; Nichols and
Hayasaka 2003; Bennet et al. 2009; Smith and Nichols
2009). Our earlier work disclosed that individual subject
variability within an imaging dataset can additionally have a
significant effect. Specifically, leaving out individual subjects
from modest sized analyses can result in substantial changes
in the probability of individual voxels exceeding a statistical
threshold. In addition, reliability on a regional basis of voxels
to exceed a statistical threshold has an effect on the ability of a
region to predict group membership of individuals within a
given dataset (Skidmore et al. 2011a, b, c).

Univariate techniques have long assumed that physical
proximity (as judged by the size of a region of interest ex-
ceeding a certain statistical threshold) has an intrinsic value in
distinguishing signal from noise in large imaging datasets
(Forman et al. 1995). Multivariate techniques such as princi-
pal component analysis (e.g. see Eidelberg 2009) examine the
spatial covariance of the whole brain data structure for the
purposes of identifying characteristic disease specific patterns
rather than isolated anatomical deviations (e.g. see Eidelberg
2009). These methods have been primarily successful when
applied to steady-state functional data such as in Positron
Emission Tomography (PET) imaging, but have had limited
success in DTI data thus-far (see e.g., Caprihan et al. 2008),
possibly because of difference in signal to noise ratio on a
voxel-by-voxel basis between PET images and DTI imaging.
Since regional averaging effects might improve signal-to-
noise issues in DTI imaging, we wished to explore alternative
techniques that explicitly allowed regional statistical relation-
ships (e.g. Regions of Interest) to continue to play a role in
selection of the voxels for the purposes of developing a
statistical map, while controlling for individual subject effects.

Bootstrapping, using a univariate region-based approach, is
a procedure that may be well suited for this purpose.
Bootstrapping refers to a class of statistical methods that use
resampling to generate an empirical estimate of population
distribution. Classical bootstrapping, as defined by Efron et al.
(Efron 1979) is similar but not identical to other permutation
methods, which merely provide the probabilities of an occur-
rence. Bootstrapping may be distinguished from other permu-
tation methods methodologically by two factors: 1) relative
robustness as a measure, (bootstrapping can be applied with

minimal assumptions to even complex datasets), and 2) gen-
erating as a principal output estimates of confidence intervals
and standard error within the dataset (see DiCiccio and
Romano 1989).

In this paper, we estimate the capacity of a bootstrapped
analysis approach to generate a predictive map using real
imaging data by comparing a straightforward bootstrapped
process (using confidence intervals to define our regions of
interest for the purposes of prediction), compared to a standard
statistical mapping technique (Forman et al 1995). We also
compare our previous predictive mapping strategy (Skidmore
et al. 2011a, b, c) and discuss problems with this strategy that
this bootstrapping procedure corrects. We generate this anal-
ysis in a dataset of clinical interest—evaluating how well we
can distinguish PD from healthy controls in a DTI data set.

Materials and Methods

Subjects

In this study we initially recruited 20 subjects with PD and 23
healthy controls. After enrollment but before data analysis,
one healthy control was excluded after developing a resting
tremor that was levodopa responsive, leading to a diagnosis of
PD, and thus, the final subject pool included 20 subjects with
PD and 22 healthy controls (Demographics, Table 1). Disease
severity and cognitive profile for all subjects with PD are
evaluated 12–18 h after the last levodopa dose, in a practically
defined “off” state. All PD subjects in the analyzed dataset had
been followed clinically for two ormore years and retained the
same clinical diagnosis of levodopa-responsive Parkinson
disease.

Imaging and Data Preprocessing

Imaging was performed on a Philips Achieva 3.0 T scanner
(Phillips Medical systems, Best, The Netherlands) using a 2-
dimensional acquisition with the parameters: b-value=1000 s/
mm3, TE=55ms, TR=11,304ms, 32 directions, 66 slices with
slice thickness = 2 mm, imagematrix = 112×112, with FOVof
224 mm and in-plane voxel-wise resolution of 2 mm×2 mm.
Currently, most common spatial normalization method used in
the field is to calculate the diffusion tensor metrics in the native
space then use FA or bo images to register to a common
template (Theilmann et al. 2013; Melzer et al. 2013). There
is no accepted method to use all tensor components (a vector
field) for registration (Lauzon et al. 2013). In the case that the
subjects studied considerably differ from the normal popula-
tion (such as a pediatric population of certain age range—see
Villalon et al. 2013) a population specific atlas can be used.We
specifically recruited individuals with Parkinson disease with-
out cogni t ive decl ine, a group not expected to
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differ significantly from a healthy population (Melzer et al.
2013). In this case a subject specific atlas would not be neces-
sary nor useful.

Pre-processing was therefore performed to calculate frac-
tional anisotropy (FA) for each subject. Specifically, the dif-
fusion weighted images of the DTI dataset images were
corrected for eddy current induced distortions using the eddy
current correction routine in FSL (www.fmrib.ox.ac.uk/fsl/).
The non-brain tissue was removed using brain extraction
routine (BET2) in the FSL package. The FA maps were then
calculated using the FSL routine DTIFIT for all subjects. We
first registered b0 images to the Montreal Neurological Insti-
tute template (MNI-152: 1×1×1 mm3) using a 12-parameter
affine transformation (FLIRT in FSL package). We then

applied the same transformation to the FA maps to register
them to MNI template space. The FA maps were then trans-
formed to a format (“BRIK” and “HEAD” files) relevant to
the Analysis of Functional Neuroimaging (AFNI - Cox 1996)
program, which was used for further analysis, and the
FA images were smoothed using a kernel of 5 mm
(FWHM) in AFNI.

Statistical Analysis

We evaluated here the hypothesis that a bootstrapped analysis
may generate a better predictive map. To accomplish this, we
performed 42 analyses three times, using three different tech-
niques. In each analysis, one subject, or one control, was left
out once. We used the 42 analyses to generate sensitivity and
specificity estimates, and a receiver-operator curve (ROC) for
each of the three techniques. Our comparative measure for
evaluation of various methods was predictive accuracy—spe-
cifically in this case area under the ROC curve (AUROC)
compared as correlated curves. We can compare accuracy of
each technique because each analysis is based on the same
cases. We analyzed which approach generated the best statis-
tical map to predict left out subjects. The three mapping
strategies compared were:

1) Standard Cluster-Thresholding (Forman et al 1995).
2) The RMRDmethod, described previously (Skidmore et al

2011a, b).
3) A bootstrapped analysis (described in more detail below).

Two general considerations were important in generating
our analyses. First, each type of analysis resulted in an iden-
tification of a Region or Regions of Interest that were signif-
icantly different in the comparison between the PD subjects
and controls. Each of the three mapping strategies, however,
while often agreeing on a general region of analysis, selected a
different size and shape considered key or the basis of the
Region of Interest. Differences in the size and shape of the
regions chosen related in some part to the voxel-wise criteria
(e.g. p<0.05, p<0.01, p<0.001) used in the selection, as well
as the specific method (#1, 2, and 3 above) used. The RMRD
method and the bootstrapped method were designed to im-
prove reliability in determining the borders of specific regions
of interest used to develop prediction; the RMRD improved
reliability by using the full analysis to constrain the regions
used for prediction (and we discuss limitations of this ap-
proach later), while the bootstrapped method was model-free
at the level of each individual analyses (e.g. a full analysis did
not inform any of the results of the 42 independent leave one
out, analyses).

Secondly, in order to make a relevant comparison, a uni-
form measure was needed to compare the accuracy of tech-
niques. Each method selected regions of interest; the regions,

Table 1 Demographics of sample

Controla PDa p

Number 22 20

Age 61±13 64±9 P=0.40

Gender (F/M) 8 F/14 M 3 F/17 M P=0.22

Cognitive profile

MMSE 28±2 26±3 p=0.02

MOCA 27±3 24±5 p=0.04b

Trail making test

Part A 28±8 59±36 p=0.001b

Part B 90±54 159±105 p=0.01b

Stroop

Word 97±5 92±11 p=0.04b

Color 76±14 64±22 p=0.05b

Interference 39±15 31±17 p=0.11

JLO 26±5 23±6 p=0.08

Mood/Emotion

Marin apathy scale 24±4 23±4 p=0.47

Hamilton depression 8±5 13±7 p=0.01

Disease severity

H/Y (Off Med) 3(1.5–5)

H/Y (On Med) 2(1.5–3)

UPDRS - Off Med

Part I 4±3

Part II 12±6

Part III 34±14

Part IV 3±2

Total (Sum of I–IV) 52±21

H/Y Hoehn/Yahr

UPDRS Unified Parkinson Disease Rating Scale
a Continuous Data and Discrete Data (such as age or values on scored
tests) are displayed as mean value or score with standard deviation.
Display of gender data is self-explanatory. Hoehn and Yahr score is a
form of categorical data, and is displayed as median score and range.
UPDRS score was obtained In an “off medication” state for all subjects
b Unequal sample variance
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as developed by the specific method, were then used to
generate a prediction. The uniform technique we use follows
the following steps:

1. Identification of Regions (Method Specific).
2. Normalization
3. Regional Averaging
4. Variable Thresholding
5. Comparison with Left Out Subject Value in Defined

Regions
6. Prediction and calculation of ROC and AUROC

These steps are recapitulated in Fig. 1. Each analysis meth-
od generates distinct regions of interest for analysis. Once
regions are selected, we use an identical method to define
predictive accuracy across all methods. For the purposes of
visual display, assume red band represents the PD regional
mean; the green band represents the control regional mean.
There is a normalization step to normalize the direction of
prediction for each region. We can then evaluate the capacity
of the selected region to predict the identity of the subject
(illustrated as an orange rectangle). On the far left, note we
demonstrate a generated regional mean (take in this case
“Red” to be the PD mean, and “Green” to be the control
mean) for a particular Region of Interest. With respect to the
normalization step, once we select Regions of Interest, the
selected regions may differ in one of two fashions. Either, the
mean fractional anisotropy may be DECREASED in the
region in individuals with PD with respect to healthy controls,
OR, the mean fractional anisotropy may be INCREASED in
the region in individuals with PD compared to the controls. In
order to use all the available information, we must therefore
adjusted for the direction of difference. We therefore normal-
ize the difference of the means to create a unidirectional
relationship (equivalent to taking the absolute value of the
difference—see Normalization Step).

Combining regional findings, for each analysis we gener-
ated a prediction. We have in most cases generated multiple
Regions of Interest to be used for our prediction. Mean values
for each calculated region are calculated for each left out
subject. A number of distance measures could be considered
to define our prediction, but pragmatically for this study we
simply average all the normalized Regions of Interest to
generate a single metric. Thus, no region is weighted more
heavily than another, since the method choses regions that are
presumed to contribute information equally to discrimination.
Using variable thresholding, we generate an estimate at each
threshold as to whether the subject would be rated as a PD
subject, or as a control subject. In the case illustrated in Fig. 1
(with the small Orange box represents the mean normalized
FA value of the left out subject), the subject’s mean value
would result in the subject being rated as PD subject at many
thresholds, but as a control if we allow the threshold to more

closely approach the PD mean (varying this threshold would
therefore allow one to increase the specificity or sensitivity of
diagnosis). As we repeat this analysis 42 times, we then are
able to generate a Sensitivity measure (the likelihood that an
individual with PD is accurately diagnosed with PD), and a
Specificity measure (the likelihood that a Control subject is
accurately identified as a control or not PD), for each analysis
method, across all thresholds.

Our three methods differed primarily in the way that they
select Regions of Interest, and the precise voxels con-
sidered part of each Region of Interest; we discuss this
in more detail below.

Standard Cluster-Thresholding

Cluster-thresholding is a longstanding and accepted technique
used to evaluate significance in imaging datasets (Forman et al
1995). The method used by Forman et al. is still in common
use (Leunissen et al. 2013; Monti et al. 2013; Junger et al.
2013; Gallivan et al. 2013), although the non-linear sensitivity
of the results derived by this technique to the voxel-wise
thresholding criteria is well recognized (Nichols and
Hayasaka 2003; Nichols and Hayasaka 2003; Bennet et al.
2009; Smith and Nichols 2009). We used a straightforward
adaption of this technique. Following the general processes
outlined by Forman et al. and using a Monte-Carlo analysis,
we defined significant cluster size on a brain-wide basis for
the following voxel-wise thresholds: p<0.05, p<0.01, and
p<0.001. We then left out each subject once, resulting in 42
independent analyses. A single, voxel-wise t-test was then
performed for each of the 42 analyses. Thresholding was
performed at each voxel-wise statistical threshold, with each
voxel being characterized as above, or below, threshold. Re-
gions were then selected based on whether they were above or
below the cluster-size threshold. In order to keep our tech-
nique as simple as possible, clustering was performed using a
nearest-neighbor method—e.g. voxels had to be directly
contacting each other in order to be assumed to be a cohesive
entity from the perspective of clustering, and no adjustment
for the size or shape of the cluster was performed (e.g., two
cohesive globular or ovoid clusters joined by a relatively
narrow “neck” could be considered a single cluster in this
approach). A simplified clustering method was performed
in part because we wished to avoid post-hoc adjust-
ments to the analysis. We selected Regions of Interest
for analysis as follows:

1. For the voxel-wise threshold of p<0.05, the largest single
Region of Interest that met cluster size threshold (based on
our Monte-Carlo evaluation, our cluster size threshold
was 3971 voxels) was selected develop the mean
for each PD and Control group, and assessed for the
left out subject.
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2. For the voxel-wise threshold of p<0.01, we selected up to
five Regions of Interest (the largest five) meeting the
cluster size threshold (in this case, 771 voxels).

3. For a voxel-wise threshold of p<0.001, we allowed up to
50 Regions of Interest meeting the cluster-size threshold
(233 voxels) to be selected (at this threshold, however, in
all cases we identified only 1–3 Regions of Interest
meeting both the voxel-wise and cluster-size thresh-
old criteria).

Each identified Region of Interest was used to develop a
mean FA value, which was then normalized as described
above (Fig. 1) and used to generate an ROC curve for the
Cluster Thresholding method, at each voxel-wise threshold.

Regional Mapping of Reliable Difference (RMRD) Method

We fully discuss the RMRD method in previous publications
(Skidmore et al. 2011a, b, c). Briefly, in this study we first
generated a full, two sample t-test, using standard cluster-
thresholding to identify regions of interest in which the two
samples differed. Subsequently, each subject was left out
once, and a 2-sample t-Test was once again performed. Rather
than threshold by cluster size, within these iterative maps,
Regions of Interest were identified in accordance with degree
of overlap with the center of mass of Regions of Interest
identified in the primary analysis. In this case, we evaluated
two voxel-wise thresholds (p<0.01 and p<0.001) to define
potential regions of difference in the full sample, and these
thresholds were also used within each “left out” analysis to

create the predictive maps for predicting the left-out subjects.
As with 2.3a, the selected regions were used to generate
Sensitivity and Specificity estimates at each threshold and an
ROC curve.

Bootstrap Analysis

We developed a new statistical algorithm using bootstrapping
to evaluate if we could improve prediction compared to a
standard Cluster Thresholding approach and our previous
RMRD algorithm evaluated using leave one out approaches.
With a bootstrapping, we assume that an inference about a
population distribution S from sample data can be modeled by
resampling the data. Formally, with bootstrapping we expect
that the true probability distribution within a full population,
S, given the original data, is analogous to the empirical distri-
bution of the resampled data, Ŝ, determined from the
resampled data. Since we know the distribution of Ŝ, we can
generate confidence intervals, and use these to make an infer-
ence about the true sample distribution S. The bootstrap
analysis described by Efron does not require a null hypothesis,
but does make one important assumption embedded in many
statistical models—that the distribution of the true sample can
be approximated by a normal distribution. With a
bootstrapped analysis, we posit that, under the normality
assumption, bootstrapping will better approximate the true
sample distribution, allowing us to better define the
borders of regions of interest that might accurately
identify left out subjects.

Fig. 1 Uniform method for analyzing regions of interest. Each analysis
method generates distinct regions of interest for analysis. Once regions
are selected, we use an identical methods to define predictive accuracy
across all methods. For the purposes of visual display, assume red band
represents the PD regional mean; the green band represents the control
regional mean. There is a normalization step to normalize the direction of
prediction. Variable thresh-holding allows us to evaluate the capacity of
the selected region to predict the identity of the subject (illustrated as an

orange rectangle). In this case, the prediction favors a diagnosis of PD
(red) at many thresholds but adopting a more stringent threshold results in
identification as a control subject (green). Accuracy of the prediction
compared to the known identification of the left out subject allows us to
generate sensitivity and specificity across multiple thresholds. With mul-
tiple subjects, this allows us to generate a receiver operator characteristic
curve
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Creating an Individual Bootstrapped Analysis Bootstrapping
uses selection with replacement to generate a new sample. The
technique can obviously be used with any number of subjects,
but works best when the sampling frame is large. In our case,
starting with our full sample, H, comprised of n subjects (in
this case 20 subjects with PD and 22 healthy controls), we
created a new sample H using random selection with replace-
ment. The new sample in this case is also comprised of 20 PD
images and 22 control images. However, with random selec-
tion and replacement approximately 11 (standard deviation~+/
−2) subjects with PD and approximately 12 (standard devia-
tion again~+/−2) healthy controls are used to generate this
new sample H, with some subjects deleted and others dupli-
cated one or more times within the new sample. In each case,
subjects that are within the analysis, and subjects excluded
from the analysis, are recorded for the purposes of validation
(see 2.3c.4 below). In a larger sample, of course there is
less overlap amongst samples, but process and concepts
are the same.

Defining the Statistical Measure to be Bootstrapped Any
statistical measure can be the target of a bootstrapped analysis,
however the technique is intensive from a computational and
memory or storage perspective. For the purposes of our anal-
ysis, we performed a t-test with each new sample on each
voxel; let us represent the 3-dimensional map generated by
this statistical analysis by the term Ĥ. In this case, Ĥ repre-
sented, in aggregate, the set comprised of each individual
voxel within the 3-dimensional map, as identical statistical
operations are performed in parallel to each voxel, and no
analysis is performed across voxels until the clustering step.
Each t-test was then thresholded, defining voxels in which the
PD group differs from the control group at stringency of
p<0.05. A binary map, Ĥb comprising all voxels statistically
significant at the defined stringency level for each analysis
“n”, which we can define as Ĥb(n) for each analysis “n”, are
generated. We term this map a binary map because our thresh-
old defines each voxel in the map either as 0 (below threshold)
or 1 (above threshold).

Defining the Number of Bootstrapped Iterations The number
of iterations required for an optimal bootstrapping operation is
undefined, and is dependent on the desired level of estimate
precision. We wished to perform sufficient iterations to obtain
a stable regional estimate of the shape and size of Regions of
Interest, and as a surrogate measure of this defined that a shift
in the estimated number of voxels meeting criteria of <+/−5 %
should be sufficient to allow us to evaluate our hypothesis.
Empirically, we find that in all cases by approximately 350
iterations we develop stability in the number of voxels esti-
mated to meet our confidence interval criteria at both the 90%
and the 95 % confidence interval (Fig. 2) and this would vary
with the size of the underlying sampled population of cases

and homogeneity amongst those cases and size of the resultant
population. We required about 50 iterations per subject (a total
of 2100 iterations) to obtain sufficient samples in which all 42
subjects were left out of at least 350 analyses (range
~350 to 1,050). Our bootstrapped sample is therefore
based on 2100 iterations.

Creating the Bootstrapped Statistical and Validation Maps A
full sample bootstrapped map, ŜF, including all subjects,
is created for the purposes of displaying results, and
includes a summation of all individual Ĥb(n) binary
maps, formally:

bSF ¼
X

n¼1

2100
bH b nð Þ˙

In addition, for each subject, a bootstrapped map compris-
ing only those maps in which a particular individual is left out
of the all analyses can also be generated. Formally, we can
define, given the 42 subjects in our data pool, for individual i
in the set a = {1, 2, 3, . . . 42}, the specific bootstrappedmap Ŝi
comprises all bootstrapped results bi, with the number of
iterations in which i is not present being defined as the
set ni = {0, 1 . . . x}, formally:

bSi ¼
X

ni¼0

x

bH bini
˙

These summary maps can be normalized to a percentile
rank per voxel for each map, which essentially gives us our
confidence interval that a particular voxel is significantly
above the defined threshold, given the assumption of normal-
ity of the fractional anisotropy signal distribution within each
subject grouping (e.g. the PD group and the control group).

Selecting Regions in Order to Test Bootstrap Validity To
estimate the validity of the bootstrapped method to predict
left-out subjects, we use a confidence interval (rather than a t-
statistic) to define the borders of our Region(s) of Interest.
There are no specific criteria for selecting the number of
regions in a bootstrapped model to accept for the purposes
of prediction, and we selected the number empirically. In this
paper, we elected to use the largest 5 Regions of Interest
(comparable to the number of Regions of Interested selected
using standard Cluster thresholding and using the RMRD
method) for the purposes of generating a prediction of left
out subjects The borders of each Region of Interest for each of
the 42 individual subject bootstraps was generated using a
confidence interval of 90 %, and 95 %.
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Results

Prediction of Left Out Subjects

Using variable thresholding, a Receiver-Operator Character-
istic Curve was determined for each method (Fig. 3). Accura-
cy of prediction for the bootstrapped analysis at both the 90 %
confidence interval and the 95 % confidence interval essen-
tially overlap; the ROC curve for the 95% confidence interval
is presented. Area under the receiver-operator curve
(AUROC) for each method is shown in Table 3. Summarizing

the table, AUROC for the bootstrap analysis is 0.897 at a
confidence interval of 90 % and 0.901 at a confidence interval
of 95 %. AUROC for the RMRD and for standard cluster-
thresholding is less as is shown in Table 2.

Map Characteristics

Each method resulted in differences in the number and loca-
tion of voxels selected for the purposes of generating a pre-
diction (see Table 3 for summary). Statistical maps using each
method were developed and are displayed in Fig. 4. It can be

Fig. 2 Percent change in
predicted “Significant” area by
number of bootstrapped
iterations. Within this dataset, and
using a cutoff of 95 and 90 %
voxel-wise confidence interval,
area predicted to be “above
threshold” stabilized markedly
over the first 100 iterations.
Approximately 350 iterations
were required to stabilize
predictions to an arbitrarily
defined baseline with change of
<+/−5 %. Arrow marks
approximate lower limit of
iterations among “left out”
subjects

Fig. 3 Receiver-operator
characteristic curve derived from
DTI-FA maps of 20 PD & 22
healthy controls left-out of
analysis pool. Receiver operator
characteristic curve derived from
DTI-FA maps of 20 PD & 22
healthy controls for detection of
subjects left out of analysis.
Cluster-thresholding at various
voxel-wise thresholds (dotted)
provide marginal prediction in
our hands. The PI’s RMRD
method had improved accuracy
(dashed lines). A bootstrapping
approach (heavy solid red line)
was the most predictive
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readily appreciated, first, that none of the methods we use
“invent” data—that is to say happily that there is a remarkable
consistency among analysis techniques in the location of
regions defined as significant. It is however also notable from
an examination of the figure that both individual voxels and
regions are emphasized, or de-emphasized, depending on the
analysis threshold, and method chosen. We note that, in our
hands, increasing statistical stringency of standard cluster-
thresholding from p<0.05 to p<0.001 did not improve pre-
diction of left out subjects although the sample size itself is
small. Conversely, the bootstrapped analysis best selected
those voxels associated with regions that were predictive of
the “left out” subject.

Differences Between PD and Control Sample

Since the bootstrapped analysis generated Regions of Interest
that best predicted the left-out subject, we used this analysis to
define regional differences between the samples. Table 4 de-
lineates results of bootstrapping. Turning to Table 4, we note
that, using our algorithm, sensitivity and specificity of indi-
vidual selected regions met or exceeded the best results of all
regions generated using standard cluster-thresholding (e.g.
AUROC > 0.75 for each region), and combining regions

resulted in AUROC = 0.901 at a confidence interval of
95 %. In regions selected using our bootstrapping algorithm,
it is notable that fractional anisotropy is increased in individ-
uals with PD in our sample. This finding is likely related to a
significant distinction in our preprocessing strategy and goals
compared to other groups, and we will discuss this in more
detail in the discussion Section.

Discussion

The goal of our study was twofold. First, we had an overall
goal of evaluating the feasibility of using diffusion tensor
imaging for the purposes of identifying the presence of PD.
In this specific work, we use a region of interest based ap-
proach to distinguish PD from a control sample, and we
evaluate if a bootstrapped analysis allows us to better define
the borders of our regions of interest from the perspective of
identifying left-out subjects for validation. We find that a
bootstrapped approach can generate more robust predictive
maps (AUROC 0.901 at our 95 % confidence interval). We
would interpret the improved prediction using our
bootstrapped methodology as evidence that the bootstrapping
constrained selection, shape, and precise localization of re-
gions to maximize identification of those voxels within the
selected regions that would be most likely to be predictive of
the shape, size, and location of a similar identifying region in a
new subject. The approach improves on standard cluster-
thresholding, and also provides an improved prediction com-
pared to our previously published RMRD method (Skidmore
et al 2011a, b, c). In addition, unlike the RMRD method, we
do not constrain our results by an initial analysis, removing
some a feature in the RMRD method that could lead to
circularity in the analysis and over-optimistic estimates of
the effectiveness of the RMRD method to predict new data.
We find again in this analysis that significance and reliability
are dissociated properties in brain images, and that focusing
on defining what regions of an image are reliably different

Table 3 Number/Proportion of voxels deemed “Significant” by voxel-wise and cluster-wise thresholding, by analysis method

Method Voxel-wise stringency
requirement

Cluster-size stringency
requirement

Cluster numberΨ

actual (Maximum)
Mean # voxels
“Significant”

Percent of
total voxels

Cluster-Threshold P<0.05 3971 (each analysis) 1 (1) 25,964 1.4 %

P<0.01 771 (each analysis) 4–5 (5) 9826 0.5 %

P<0.001 233 (each analysis) 3 (50) 1714 0.09 %

RMRD P<0.01 771 (full analysis) 5 (5) 8668 0.45 %

P<0.001 233 (full analysis) 3 (50) 1300 0.068 %

Bootstrap > 90 % of T-Tests None 5 (N/A) 6784 0.35 %

> 95 % of T-Tests None 5 (N/A) 4265 0.22 %

Ψ In both cluster-threshold analysis and the RMRDmethod clusters are selected on both a voxel-wise and cluster size stringency requirement. There is at
present no defined cluster-size stringency requirement for a bootstrapped process; five regions were selected empirically to test prediction accuracy

Table 2 Effectiveness, bymethod, of predictive mapping for detection of
left out subjects

Method AUROC for detection
of “left out” subject

Bootstrap, 95 % Confidence Interval 0.901

Bootstrap, 90 % Confidence Interval 0.897

RMRD Method, threshold p<0.001 0.83

RMRD Method, threshold p<0.01 0.82

Standard Cluster-Thresholding, p<0.001 0.73

Standard Cluster-Thresholding, p<0.01 0.75

Standard Cluster-Thresholding, p<0.05 0.72
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leads to better prediction of new data.We accordingly propose
consideration of a general standard in statistical analysis of
brain imaging data, focusing on clinically relevant criteria of
reliability of prediction of new data.

Our findings of increased fractional anisotropy in several
regions are ostensibly distinct from the findings of other
laboratories that have evaluated white matter integrity in
Parkinson disease. For example, both Zhang et al., and Zhan
et al. studied white matter integrity in PD using voxel-based

morphometry, and found decreased FA in a number of regions
throughout the brain (Zhang et al 2011; Zhan et al. 2012). A
close examination of the papers in question, however, reveals
that our analytical goals were quite different from those of
Zhan and Zhang. In their studies, performed on high-
performance 4 TMRIs, rigid thresholding was used to remove
gray matter (for example, voxels with signal <0.20 were
excluded from analysis). To maintain precise localization of
often narrowly defined white matter tracts, smoothing of the

Fig. 4 Effects of different analysis strategies on predictive maps
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data was not performed. The principal goal of the research of
these two groups was the valuable, and valid goal of specifi-
cally evaluating white matter integrity in PD. However in
removing large regions of the image to isolate only white
matter tracts much information that might be useful for differ-
entiating the samples may also have been removed.

In our case, we were not specifically focused on the goal of
understanding white matter integrity in PD, but rather on the
more prosaic goal of determining whether we could use an FA
map to predict group identity. Our results may differ from
those of Zhan and Zhang, due to the simple fact that we
retained a significant amount of fractional anisotropy data
within our images, information that was discarded by Zhan
and Zhang. It can be noted, for example, that the mean FA
value of several of our regions of largest FA difference (in-
cluding the rectal gyrus and the supplementary motor cortex)
were in healthy controls below the predetermined threshold of
both labs (e.g. the regions would have been discarded and not
included in their analyses). It would be reasonable to posit that
in these regions FA values represented a mixture of gray and
white matter signal. It is therefore entirely possible that the
“increases” in FA in PD discerned by our analysis might
represent a decrease in gray matter in the regions identified
in at least some cases. Further study will be required to
determine the nature of the underlying structural differ-
ences that might be responsible for the FA differences
within our sample.

A further limitation of our study is our sample size, and the
nature of our sample. Our PD sample pool included only 20
individuals with late mild to moderate PD, with disease dura-
tion between 5 and 12 years. All subjects clearly had defined
PD under chronic treatment with dopaminergic agents, that
would be identifiable by brief clinical examination by any
qualified neurologist. An additional interest in collection of
the dataset was the causes of apathy in PD (Skidmore et al
2011c), and so the presence of apathy is relatively enriched in

our data pool. Nevertheless, unless there is a method by PD
interaction, our use of all three methods applied to the same
individuals should still allow valuable conclusions. The va-
lidity of a map generated by such a population to identify PD
in unmedicated individuals early in disease (an eventual goal
of analysis) is open to question, but it is likely that sensitivity
and specificity will suffer, perhaps dramatically.

We further are limited by the nature of our goals in this
study—we show that we can segregate PD from healthy
controls, but do not show that we can differentiate PD from
other forms of parkinsonism. More specifically, we show we
can segregate individuals with well-defined clinical disease
from individuals who do not have PD; as we will discuss
below, the clinical population we study is therefore quite
distinct from a clinical population that would be of general
clinical relevance—individuals in early stages of symptoms,
where differential diagnosis and prognosis is a clinical ques-
tion of significant relevance.

Finally, our study was a single-site study, performed using
a specific 3 T Phillips MRI, with a defined obsolescence date.
As is common in the field, we standardized our data according
to a uniform atlas, and we face the usual issue of variability in
size and shape of the brain of each subject. We used an
established and valid method of mapping to the atlas that
may however be distinct from methods used by other labora-
tories. Our laboratory is not alone in managing these types of
difficulties, which are common features in a field of study in
which individual variability in the analytical approach dramat-
ically colors research output.

Given the above caveats, it would be inappropriate to
conclude that we have discovered a “diagnostic map” for
PD. Rather, we present an approach to analysis of imaging
that may begin to lead towards better standardization and
yields results that are more closely aligned with clinically
relevant outcomes (prediction). Given that we show excellent
sample segregation using only one aspect of the DTI image—

Table 4 Significant regions defined by bootstrapped analysis (Bilateral)

Locationa Sizea Mean fractional anisotropya Sensitivity/Specificity

Region RL AP IS Voxels (mm3) PD Control Regional AUROC

Rectal GyrusŦ 1 −25 −21 1457 0.24+/−0.03 0.20+/−0.02 0.82

Middle CingulateŦ 1 18 38 1093 0.20+/−0.05 0.15+/−0.04 0.75

Left Putamen 18 −6 −3 1066 0.30+/−0.04 0.24+/−0.03 0.82

Right Putamen −18 −10 −6 411 0.26+/−0.04 0.20+/−0.03 0.82

Left Thalamus 9 21 7 238 0.28+/−0.02 0.25+/−0.02 0.80

Mean of Regionsb 0.25+/−0.02 0.21+/−0.02 0.901

a Raw results involved creating 42 separate renditions of the above tables. However, for the sake of clarity, we present location and size of regions derived
from the full analysis (generated by taking the 90 % confidence interval from a map comprised of adding all 2,100 bootstrapped analyses). Similarly,
mean and standard deviation of fractional anisotropy are shown based on the full bootstrapped analysis. Conversely, sensitivity and specificity (AUROC)
is based on each of the 42 individual “left out” analysis
bMean value of each region, rather than mean of individual voxels (which would have weighted predictions to favor larger regions) was used to generate
a “mean of regions” for the purposes of prediction
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fractional anisotropy (FA), we also show that full brain analy-
sis of DTI images may be a fruitful area of study for developing
biomarkers for PD. However, a larger sample group, collected
across multiple sites will likely be required to generate predic-
tive maps relevant across sites, and showing that PD can be
differentiated from parkinsonism would be an important addi-
tional step. If identification of individuals with early-stage
disease is a goal, then maps should be generated in a dataset
of individuals with early disease. We present a proof of concept
therefore; further optimization is likely to occur over time.

Our brute force approach (bootstrapping) applied here
works as a univariate voxel based algorithm, and may suggest
that bootstrapping can also be extended to multivariate covari-
ance network based analysis of voxel interconnectivity such
as SSM-PCA where bootstrapping has been previously used
to validate predictive network pattern maps in PET images
(Tang et al 2010a, b; Eidelberg 2009; Mure et al. 2011; Huang
et al. 2007, 2008; Habeck et al. 2008). Combined approaches,
using bootstrapping to constrain regions selected for analysis,
might also bear fruit. Further, while in this initial analysis, we
used a “one-voxel, one vote” analysis, creating averages for
each region based on equal weighting of all voxels in the
identified cluster, our current approach creates complex maps
that are amenable to weighting. Finally, with respect to the
choice of imaging technique, we evaluated the DTI FA signal,
however FA is only a small fragment of information available
in DTI images, and other imaging types, including cortical
thickness maps, resting fMRI, p-CASL images, and a host of
new and developing techniques for imaging brain iron and
other characteristics will likely all contribute to improving the
direct clinical relevancy of brain imaging.

In summary, we show that it is possible, using an iterative,
full brain, bootstrapped analysis, to generate robust DTI brain
maps that are predictive of new data that was generated and
processed in a similar fashion. We propose that methods of
statistical analysis focused on reliability of prediction of new
data may over time be more useful than standard statistical
methods in advancing brain imaging towards the goal of
improved clinical relevancy.
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