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Abstract Detecting event related potentials (ERPs)
from single trials is critical to the operation of many
stimulus-driven brain computer interface (BCI) sys-
tems. The low strength of the ERP signal compared
to the noise (due to artifacts and BCI irrelevant brain
processes) makes this a challenging signal detection
problem. Previous work has tended to focus on how
best to detect a single ERP type (such as the visual odd-
ball response). However, the underlying ERP detection
problem is essentially the same regardless of stimulus
modality (e.g. visual or tactile), ERP component (e.g.
P300 oddball response, or the error-potential), mea-
surement system or electrode layout. To investigate
whether a single ERP detection method might work
for a wider range of ERP BCIs we compare detection
performance over a large corpus of more than 50 ERP
BCI datasets whilst systematically varying the elec-
trode montage, spectral filter, spatial filter and classifier
training methods. We identify an interesting interaction
between spatial whitening and regularised classification
which made detection performance independent of the
choice of spectral filter low-pass frequency. Our re-
sults show that pipeline consisting of spectral filtering,
spatial whitening, and regularised classification gives
near maximal performance in all cases. Importantly,
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this pipeline is simple to implement and completely
automatic with no expert feature selection or parame-
ter tuning required. Thus, we recommend this combi-
nation as a “best-practice” method for ERP detection
problems.
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Introduction

The aim of Brain Computer Interface (BCI) research
(Birbaumer et al. 2000; Wolpaw et al. 2002; van Gerven
et al. 2009) is to provide a direct link from human
intentions, as observed in brain signals, to control of
computers. Such systems might be used to allow com-
pletely paralysed people to communicate, among other
potential applications. Here we focus on BCI systems
for the transmission of an intentional communication or
control signal. This requires three challenges to be met:
a mental task which evokes or induces some pattern of
activation in the brain that can be voluntarily modu-
lated by the user; a way of measuring this activity; and
methods for processing the signal to decode the user’s
intentions as accurately as possible.

Broadly speaking, BCIs can be categorised as either
evoked or induced depending on the type of brain
response they exploit. Evoked-response BCIs use the
brain’s responses to sensory stimuli, modulated by the
user’s (overt and/or covert) selective attention to those
stimuli. The signals that can be exploited in such BCIs
are time-locked in that they have a predictable po-
larity at given times relative to the stimulus event.
For example, stimuli may elicit event-related potential
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components (ERPs) that are attention-modulated, such
as the P300, a positive deflection in voltage that occurs
300–400 msec after a target stimulus under certain con-
ditions. This forms the basis of one of the most popular
and widely-studied BCIs (Farwell and Donchin 1988).
Steady-state evoked potentials (SSEPs) also exhibit a
predictable phase relationship to the oscillatory stimu-
lus signals that generate them, and may also form the
basis of such a BCI (Middendorf et al. 2000). By con-
trast, in induced-response BCIs the signal polarity itself
is not time-locked but some other feature is. Induced
responses most commonly use second-order features
(Christoforou et al. 2010), such as power or coherence.
For example, imagining moving a hand or foot causes a
reduction in the power in the μ-frequency range over
the appropriate region of the motor cortex. Such a
power reduction is called an event-related desynchro-
nisation (ERD) and is the basis for many BCIs that
are driven by imagined movement (Pfurtscheller et al.
2006; Pfurtscheller and Neuper 2001). Other internally-
generated mental states, e.g. performing mental arith-
metic, also tend to cause frequency- and location-
specific changes in signal power. The different single
features used in these two types of BCI significantly
change the type of signal processing needed to decode
the users’ intentions.

Detecting the BCI relevant brain signal is a chal-
lenging problem due to their small strength relative to
the background noise (for the purposes of the current
paper we will refer to any non-BCI task related signal
as “noise”). Signal processing techniques are needed to
pre-process the raw sensor data to suppress the non-
BCI signals, such as line-noise or muscle artifacts, whilst
keeping the BCI as strong as possible, i.e. to max-
imise the signal–to–noise ratio. Commonly-used pre-
processing methods include; temporal windowing to
select time-ranges of interest; spectral-filtering to select
frequency ranges where the signal lies; and spatial-
filtering to suppress signals from unwanted locations
and select electrode locations where the signal of in-
terest should be strongest (Blankertz et al. 2011). Due
to the large degree of between-subject variability in
BCI signal properties a subject-dependent classifier
is also normally used to detect which task the user
was performing, or whether a given stimulus was at-
tended or unattended. The classifier is trained using
pre-processed data from a calibration session, in which
the user performs a pre-determined sequence of mental
tasks or selections.

Getting the pre-processing and classifier training
pipeline right is critical to maximising BCI perfor-
mance. Ideally, one would like a system which could
determine the optimal parameter settings automatically

for any BCI given only the calibration-session data.
However, this is difficult given the large differences in
signal properties for different BCIs due to different sen-
sor types and mental task used. For example, evoked
BCIs need only first-order features whereas induced
BCIs require second- or higher-order features.

In this paper, we focus on the more limited prob-
lem: “What is the best pre-processing and classif ication
pipeline for classif ication of ERPs measured by non-
invasive electrophysiological sensors?”

Note the two restrictions. Firstly, only ERP clas-
sification problems are considered—thus the BCI-
relevant signal is assumed to be a first-order feature
of the measured sensor data with a prototypical tem-
poral and spatial distribution time-locked to the stim-
ulus presentation. Secondly, only non-invasive electro-
physiological sensors are considered, such as electroen-
cephalogram (EEG, a safe, cheap and therefore pop-
ular non-invasive method) or magnetoencephalogram
(MEG, an expensive and non-portable, but powerful,
research tool). These sensors have high temporal res-
olution, but low spatial resolution since they suffer
from spatial blurring where, due to signal propagation
and volume conduction effects, each sensor delivers
a mixture of signals from multiple sources (Nunez
and Srinivasan 2005). Importantly, this mixing process
is, to a very close approximation, linear with re-
spect to signal intensity and hence can (in principle)
be inverted by a linear transformation of the multi-
channel array of sensor measurements. An important
consequence of these restrictions is that only linear
methods are necessary in the pre-processing and clas-
sification pipeline. This potentially simplifies the signal-
processing pipeline, because (a) the order of temporal
and spatial filtering does not matter, and (b) as we show
in section “Classifier Training”, a linear classifier might
in principle be able to perform subject-dependent spa-
tial and/or spectral filtering automatically.

Related Work

There have been many previous articles looking at how
to best classify ERPs. For example, Müller et al. (2003),
Krusienski et al. (2006), Lotte et al. (2007) and Selim
et al. (2008) present comparisons of different classifiers,
and Brunner et al. (2007) examine different spatial
filtering methods. However, few articles look at the
interaction between the pre-processing and classifier
training method used.

Most similar to our work is Krusienski et al. (2008)
which investigated the effect of electrode montage, type
of reference, and decimation factor on classification
performance for visual speller data. Previous work by
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the same group (Krusienski et al. 2006) recommended
step-wise linear discriminant analysis (swLDA) (see sec-
tion “Classifier Training”) so only this classifier was
assessed. For this classifier they investigated the effect
of limiting the number of selected features selected on
performance. To ensure relevance of the results, all
analyses were performed in a session to session context.
Krusienski et al. (2008) main conclusion was that a
combination of an ERP specific 16 channel electrode
montage, a decimation factor of 12 (which for their raw
sampling rate of 240 Hz is roughly equivalent to low-
pass filtering below 10 Hz and downsampling to 20 Hz),
and a limit of 60 features gave best performance. Ref-
erence choice had no significant effect.

Blankertz et al. (2011) has a similar aim to this
work—they aim to show how best to classify ERP data.
However, they focus on feature selection and compar-
ing classifiers based on Linear Discriminant Analysis
LDA, with a particular emphasis on shrinkage LDA (see
section “Classifier Training”). They also present an an-
alytical method to estimate the optimal regularisation
parameter based on Ledoit and Wolf (2004). Blankertz
et al. (2011) includes a highly informative discussion
on how to interpret the solution found by a linear
classifier and its relationship to spatial-filters and spa-
tial patterns. In particular they show that to maximise
performance the classifier requires knowledge of the
interfering noise signals as well as the signal of interest.
Thus, it is common for a classifier to give significant
weight to electrodes measuring non-class relevant noise
sources (such as visual alpha), as well as those mea-
suring the class-relevant signal. Before attempting to
interpret the feature weightings learned by a linear
classifier one should read this work.

This paper goes beyond these previous works in 2
major ways. Firstly we systematically investigate the
effect of changing different pre-processing and clas-
sification possibilities on the whole system’s perfor-
mance. Secondly we compare performance on dif ferent
types of ERP gathered with different measurement
devices in different labs. Thus, we aim to derive a
single “best-practice” pre-processing and classification
pipeline which should give near-optimal performance
on a wide range of ERP BCIs.

The rest of this paper is arranged as follows; sec-
tion “Datasets Used for Evaluation” describes the
various data-sets we have used, the types of pre-
processing and classifier training methods we compare
(sections “Pre-Processing and Classification Options
Considered”–“Classifier Training”) and the evaluation
methodology (section “Evaluation Methodology”).
Section “Results” presents the results and section
“Discussion” summarises and interprets them. Finally,

section “Conclusions” gives our recommended ERP
classification pipeline and finishes with some conclud-
ing thoughts.

Methods

The aim of this paper is to identify a “best-practice”
pre-processing and classification pipeline which gives
near-optimal performance on a wide range of ERP
classification problems. To do this requires both a rep-
resentative range of ERP problems and a methodology
to compare possible pipelines on these problems.

Datasets Used for Evaluation

Ideally, we would like to identify a classification
pipeline which is generally applicable, and not specific
to one particular type of ERP or hardware/software
configuration. Thus, we have combined various public
and private domain datasets to construct an evaluation
set. The key characteristics of these datasets are sum-
marised in Table 1, see the references therein for more
detailed information about each experiment. These
datasets represent a wide range of possible ERP BCIs
with data recorded at different labs, using different
hardware and targeting different types of task and stim-
ulus modalities.

Each dataset was prepared for classification by tak-
ing a fixed temporal window around each stimulus
event which was large enough to capture the class-
dependent ERP of interest. To reduce spectral filtering
artifacts, an additional buffer of 0.1 s was added to
both sides of the window and removed after spectral
filtering. The windows were also labelled with the class
of the event, e.g. left or right attention for the audio
dataset. The comp dataset had many more events than
any of the other datasets (6480 events per session for
5 sessions). To limit memory requirements, only data
from the first session of each subject was used.

Pre-Processing and Classification Options Considered

To investigate the influence of the pre-processing and
classifier selection on ERP classification performance,
we conducted a range of off-line simulations where
the pre-processing parameters and classifier training
methods were systematically varied. A summary of the
basic pipeline used with the various options tested is
given here;

1. Montage selection—one of: 8, 16, 32 or all electrodes
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Table 1 Summary of the major properties of the ERP datasets used in this study

Dataset (reference) Description Sensor #Subj Raw size (d × T × N)

vgrid Visual speller, EEG 14 61 × 150 × 1000
(Hill et al. 2008) target vs. non-target
audio Auditory ERP, EEG 5 40 × 153 × 370

(Hill et al. 2005) left vs. right attention
comp Visual speller, EEG 2 64 × 144 × 1020

(Blankertz et al. 2006, II) target vs. non-target
epfl Visual speller, EEG 8 32 × 204 × 1114

(Hoffmann et al. 2008) target vs. non-target
tactile Tactile evoked ERP, MEG 10 150 × 375 × 480

(Hill and Raths 2007) left vs. right attention

Raw datasets contain N example ERPs after balancing each of which has d channels sampled at T time-points

2. DC removal—Each electrode had its average offset
in the window subtracted1

3. Bad electrode removal—Where a bad electrode is
one with more than 3 standard deviations more
power than the average electrode power.

4. Re-referencing to the common average—by sub-
tracting the average activation over electrodes to
reduce the effect of external noise sources, e.g. line
noise.2

5. Spectral filtering—with one of the following low-
pass cut-off values; 6 Hz, 8 Hz, 12 Hz, 16 Hz, 24 Hz
or 32 Hz

6. Spatial filtering—one of: none, SLAP, whitening or
ICA

7. Classifier training—one of: LDA, swLDA, rLDA or
rLR

Stages 2, 3 and 4 were fixed for all analyses. For the
remaining stages (1, 5, 6, and 7) a range of options were
compared as summarised above. A detailed description
of the options considered in these stages is given in the
following sections.

Electrode Montage

Usually before any data is gathered the experimenter
selects which sub-set of electrodes to use. The aim here
is usually pragmatic, one attempts to trade-off the time
required to setup a recording against the likelihood of
having at least some of the sensors well placed to detect
the signal of interest.

1This is not strictly necessary as the later spectral filter will
also remove the DC, however doing it early improves numerical
stability and prevents filter ringing artifacts.
2Again this is not strictly necessary as the later spatial filtering
will also remove the common activation, however doing it early
improves numerical stability and prevents filter ringing artifacts
during spectral filtering.

There is, however, more to electrode location se-
lection than positioning them as close as possible to
the sources of interest. As discussed in Blankertz et al.
(2011) a larger number of electrodes, some of them
even at appropriate locations to measure noise sources
rather than signals-of-interest, allows for more accurate
spatial filtering (see section “Spatial Filtering”). As
against this, a larger number of electrodes also means
a larger number of features for classification, which
increases the likelihood of overfitting (Duda et al.
2000): we would expect this to affect some classification
methods more than others, having a particularly large
negative impact on methods with poor complexity con-
trol (Duda et al. 2000).

To investigate this effect, 4 different electrode mon-
tages were used containing 8, 16, 32, or all available
electrodes (see Fig. 1). These montages were picked to
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Fig. 1 Illustration of the different montages used to test the
effect of reducing the number of sensors on classification
performance
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maximise head coverage for the given electrode count.
For a particular ERP generated in a known location it
has been shown (see e.g. Krusienski et al. 2008) that
better performance is attained for a given number of
electrodes by using ERP-specific montages. However,
these generic montages have the advantage that they
should perform well across the diversity of different
ERP data sets in our corpus.

Spectral Filtering

The aim of any filtering is to improve signal–to–noise
ratio by suppressing unwanted noise sources, e.g. line-
noise, while leaving the signal of interest intact. Spectral
filtering tries to suppress noise based on its frequency
characteristics. In theory, given the signal of interest
(or its power spectrum) and the power spectrum of
the (assumed uncorrelated) noise, an optimal signal–
to–noise power maximising spectral filter can be found
by Wiener filtering (Brown and Hwang 1997) which
weights each frequency by the signal–to–noise ratio in
that frequency. In practice however, the exact ERP
shape and noise spectrum are unknown so the optimal
filter is approximated with a band-pass filter. Given
the relatively slow nature of common ERP signals, e.g.
N1, P2, P300, N400, MRP, the ERP power is con-
centrated in the low frequencies, say from 1–12 Hz,
with little signal outside this range. However, there are
significant noise sources above 10 Hz, such as line-noise
(≈50 Hz), visual α-oscillations (10 Hz) and sensori-
motor oscillations (≈12 Hz). Below 0.5 Hz slow drift
artifacts dominate. Thus, a good rule-of-thumb is to use
a band-pass between 0.5 and 10 Hz to maximise signal–
to–noise-ratios for ERP detection. Indeed, Krusienski
et al. (2008) found that a sampling rate of 20 Hz per-
formed best—which corresponds to a maximum signal
frequency of 10 Hz.

As well as improving signal–to–noise ratios an addi-
tional benefit of low-pass filtering is that after filtering
the number of features can be reduced without los-
ing information. The sampling theorem proves that no
additional information is gained by sampling a signal
more rapidly than twice its maximum frequency (the
Nyquist frequency). Thus, a low-pass filtered signal
can be down-sampled to 2 times its cut-off frequency
without information loss. Here, we down-sample to 3
times the low-pass cut-off to avoid aliasing of the signal
which remains above the 3 dB cut-off frequency.

To investigate the sensitivity the ERP classification
performance to the selection of the spectral filter we
systematically varied the low-pass boundary from, 6,
8, 12, 16, 24 to 32 Hz for a fixed high-pass frequency
of 0.5 Hz. In all cases the filter is implemented us-

ing a Fourier filter where the signal is first Fourier
transformed then a weighting is applied to suppress
or remove unwanted frequencies and the weighted
signal inverse Fourier transformed. After filtering the
data was down-sampled to 3× the low-pass cut-off fre-
quency (18, 24, 36, 48, 72 and 96 Hz respectively) using
Fourier re-sampling, and the 0.1s buffer at the edges of
each temporal window (see section “Datasets Used for
Evaluation”) deleted to reduce filtering artifacts.

Spatial Filtering

As with spectral filtering, the aim of spatial filtering is
to improve signal to noise ratios by suppressing noise
sources. However, in this case due to volume con-
duction, one cannot assume that the signal and noise
are spatially uncorrelated. Indeed, quite the opposite
occurs as signal and noise overlap to a large extent in
the recorded sensor measurements, as illustrated by the
high correlations between sensors in Fig. 2.

The presence of correlated noise complicates the
problem of determining an optimal filter. In particular,
correlated noise cannot simply be suppressed by giving
the noisy features low weight as in spectral filtering, but
must be actively detected and cancelled. As discussed
by Blankertz et al. (2011), to perform such noise can-
cellation an optimal spatial filter needs both a large
positive weighting where the signal–to–noise is high
(i.e. near the signal source) and a large negative weight
where the noise–to–signal is high (i.e. near the noise
sources) in order to estimate and subtract the noise
contribution. Thus to estimate an optimal spatial filter
for a signal of interest, one needs to know not only how
strongly the signal is detected at each sensor but also
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Fig. 2 Covariance between sensors measuring brain-signals using
EEG in a 64 electrode montage demonstrating the high correla-
tion between signals measured with different sensors
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how strongly every interfering noise source is measured
at each sensor (and if there are more source’s than
sensors each sources relative strength).

This detailed information about the signal and noise
sources is highly subject and environment dependent
making it difficult to identify optimal spatial filters in
advance of measurements. Further, the optimal spa-
tial filter depends on the spatial pattern of the class-
dependent signal to be detected.3

Thus we have two options. The first option is to use
class information to find spatial filters which are opti-
mal for detecting the class-dependent signal of interest.
This implicitly requires two supervised training steps—
one to determine the spatial filters, and another to
train the classifier. Whilst this approach has been very
successful in ERD classification where the common
spatial patterns (CSP) (Ramoser et al. 2000) method is
widely used, in the authors’ view training two classifiers
is inelegant and increases the risk of over-f itting. The
second option is to determine the spatial filters in a
class-independent manner which somehow makes the
later classification problem easier. This approach is
more commonly used in ERP classification, where for
example ICA is used to identify and cancel eye artifacts.

In this paper we compare 3 unsupervised spatial
filtering methods; two methods which reduce spatial
correlations; Surface Laplacians and Spatial whiten-
ing, and one which further unmixes the sources, In-
dependent Component Analysis—specifically InfoMax
ICA (Bell and Sejnowski 1995). We also include the
raw unfiltered data as a control to see if spatial filtering
is needed at all. Note: technically, the earlier re-
referencing stage means that even the “raw” data has
been spatial filtered with the common-average filter.

SLAP

One of the significant characteristics of non-invasive
electrophysiological measurements of brain activity is
that signal propagation means that the signal is blurred
considerably relative to that of the cortex below. The
scalp surface Laplacian (SLAP) is one method to reduce
this blurring and increase spatial resolution. The SLAP
works by detecting peaks in the scalp potential using
the sum of its 2nd derivatives. Fundamentally, this is
a measure of the local current density flowing radially
through the skull into the scalp (Nunez et al. 1994).

3The vector of source detection strengths over sensors is called a
spatial pattern. Given a matrix of all sources spatial patterns an
optimal spatial filter for each source can be computed by taking
the pseudo-inverse of this matrix, see (Blankertz et al. 2011).

Hence, it is also called the scalp current density or cur-
rent source density estimate (CSD). Because current
flow through the skull is almost exclusively radial, the
SLAP has been shown to be a good approximation of
the dura potential (Nunez et al. 1994).

To compute the SLAP we use an efficient implemen-
tation which pre-computes a spatial filter matrix based
only on the electrode locations using the spherical
spline interpolation method of Perrin et al. (1989).

Whitening

A consequence of the source mixing process is that
nearby electrodes’ measurements become highly corre-
lated as they detect mostly the same sources. Removing
this correlation will undo part of the mixing process.
A whitening (or sphering) transformation removes cor-
relations by linearly re-weighting the sensors so the
data is spherically symmetric—such that the trans-
formed “virtual sensors” have unit power and are all
uncorrelated.

The whitening spatial filter matrix can be readily
computed using the matrix square-root of the sensor
covariance matrix. To see this, note that the sensor
covariance matrix is given by, �X = X X�, where X is
the [d × (T N)] matrix obtained by concatenating all ex-
amples together column-wise. Pre-multiplying X with
the inverse matrix square-root of �X and computing
the transformed sensor covariance we find,
(
�

−1/2
X X

)(
�

−1/2
X X

)� = �
−1/2
X X X��

−1/2
X

= �
−1/2
X �X�

−1/2
X = I (1)

where I is the identity matrix. Thus, spatially filtering
X with �

−1/2
X maps from raw sensor readings to a new

space where the sensors are uncorrelated and have unit
power.

Intuitively, one can think of whitening as modifying
the data such that all sources have equal power. Thus,
if the class-dependent source is very weak relative to
the noise sources, e.g. because it is deep inside the
skull, the effect of whitening is to increase the relative
strength of the class-dependent source, whilst reducing
the strength of the higher power noise sources. Con-
versely, if the class-dependent signal is very strong rela-
tive to the noise sources then the effect of the whitening
is to reduce the strength of the class-dependent source
whilst increasing the strength of the noise sources. In
practice, it is likely that both conditions apply, where
the class-dependent source is of intermediate strength,
with some stronger noise sources and some weaker.
Thus, depending on the relative strength of the class
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dependent source we would expect whitening to help
in some cases and hurt in others.

ICA

Whilst whitening ensures the transformed sensor mea-
surements are uncorrelated, ICA (as the name implies)
ensures the stronger constraint that the transformed
measurements are statistically independent (Bell and
Sejnowski 1995; Makeig et al. 1996; Hyvarinen 1999).
Assuming the “true” sources are independent, this
stronger constraint means ICA is more likely to find
these true sources. As it enforces a weaker constraint
whitening can be seen as a “poor man’s ICA”—indeed
the first step in most ICA algorithms is to first sphere
the data before attempting to find a rotation which
maps onto the “true” independent sources (Makeig
et al. 1996). To test if this additional computational
effort is necessary we compared performance with ICA
spatial filtering, specifically as found using the Info-
MAX method (Bell and Sejnowski 1995).

Classifier Training

In formal terms, the ERP classification problem is to
determine from a single epoch of recorded brain data
if it contains a response which indicates the user was
performing a particular mental task. Let X ∈ R

[d×T] be
the signal output by the pre-processing pipeline con-
taining d (virtual) sensors and T time points. Further,
assume the brain-response can only be one of 2 classes,
denoted + and −, then the ERP classification problem
is to find a function f (X) which maps from X into
a predicted class (+ or −). There are many possible
mapping functions, however the simplest is to apply a
linear weighting to X and take the sign of the result.
That is,

ŷ = sign
[ ∑

i, j

X(i, j)W(i, j) + b
]

= sign[X(:)�W(:) + b ] (2)

where, W ∈ R
[d×T] is a weighting matrix, b is a bias

term (or threshold), and Z (:) denotes the vectorizing
operation which converts a matrix into a column vector
by stacking its columns.

W can be thought of as a template for the dif ference
between the positive class response and the negative
class response4 and b is a threshold which determines

4Indeed, a prototype classif ier uses exactly this method to find W,
i.e. W = mean(X+) − mean(X−).

how similar the data X must be to this template for it
to match the positive class. Note that W is a weighting
over both space and time.

As an aside, notice that all the pre-processing and
the classifier application stages are linear operations,
that is they work by forming weighted sums of the input
data. Thus, in principle, all the classification pipeline
stages can be combined into a single weighting matrix
Wall which transforms raw sensor measurements into
classifier predictions in a single step. Conversely, this
also implies that the weighting W learnt during clas-
sifier training can be though of as implicitly perform-
ing additional spatial and spectral filtering of the pre-
processed data. This observation, leads to an obvious
question: “As the classif ier can learn it, is any of this
pre-processing necessary at all?”. To which the answer
is, “in-principle, no”. In practice, this direct learning
approach tends to perform poorly as the signal–to–
noise ratio of the data used to train the classifier is
higher, leading to over-fitting problems. In essence,
this approach requires the classifier to learn what we
already know a-priori, e.g. that slow-drifts, line-noise,
and high frequencies are all pure noise.5

However, this does lead to a more relaxed view of
the purpose of the pre-processing, which is now not so
much to “optimally filter to maximise the signal–to–
noise ratio”, but more to “transform the data such that
the classifier training can find the right weight matrix
as easily as possible”. Clearly, a signal–to–noise ratio
maximising pre-processing achieves this new objective.
However, if the classifier training method is good, we
should be able to achieve the same performance level
with simpler pre-processing and less hand-tuning of
parameters. This more relaxed view ties nicely with
the aim of this paper in identifying a single ERP clas-
sification pipeline which works well for a wide range of
ERP problems.

There is a vast literature in the machine-learning
community on how to best learn a linear classifier, and
many different algorithms have been tried for ERP
classification (Krusienski et al. 2006; Lotte et al. 2007),
e.g. LDA, swLDA, SVM, NN. Non-linear classification
methods have also been tried for ERP classification,
but have generally been found to have little or no
performance advantage (Müller et al. 2003; Krusienski
et al. 2006). Thus we focus on linear methods.

Here 4 methods are compared; two methods, LDA
and swLDA, commonly used for ERP classification,

5As a further aside, a second implication of this observation is
that by combining operations in this way, the computational cost
of applying the classification pipeline on-line can be considerably
reduced, to only d ∗ T floating point operations per epoch.
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(see for example Krusienski et al. 2006), and two
methods, rLDA, rLR, which include a regularisation
term. Regularised classifier training forms the basis
of current machine learning research because it has
been empirically validated to improve noise robustness
by avoiding over-fitting in a wide range of problem
types (Schölkopf and Smola 2001). These algorithms
are discussed in more detail below.

LDA

Linear Discriminant Analysis is also sometimes called
Fisher’s Discriminant Analysis tries to find a linear
transformation of the data which maximises the vari-
ance between classes whilst minimising the variance
within each class (Duda et al. 2000). The weight matrix
for this transformation can be found using

w = �−1(μ+ − μ−), (3)

where, � = X X� is the whole data covariance ma-
trix, μ+ and μ− are the means of the positive (resp.
negative) class examples. Note, that in this case X =
R

[(dT)×N] is a feature-dimensions by number of exam-
ples matrix. Thus each column of X is a complete epoch
consisting of all sensors at all sampled time-points.

Under the assumption that the features in each class
are generated from Gaussian distributions with the
same known covariance but different means it can be
shown (Duda et al. 2000) that LDA is optimal, in that
it minimises the misclassification rate. As shown in
Blankertz et al. (2011) the assumption of a common
class covariance with different means is well met for
EEG ERP classification problems.

One issue with Eq. 3 occurs when the problem is
under-constrained because there are more feature di-
mensions than examples, i.e. the problem is under-
sampled. In this case the total data covariance matrix,
�, is rank-deficient and not invertible. Many methods
have been developed to “fix” LDA to work in this case
including; using only a sub-set of the input features
as is done in swLDA, using PCA for dimensionality
reduction prior to LDA in PCA-LDA, adding a so-called
ridge to the covariance matrix to make it invertible as
is done in regularised LDA (rLDA), or using the matrix
pseudo-inverse. For a review of LDAmethods on under-
sampled problems see Krzanowski et al. (1995). In this
paper we use LDA to denote LDA with the pseudo-
inverse fix.

Note that for binary classification problems the LDA
(and regularised LDA) solutions can be found using
(regularised) Least squares regression (Duda et al.
2000) by modifying the target labels to be y+ = 1./N+
and y1 = −1./N−, where N+, N1 are the number of

positive (resp. negative) training examples. Due to
its simplicity and computational advantages (one does
not need to compute or invert the data covariance
matrix) all the LDA solutions in this paper are found
using this equivalent least squares formulation. The
pseudo-inverse LDA solution is equivalent to min-
norm least squares solution. Pseudo-inverse LDA has
also been shown to be equivalent to Uncorrelated LDA
(Ye 2006).

swLDA

To cope with under-constrained problems, Stepwise
Linear Discriminant Analysis uses only a sub-set of the
input features such that � is full-rank. Features are
selected heuristically in a forward-backward process.
Starting from no features, new features are added in-
crementally if they exceed a threshold p-value (pins)
and removed if they exceed a different higher p-value
(prem). This process is repeated until either a maximum
number of features is reached, or a stable set of features
found. Note, whilst not a regularisor as the term is used
in this paper, this type of feature selection is clearly
a form of capacity control as it limits the number of
features available to the classifier, and hence should
also help prevent over-fitting.
swLDA was included in this analysis as it is widely

used for ERP classification. In part this popularity is
based on the comparison of different ERP classification
methods in Krusienski et al. (2006) which concluded
that swLDA had the greatest potential. Following the
recommendation of Krusienski et al. (2006) we use
pins = 0.1, prem = 1.5 with a maximum of 60 features
for swLDAs parameter settings.

rLDA

An alternative method to allow LDA to work on under-
constrained problems is simply to “fix” � to make
it invertible by adding a fixed constant “ridge” to its
diagonal entries, i.e. �̂r(λ) = � + λI, where λ is the
ridge magnitude. An alternative formulation of rLDA
discussed in Blankertz et al. (2011) is shrinkage-LDA
where �̂s(γ ) = (1 − γ )� + γ ν I and ν is the average
feature variance. rLDA and shrinkage-LDA are equiv-
alent up to scaling, i.e. �̂s(γ ) = (1 − γ )�̂r(νγ /(1 − γ )).

As well as making the covariance matrix invertible,
the ridge has the effect of regularising the classifier
to use only high variance (or high power) signals in
the data. To see why, consider the case of uncorre-
lated features. In this case � is a diagonal matrix
with the variance of each feature along the diagonal,
i.e. � = diag(v), with inverse �−1 = diag(1/v). Thus,
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the inverse magnifies features with low variance and
reduces features with high power. The addition of the
ridge changes the inverse to be diag(1/(v + λ)) which
leaves the high power features relatively unaffected but
dramatically reduces the magnification of low power
features. Correlated features can be treated in a sim-
ilar way by un-correlating (but not sphering) them
first. Thus, by reducing the magnification of low-power
features the effect of adding the ridge is to bias the
classifier to prefer high-power features.

Another interpretation of the effect of the ridge on
the LDA solution is given in Blankertz et al. (2011)
where it is shown that the ridge interpolates between
a univariate solution (γ = 1) where each feature is
treated independently, and a multivariate solution (γ =
0) which takes account of the empirically estimated
correlations between features.

rLR

As mentioned above LDA is provably optimal under the
assumption of per-class Gaussian distributed features
with a common covariance. If these assumptions are
violated then LDA may perform poorly, and a classifier
which makes fewer assumptions may be appropriate.
The statistics and machine learning literature contain
many more general classifier training methods, such
as quadratic discriminant analysis (QDA) which gen-
eralised LDA to allow for non-equal class covariances.
Many of these more general methods have also been
tried on ERP classification problems with mixed re-
sults, see for example (Müller et al. 2003; Lotte et al.
2007).

Regularised LDA is a generative classifier. This means
that it models the joint distribution of the data, Pr(y, x),
where y is the class label and x are the data features.
Discriminative classifiers by comparsion model only the
conditional distribution of the class labels given the fea-
tures, Pr(y|x). As they make fewer modelling assump-
tions, discriminative methods are more robust to model
mis-specification—only the model of Pr(y|x) need be
correct. However, it has been shown (Ng and Jordan
2002; Bouchard and Triggs 2004) that this robustness
may only be useful for large training-set sizes as (if the
generative model is approximately correct) generative
models have lower classification error on small training
sets.

Here we use Logistic Regression (LR) (Duda
et al. 2000) as a representative discriminative clas-
sifier because it is the natural discriminative coun-
terpart of LDA (Ng and Jordan 2002) and has pre-
viously been shown effective for BCI classification
problems (Tomioka et al. 2007). Specifically, we use

regularised LR (rLR), which is a variant of the Lo-
gistic Regression to which an additional quadratic reg-
ularisation term has been added. Such a regularisor
can be seen as either imposing a 0-mean, λ variance
spherical Gaussian prior over the classifier weights, or
as a weighted quadratic penalty term on the classifier
weights. In either case, as for rLDA, the net effect of the
regularisor is to bias the classifier to prefer high power
features.

Evaluation Methodology

To assess the importance of different combinations of
pre-processing and classification we adopted a simple
brute-force approach—that is every possible combina-
tion of pre-processing options was run on every dataset
and the final classification performance evaluated.

A pipeline’s performance was estimated using a tem-
poral split-half cross-validation. In this approach the
dataset is split into 2 parts (representing the first and
second parts of the experiment) and then one part is
used to optimise pipeline parameters (i.e. train clas-
sifiers, estimate spatial filters) and the other used to
test the trained pipeline. The average of the test-set
performance over the two halves gives the estimated
pipeline performance. Temporal split-half analysis was
used as it maximises the temporal distance between the
training and testing sets, and hence is most representa-
tive of an actual BCI usage scenario. When necessary,
hyper-parameters (such as classifier regularisation pa-
rameters) were optimised using a nested 5-fold cross-
validation within the training data.

The visual speller datasets are very unbalanced,
with 5 times more non-target events than target
events. Therefore, to speed classifier training and make
the classification performances comparable between
datasets, the classes were artificially balanced by ran-
domly discarding examples from the larger class until
each class had equal numbers of examples.

Training Set Size

Performance of any learning system depends critically
on the number of examples used to tune its parameters.
However, generating training examples adds an over-
head for using the system which is frustrating for the
user and reduces the time it can be used productively.
Thus minimizing the number of training examples re-
quired to achieve acceptable performance is critically
important to practical BCI performance.

To investigate this effect, we used 5 different training
set sizes containing 50, 100, 200, 400, or all available
training examples. To best simulate an experiment with
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only this number of examples, these reduced training
sets were obtained by starting from the normal split-
half training set and then discarding all but the first N
examples. If the split-half training set was smaller than
the desired size then the entire split-half training set
was used.

Results

Evaluating all possible pipelines on all datasets gives
almost 15,000 performance estimates. Thus, we present
only our major findings from analysing this perfor-
mance data.

Default Pipeline

Before examining the effect of changing pre-processing
parameters on performance we start by looking at per-
formance using a default classification pipeline. This
default pipeline serves two purposes; firstly it acts as
a control condition to illustrate the effect of chang-
ing the different pipeline options on performance, and
secondly it provides a set of default parameters for
pipeline stages not explicitly manipulated in the later
analyses.

Based on the suggested settings in Krusienski et al.
(2006) the parameters used in the default pipeline were:

1. Electrode montage: all channels
2. DC removal
3. Bad electrode removal
4. Re-referencing to the common average
5. Spectral filtering—with a 0.5–12 Hz pass-band fol-

lowed by down-sampling to 36 Hz
6. Spatial filtering—none
7. Classifier training—one of: LDA, swLDA, rLDA or

rLR

The performance of the 4 classifiers tested with this
default pipeline is presented in Fig. 3. As these results
show, the performance varies widely over the different
datasets, ranging from ≈60 % correct in the tactile
and comp datasets to more the 80 % correct for the
audio and vgrid datasets. Comparing the different
classifiers, we see that the regularised classifiers rLDA
and rLR consistently out-perform the un-regularised
classifier LDA, with the partially regularised swLDA
performing somewhere in between. The performance
advantage for regularised classifiers is highly statisti-
cally significant (p < .001). In fact as shown in Fig. 4
rLDA outperforms LDA in all problems by an average of
10 % and better then swLDA in all but 5 problems. The
difference between rLDA and rLR was not statistically
significant. However, Fig. 4 shows that rLDA performs
slightly better than rLR is 4 out of 5 of the datasets, the
exception being epfl where rLR is almost 8 % better.

Training Set Size

The effect of varying the number of examples used to
train the classification pipeline is illustrated in Fig. 5.
Again this shows the general performance advantage
of the regularised classifiers which have superior per-
formance for all training set sizes. As one would ex-
pect, performance improves continuously with increas-
ing training set size. In fact performance improves log-
linearly, with performance improving by ≈ 4 % for
each doubling of the training set size—this is most
clear in the vgrid and comp datasets which both have
>800 examples allowing all training set sizes up to 400
examples to be tested without saturation.

Electrode Montage

The effect on classification performance of varying
the number of used electrodes is illustrated in Fig. 6.
Again this clearly shows the distinction between the

Fig. 3 Average classification
accuracy over subjects using
the default pipeline for each
of the different datasets
described in section
“Datasets Used for
Evaluation” and the average
over all datasets for the
different classifiers.
Error-bars indicate standard
error over subjects
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Fig. 4 Performance comparison of rLDA against LDA, swLDA
and rLR using the default processing pipeline. Each point rep-
resents a subject from the indicated dataset. Points above the line
indicate better performance for rLDA. Numbers in the top-left

and bottom-right of each plot represent the number of times the
vertical (resp. horizontal) axes method performs better than the
other axes. * indicates a significant difference (p < .05) using a
two-tailed binomial test

regularised classifiers, rLDA and rLR, for which perfor-
mance only increases with increasing numbers of elec-
trodes, and the un-regularised method (LDA) for which
performance initially decreases with more electrodes
but gets slightly better for the full montage. Again
swLDA lies between these two extremes with perfor-
mance getting better from 8 to 16 electrodes, but then
remaining static for more electrodes. Looking at the
dataset dependence in Fig. 6 we see that adding more

channels improves performance in all cases. However,
this improvement is highly variable across datasets,
with the largest improvements of almost 10 % vgrid
and audio and the smallest (about 2 %) for epfl.

Spectral Filter

The effect of varying the low-pass cut-off frequency
on classification performance using the default pipeline

Fig. 5 (Top) The effect
varying the number of
examples used to train the
classifiers on the classification
accuracy using different
classifiers. (Bottom) The
effect of varying the number
of training examples on rLDA
performance broken down by
dataset. Error-bars indicate
standard errors over subjects.
def indicates the setting from
the default pipeline
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Fig. 6 (Top) The effect
varying the number of
electrodes used on the
classification accuracy using
different classifiers. (Bottom)
The effect of varying the
number of electrodes on
rLDA performance for each
dataset. Error-bars indicate
standard errors over subjects.
def indicates the setting from
the default pipeline
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Fig. 7 (Top) The effect of
varying the low-pass
threshold on classification
accuracy using different
classifiers. (Bottom) The
effect of varying the low-pass
threshold for each dataset for
the rLDA classifier.
Error-bars indicate standard
errors over subjects. def
indicates the setting from the
default pipeline
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is shown in Fig. 7. Note: after filtering the data were
down-sampled to three times the threshold, thus the
number of features used for classification is propor-
tional to the low-pass frequency. Most striking in these
results is that for all methods the performance decreases
with an increasing low-pass cut-off and number of fea-
tures. This effect is worst for swLDA whose performance
decreases by almost 10 %, followed by the regularised
classifiers which lose about 2 % and least for LDAwhich
is only ≈ 1 % worse for the 32 Hz cut-off.

Looking at the per-dataset results, we see that the
improvement from having a small low-pass threshold
is largest for the vgrid and tactile datasets. Con-
versely, the epfl and audio show almost no effect
from varying the low-pass cutoff. Interestingly, these
datasets also have the fewest sensors channels (32 and
40 respectively), indicating that getting the right low-
pass cut is most important when the input feature di-
mensionality is high.

Spatial Filter

The effect of varying the spatial-filtering method on
classification performance using the default pipeline is
shown in Fig. 8. As was the case for varying the mon-
tage, these results show a clear distinction between the

regularised methods, rLDA, rLR, where performance
improves (slightly) when using spatial filtering and the
other two methods (LDA, swLDA) where performance
decreases. One further sees that for the regularised
classifiers spatial whitening and ICA give the same per-
formance and that both outperform SLAP. As shown in
Fig. 9 the performance advantage from spatial whiten-
ing over no spatial filtering is very significant (p <

0.001). Further, there was no significant difference be-
tween whitening and ICA (p > 0.1). Indeed, in many
cases they performed identically. Looking at the per-
subject effects Fig. 9 also shows that the only cases in
which whitening is a serious disadvantage are two of
the tactile subjects. Interestingly, tactile is also
the dataset with by far the largest number of sensors
(151).

Interaction Effects: Combined Spatial and Spectral
Filtering

So far only single pre-processing factors have been
considered. However, there are likely to be interac-
tions between different pre-processing stages which
influence final performance. Exploration of the results
showed two main effects which are illustrated in Fig. 10.
Figure 10 (top) shows that the performance advantage

Fig. 8 (Top) The effect
varying the spatial filtering
method on classification
accuracy using different
classifiers. (Bottom) The
effect of varying the spatial
filtering method for each
dataset on the rLDA classifier.
Error-bars indicate standard
errors over subjects. def
indicates the setting from the
default pipeline
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Fig. 9 Performance comparison of spatial whitening (wht)
against the default pipeline with no spatial filtering (raw) and
Independent Components Analysis (ica) when using rLDA for
classifier training. Each point represents a subject from the in-
dicated dataset. Points above the line indicate better performance

for whitening. Numbers in the top-left and bottom-right of each
plot represent the number of times the vertical (resp. horizontal)
axes method performs better than the other axes (with .5 for an
exact draw). * indicates a significant difference (p < .05) using a
two-tailed binomial test.

when using spatial whitening and a regularised classifier
increases with increasing numbers of electrodes (at
least up to 32 electrodes). Figure 10 (bottom) shows
that when using spatial whitening and a regularised
classifier performance no longer deteriorates as the
low-pass cut-off frequency is increased.
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Fig. 10 Interaction effects between pre-processing methods for
a rLDA classifier. (Top) shows the effect of varying both the
number of electrodes in the montage and the type of spatial filter
used, (Bottom) shows the effect of varying the spectral filter and
type of spatial filter. Error-bars indicate standard errors over
subjects.

Discussion

To summarise the above results, we have shown that;

1. Regularised classifiers perform better than unreg-
ularised classifiers in (almost) every dataset when
using a reasonable set of default pre-processing
parameters.

2. A robust regularised classifier is able to cope with
a large number of input electrodes, and in fact im-
proves with more inputs. This is in stark contrast to
the unregularised LDA and swLDA classifiers whose
performance remains unchanged or even decreases
with increasing numbers of electrodes.

3. A regularised classifier is robust to mis-
specification of the spectral filter parameters
and down-sampling rate. Performance can still be
improved by using the correct spectral filter, but
the penalty from using too high a low-pass cut-off is
minimal. Again this is in contrast to swLDA whose
performance degrades rapidly with increasing the
spectral filter cut-off frequency.

4. rLDA performed slightly better than rLR in 4
datasets and significantly worse in 1 dataset.

5. Spatial filtering improves classification perfor-
mance if a regularised classifier is used. Spatial
whitening gave the best performance, which was
identical to that of ICA.

6. The benefit of spatial whitening increased with
increasing numbers of electrodes.

7. If spatial whitening and a regularised classifier are
used then performance is independent of the spec-
tral filter low-pass cut-off.

The first three of these results will not be surpris-
ing to anyone versed in modern statistical learning
theory. There is a vast literature of theoretical and
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empirical research which shows how using regularisa-
tion makes classifier training robust to the over-f itting
caused by increasing the number of input features or
noise level. Thus a machine learning researcher would
expect regularised classifiers to perform better in the
majority of cases, which is exactly what was found in
this paper. These results agree with those of Blankertz
et al. (2011) who also found rLDA performed best, but
contradict those of Krusienski et al. (2008) who found
that swLDA and LDA performed best. This difference
can be explained with reference to Figs. 6 and 7. These
show that as the number of input features is reduced,
either by reducing the number for electrodes or down-
sampling more heavily, the disadvantage of swLDA and
LDA is reduced. Thus, for the configuration considered
in Krusienski et al. (2008) of 8 electrodes and a 20 Hz
sampling rate one would expect all methods to achieve
equivalent performance. Note: the final recommenda-
tion for swLDA in this paper was based on its ability
to work well with large feature spaces through feature
selection. However, the work presented here and by
Blankertz et al. (2011) show that rLDA is a better
solution for such under-constrained problems.

As explained in section “rLR” the better perfor-
mance of rLDA compared to rLR in most of the datasets
indicates that LDAs assumption of equal covariance
Gaussian distributions is mostly correct. Krusienski
et al. (2008) found a similar result for visual speller
ERPs where the discriminative linear SVM performed
worse than the generative LDA or swLDA classifiers.
Unfortunately, the anomalous result for epfl shows
this is not always the case—interestingly, epfl is also
the only dataset with one session in each of the split-
halves.

The results for spatial filtering are more surpris-
ing. As described in section “Whitening” the source-
equalisation property of whitening means that whilst
it reduces the power of the the few strongest noise
sources it also increases the power of the weak noise
sources. As there are generally many more weak
sources than strong ones, the net effect is to increase the
total noise strength. Thus one would expect whitening
to decrease performance, however our results show
exactly the reverse effect, where if you use a regularised
classif ier performance actually improves. Intuitively,
this contradiction can be understood by noting that
regularised classifiers are more sensitive to high-power
noise sources than weak ones—the whole purpose of
the regularisor is to suppress low-power sources. Thus
for these classifiers the reduction in high-power noise
sources is more important than the increase in the
low-power sources, resulting in an overall performance
improvement. Clearly, there is a potential issue here if

the true signal is very strong, or there are very many
noise sources. Then the benefit from reducing a few
strong noise sources is not enough to overcome the
loss from reducing the true-signal and increasing the
weak noise sources. Indeed, the performance reduc-
tions when using whitening in the tactile dataset are
probably due to the large number of sensors (and hence
noise sources) in this dataset. Fortunately, most BCI
problems have weak true signals and few sensors so
spatial whitening normally improves performance.

Given the benefits of whitening one might postulate
that the superior source separation obtained by ICA
should further improve performance. Surprisingly, the
results in Fig. 9 showed that, despite the significant
additional computation effort expended by ICA to find
the underlying independent sources, the classification
performance was essentially identical. This result can
be understood by noting that (as discussed in sec-
tion “ICA”) all ICAs can be though of as first spa-
tially whitening the data such that all the new “vir-
tual sensors” are uncorrelated, and then spatially ro-
tating the “virtual sensors” with an orthogonal ma-
trix to impose the additional independence require-
ment (Hyvarinen and Oja 2000). It can be shown that
the predictions of a quadratically regularized linear
classifier are invariant to rotation of the input fea-
tures (see Appendix: Feature Rotation Invariance of
Quadratically Regularised Linear Classifiers). This is
because rotating the input features causes the solution
weights to rotate in the opposite direction such that
both rotations cancel leaving the classifier predictions
unchanged (this is similar to how shuffling the order
of features shuffles the order of the solution weights).
An alternative, more intuitive view of this result is that
as (by definition) a rotation cannot change the strength
of the signal and noise sources, it has no effect on the
data signal–to–noise ratio and hence on classification
performance. Similar identical performance between
ICA and whitening has also been found for object
recognition tasks in (Vicente et al. 2007).

Note this invariance to rotations (and hence identical
performance between ICA and other whitening trans-
forms) is only true when the spatial-filtering rotation
is applied directly to the classifier features. This is
usual in the context of ERP classification studied in the
current paper. For bandpower classification, for exam-
ple, where the non-linear step of bandpower estima-
tion comes between spatial filtering and classification,
this equivalence no-longer holds and different spatial
filtering methods (PCA whitening alone, ICA of vari-
ous kinds, CSP) may be expected to produce different
results, as is familiar from the BCI literature, see for
example (Blankertz et al. 2008).
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The result that spatial whitening makes (regularised
classifier) performance invariant to the choice of spec-
tral filter is perhaps the most surprising result in this
paper. To explain this result, first note that due to
the inverse frequency (1/ f ) spectrum typical of brain-
data, higher frequencies have lower power. Further,
note that regularisation biases the classifier towards
stronger signals and suppresses low power signals. In
non-whitened data this low-power signal suppression
suppresses both low-power spatial and spectral sources.
Spatial whitening, however, equalises spatial powers so
regularisation effects only spectral powers. Thus, after
spatially whitening the data by tuning the regularisation
strength the classifier is implicitly determining the opti-
mal low-pass filter.

Conclusions

The stated goal of this paper was to identify a “best-
practice” ERP classification pipeline, which could be
used on almost any ERP problem to get near optimal
performance. Based, on the results this pipeline is;

1. Use as many electrodes as you can practically
record and “let the machine decide” if they are
useful.

2. Spectrally filter to remove obvious noise com-
ponents. A pass band of 0.5–12 Hz seems near
optimal.

3. Spatially whiten to equalise source powers.
4. Use a linear quadratically regularised classifier

training method, such rLDA.

This pipeline gave near optimal performance for more
than 90 % of the datasets we considered and was within
a few percent in the other cases.

To save computational resources the the spectral
filtering can be followed by down-sampling to 36 Hz.
Further, as long as the classifier training method is
regularised the exact method used has little impact.
We recommend rLDA as gave the best average perfor-
mance. rLDA is also computationally efficient, is easy
to implement using regularised least squares regression
(see section “LDA”), and a good analytic estimate for
the regularisation strength can be found using shrink-
age LDA (Blankertz et al. 2011).

There are a number of areas where this study could
be extended. Firstly, as most current BCIs are re-
trained at the start of every session this work only
looked at single-subject single-session performance.6

6This limitation was also due in-part to the sparsity of publicly
available multi-session datasets.

However, one would like to transfer classifiers be-
tween sessions and subjects to minimise or remove the
need for this re-training. Further, we only considered
simple quadratic regularisation methods here. More
advanced classifiers/regularisors could further improve
classification performance, by for example automati-
cally determining the optimal electrode montage (Zou
and Hastie 2005; Meier et al. 2008), or finding a low-
rank decomposition of the weight-matrix to reduce the
number of parameters to be estimated (Farquhar 2009;
Christoforou et al. 2010). Finally, intuitively the benefit
of whitening seems to depend on the strength of the
true-signal. Getting a more theoretical understanding
of when whitening helps and developing a method to
automatically decide if it should be used would increase
the general applicability of the “best-practice” pipeline.
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Appendix: Feature Rotation Invariance
of Quadratically Regularised Linear Classifiers

A quadratically regularised linear classifier finds its
solution by minimising an objective function with the
form,7

J(w) = λw�w +
∑

i=1..N

L(x�
i w, yi) (4)

where, xi ∈ R
d is the ith training example with d fea-

tures. w ∈ R
d are linear classifier weights. L is the

classification loss function, which penalises differences

7We neglect the constant bias-term for simplicity.

http://www.bbci.de/competition/iii/
http://www.bbci.de/competition/iii/
http://mmspg.epfl.ch/downloads
http://mmspg.epfl.ch/downloads
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between the classifier predictions (x�
i w) and the ex-

amples true class yi. Depending on the choice of loss
function L one obtains different classifiers, e.g. for
logistic regression L = (1 + exp(−yix�

i w))−1, or a least
squares classifier L = (yi − x�

i w)2 (which can be used to
implement LDA section “LDA”). w�w is the quadratic
regularisation penalty, which penalises “complex” solu-
tions and λ the relative strength of this penalty.

Taking derivatives with respect to w and setting
equal to zero one finds the optimal solution, w∗, is given
by;

2λw∗ +
∑

i=1..N

L′(x�
i w

∗, yi)xi = 0, (5)

where L′ is the derivative of loss function L.
If one rotates the features with an arbitrary rotation

matrix R such that x̂ = Rx the solution, ŵ∗, to this
rotated problem is given by;

2λŵ∗ +
∑

i=1..N

L′(x̂�
i ŵ

∗, yi)x̂i = 0, (6)

2λŵ∗ +
∑

i=1..N

L′(x�
i R�ŵ∗, yi)Rxi = 0, (7)

2λR�ŵ∗ +
∑

i=1..N

L′(x�
i R�ŵ∗, yi)xi = 0, (8)

where we have used the property that the inverse of
a rotation is its transpose, i.e. R� R = I. Making the
substitution R�ŵ∗ = w∗ one sees that Eqs. 5 and 8 are
identical with the same solution, demonstrating that the
only effect of rotation of the features is to rotate the
optimal solution in the opposite direction.
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