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Abstract We introduce Atropos, an ITK-based mul-
tivariate n-class open source segmentation algo-
rithm distributed with ANTs (http://www.picsl.upenn.
edu/ANTs). The Bayesian formulation of the segmen-
tation problem is solved using the Expectation Max-
imization (EM) algorithm with the modeling of the
class intensities based on either parametric or non-
parametric finite mixtures. Atropos is capable of incor-
porating spatial prior probability maps (sparse), prior
label maps and/or Markov Random Field (MRF) mod-
eling. Atropos has also been efficiently implemented
to handle large quantities of possible labelings (in the
experimental section, we use up to 69 classes) with
a minimal memory footprint. This work describes the
technical and implementation aspects of Atropos and
evaluates its performance on two different ground-
truth datasets. First, we use the BrainWeb dataset
from Montreal Neurological Institute to evaluate three-
tissue segmentation performance via (1) K-means seg-
mentation without use of template data; (2) MRF
segmentation with initialization by prior probability
maps derived from a group template; (3) Prior-based
segmentation with use of spatial prior probability
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maps derived from a group template. We also evaluate
Atropos performance by using spatial priors to drive
a 69-class EM segmentation problem derived from the
Hammers atlas from University College London. These
evaluation studies, combined with illustrative examples
that exercise Atropos options, demonstrate both per-
formance and wide applicability of this new platform-
independent open source segmentation tool.
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Introduction

As medical image acquisition technology has advanced,
significant investment has been made towards adapt-
ing classification techniques for neuroanatomy. Early
work appropriated NASA satellite image processing
software for statistical classification of head tissues in
2-D MR images (Vannier et al. 1985). A prolifera-
tion of techniques ensued with increasing sophistication
in both core methodology and degree of refinement
for specific problems. The chronology of progress in
segmentation may be tracked through both technical
reviews (Bezdek et al. 1993; Pal and Pal 1993; Clarke
et al. 1995; Pham et al. 2000; Viergever et al. 2001; Suri
et al. 2002; Duncan et al. 2004; Balafar et al. 2010) and
evaluation studies (e.g. Cuadra et al. 2005; Zaidi et al.
2006; Klauschen et al. 2009; de Boer et al. 2010).

The problem of accurately delineating the white
matter, grey matter and cerebrospinal fluid (and sub-
divisions) of the human brain continuously spurs
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technical development in segmentation. Following
Vannier et al. (1985), many researchers adopted statis-
tical methods for n-tissue anatomical brain segmenta-
tion. The Expectation-Maximization (EM) framework
is natural (Dempster et al. 1977) given the “missing
data” aspect of this problem. The work described in
Wells et al. (1996) was one of the first to use EM for
finding a locally optimal solution by iterating between
bias field estimation and tissue segmentation. A core
component of this work was explicit modeling of the
tissue intensity values as normal distributions (Cline
et al. 1990) for both 2-D univariate simulated data
and T1 coronal images, which continues to find util-
ity in contemporary developments. A secondary com-
ponent was an extended non-parametric probability
model, also influenced by earlier work (Kikinis et al.
1992), where Parzen windowing is used to model the
tissue intensity distribution omitting consideration of
the underlying bias field. Although technically not an
EM-based algorithm, the robustness of the latter has
motivated its continued use even more recently (e.g.
Weisenfeld and Warfield 2009).

Subsequent development included the use of
Markov Random Field (MRF) modeling (Geman and
Geman 1984) to regularize the classification results
(Held et al. 1997) with later work adding heuristics con-
cerning neuroanatomy to prevent over-regularization
and the resulting loss of fine structural details
(Leemput et al. 1999a, b). A more formalized integra-
tion of generic MRF spatial priors was employed in
the work of Zhang et al. (2001), commonly referred to
as FAST (FMRIB’s Automated Segmentation Tool),
which is in widespread use given its public availability
and good performance. More recently, a uniform dis-
tribution of local MRFs within the brain volume and
their subsequent integration into a global solution has
been proposed obviating the need for an explicit bias
correction solution (Scherrer et al. 2009).

Several initialization strategies have been proposed
to overcome the characteristic susceptibility of EM
algorithms to local optima. Common low-level initial-
ization steps include uniform probability assignment
(Wells et al. 1996), Otsu thresholding (Zhang et al.
2001), and K-means clustering (Pappas 1992). More
sophisticated low-level initialization schemes include
that of Greenspan et al. (2006) in which a dense spatial
distribution of Gaussians is used to capture the com-
plex neuroanatomical layout with subsequent process-
ing used to conjoin subsets of such Gaussians belong-
ing to the same tissue classes. Recently, reseachers
have begun to rely on spatial prior probability maps
of anatomical structures of interest to encode domain
knowledge (Leemput et al. 1999b; Marroquin et al.

2002; Ashburner and Friston 2005). These spatial prior
probability maps may also provide an initial segmenta-
tion. Related technological developments model partial
volume effects for increased accuracy in brain segmen-
tation (Ruan et al. 2000; Ballester et al. 2002; Leemput
et al. 2003).

A general trend towards more integrative neu-
roanatomical image processing led to the work de-
scribed in Ashburner and Friston (2005) which is
publicly available within SPM5, a large-scale Matlab
module in which registration, segmentation, and bias
field correction can be simultaneously modeled within
a single optimization scheme. The roots of this very
popular software package stem back to early work by
Karl Friston which laid the basis for statistical para-
metric mapping (Friston et al. 1990). Similar integrative
brain processing was provided in Pohl et al. (2006) in
which segmentation and registration parameters were
optimized simultaneously while casting the inhomo-
geneity model parameters of Wells et al. (1996) as
nuisance variables. Continued work involved recursive
parcellation of the brain volume by considering sub-
structures in a hierarchical manner (Pohl et al. 2007).
An implementation is provided in 3D slicer (Pieper
et al. 2006)—an open source medical image compu-
tation and visualization package with developmental
contributions from multiple agencies including both
private and academic institutions.

Related neuroanatomical research concerns the se-
lection of geometric features of the cortex (e.g.
Goualher et al. 1999) which aims at understanding the
functional-anatomical relationship of the human brain.
Recent endeavors produce a dense cortical labeling
in which every point of the cortex is classified, i.e.
a cortical parcellation (Fischl et al. 2004; Heckemann
et al. 2006; Destrieux et al. 2010). Various techniques
have been proposed to reduce the manual effort re-
quired to densely label a high-resolution neuroimage;
one example is the popular software package known
as Freesurfer (Dale et al. 1999; Fischl et al. 1999,
2004). In contrast to the volumetric approach detailed
in this work, Freesurfer is primarily a surface-based
technique in which the brain structures such as the grey-
white matter interface and pial surfaces are processed,
analyzed, and displayed as tessellated surfaces (Dale
et al. 1999; Fischl et al. 1999). Advantages of surface
representations include the ability to map processed
neuroanatomy to simple geometric primitives such as
spheres or planes and the ease of including topolog-
ical constraints in the analysis workflow. These types
of methods, including Klein’s Mindboggle (Klein and
Hirsch 2005), would usually follow an initial segmenta-
tion by a volumetric method such as Atropos.
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Researchers in aging often focus on accurately seg-
menting the T1 MRI of elderly controls and sub-
jects suffering from neurodegeneration, for instance,
via SIENA (Smith et al. 2007). A recent evalua-
tion study compared kNN segmentation, SPM Unified
Segmentation and SIENA and found different per-
formance characteristics under different evaluation
criteria (de Bresser et al. 2011). Klauschen et al.
(2009) had similar findings when comparing SPM5, FSL
and FreeSurfer. These studies suggest that no single
method performs best under every measurement and,
along with the No Free Lunch theorem (Wolpert and
Macready 1997), highlight the need for segmentation
tools that are tunable for different problems and re-
search goals.

Our open source segmentation tool, which we have
dubbed Atropos,1 efficiently and flexibly implements
an n-tissue paradigm for voxel-based image segmen-
tation. Atropos allows users to harness its generalized
EM algorithm for standard tissue classification of the
brain into gray matter, white matter and cerebrospinal
fluid even in cases of multivariate image data—relevant
when more than one view of anatomy aids segmen-
tation, as in neonatal brain tissue classification (e.g.
Prastawa et al. 2005; Weisenfeld and Warfield 2009).
Atropos equally allows incarnations that use EM to
simultaneously maximize the posterior probabilities of
many classes with minimal random access memory re-
quirements, for instance, when parcellating the brain
into hemispheres, cortical regions and deep brain struc-
tures such as amygdala, hippocampus and thalamus.
Atropos contains features of its predecessors for per-
forming n-tissue segmentation including imposition of
prior information in the form of MRFs and template-
based spatial prior probability maps as well as weighted
combinations of these terms. We also borrow an idea
from Boykov and Kolmogorov (2004) and use sparse
spatial priors to provide initialization and boundary
conditions for Atropos EM segmentation in a semi-
interactive manner. In short, Atropos seeks to provide a
segmentation toolbox that may be modified, tuned and
refined for different use scenarios.

Coupled with the registration (Avants et al. 2011)
and template building (Avants et al. 2010b) already
included in the ANTs, Atropos is a versatile and
powerful software tool which touches multiple aspects

1Atropos is one of the three Fates from Greek mythology char-
acterized by her dreaded shears used to decide the destiny of
each mortal. Also, consistent with the entomological motif of our
ANTs, Acherontia atropos is a species of large moth known for
the skull-like pattern visible on its thorax.

of our brain processing pipeline. We use Atropos to
address brain extraction (Avants et al. 2010a), grey
matter/white matter/cerebrospinal fluid segmentation,
label fusion/propagation and cortical parcellation. We
also allow Atropos to interact with the recently devel-
oped N4 bias correction software (Tustison et al. 2010a)
in an adaptive manner. To further highlight the value of
this open source contribution, we performed a search
of software attributes on NITRC and found that as of
November 2010 no stand-alone EM methods are cur-
rently listed. We also evaluate Atropos performance
on two brain MRI segmentation objectives. First, three-
tissue classification. Second, we test our ability to par-
cellate the brain into 69 neuroanatomical regions to
illustrate the practical value of the low-memory imple-
mentation within this paper. Although Atropos may be
applied to multivariate data from arbitrary modalities,
we limit our evaluation to tissue classification in T1
neuroimaging in part due to the abundance of “gold-
standard” data for this modality. Consistent with our
advocacy of open science (not to mention the facilita-
tion of analysis due to accessibility) we also only use
publicly available data sets. For this reason, all results
in this paper are reproducible with the caveat that users
may require some guidance from the authors or other
users in the community.

Organization of this work is as follows: we first
describe the theory behind the various components
of Atropos while acknowledging that more theoretical
discussion is available elsewhere. This is followed by a
thorough discussion of implementation which, though
often overlooked, is of immense practical utility. We
then report results on the BrainWeb and Hammers
dataset. Finally, we provide a discussion of our results
and our open source contribution in the context of the
remainder of this paper and of previous and future
work.

Theoretical Foundations for Atropos Segmentation

Atropos encodes a family of Bayesian segmentation
techniques that may be configured in an application-
specific manner. The theory underlying Atropos dates
back 20+ years and is representative of some of the
most innovative work in the field. Although we sum-
marize some of the theoretical work in this section, we
recommend that the interested reader consult the deep
literature in this field for additional perspective and
proofs behind the major concepts.

Bayes’ theorem provides a powerful mechanism for
making inductive inferences assuming the availability
of quantities defining the relevant conditional proba-
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bilities, specifically the likelihood and prior probability
terms. Bayesian paradigms for brain image segmenta-
tion employ a user selected observation model defining
the likelihood term and one or more prior probability
terms. The product of likelihood(s) and prior(s) is pro-
portional to the posterior probability. The likelihood
term has been previously defined both parametrically
(e.g. a Gaussian model) and non-parametrically (e.g.
Parzen windowing of the sample histogram). The prior
term, as given in the literature, has often been formed
either as MRF-based and/or template-based. An image
segmentation solution in this context is an assignment
of one label to each voxel2 such that the posterior
probability is maximized. The next sections introduce
notation and provide a formal description of three
essential components in Bayesian segmentation, viz.

• the likelihood or observation model(s),
• the prior probability quantities derived from a gen-

eralized MRF and template-based prior terms, and
• the optimization framework for maximizing the

posterior probability.

These components are common across most EM seg-
mentation algorithms.

Notation

Assume a field, F , whose values are known at discrete
locations, i.e. sites, within a regular voxel lattice that
makes up an image domain, I. Note that F can be a
scalar field in the case of unimodal data (e.g. T1 image
only) or a vector field in the case of multimodal data
(e.g. T1, T2, and proton density images). A specific set
of observed values, denoted by y, are indexed at N
discrete locations in I by i ∈ {1, 2, . . . , N}. This random
field, Y = {y1, y2, . . . , yN}, serves as a discrete repre-
sentation of an observed image’s intensities. A labeling
of this image, also known as a hard segmentation,
assigns to each site in I one of K labels from the finite
set L = {l1, l2, . . . , lK}. Also considered a random field,
this discrete labeling is X = {x1, x2, . . . , xN} where each
xi ∈ L. We use x to denote a specific set of labels in I
and a valid, though not necessarily optimal, solution to
the segmentation problem.

Segmentation Objective Function

Atropos optimizes a class of user selectable objective
functions each of which may be represented in a generic

2In the classic 3-tissue segmentation case, each voxel in the brain
region is assigned a label of ‘cerebrospinal fluid (csf)’, ‘gray
matter (gm)’, or ‘white matter (wm)’.

Bayesian framework, as described by Sanjay-Gopal
and Hebert (1998). This framework requires likeli-
hood models and prior models which enter into Bayes’
formula,

p(x|y) = p(y|x)
︸ ︷︷ ︸

Likelihood(s)

p(x)
︸︷︷︸

Prior(s)

1
p(y)

(1)

where the normalization term, 1/y, is a constant that
does not affect the optimization (Sanjay-Gopal and
Hebert 1998). Given choices for likelihood models and
prior probabilities, the Bayesian segmentation solution
is the labeling x̂ which maximizes the posterior proba-
bility, i.e.

x̂ = argmax
x

{

p(y|x)p(x)
}

. (2)

Similar to its predecessors, Atropos employs the EM
framework (Dempster et al. 1977) to find maximum
likelihood solutions to this problem. The following sec-
tions detail the Atropos EM along with choices for the
likelihood and prior terms.

Likelihood or Observation Models

To each of the K labels corresponds a single prob-
abilistic model describing the variation of F over
I. We denote this set of K likelihood models
as � = {p1, p2, . . . , pK}. Using the standard nota-
tion, Pr(S = s) = p(s), Pr(S = s|T = t) = p(s|t), we can
define these voxelwise probabilities, Prk(Yi = yi|Xi =
lk) = pk(yi|lk), in either parametric or non-parametric
terms. Given its simplicity and good performance, in
the parametric case, pk is typically defined as a normal
distribution, i.e.

pk (yi|lk) = G (μk; σk)

= 1
√

2πσ 2
k

exp
(−(yi − μk)

2

2σ 2
k

)

(3)

where the parameters μk and σ 2
k respectively represent

the mean and variance of the kth model. When yi is
a vector quantity, we replace the Euclidean distance by
Mahalanobis distance and define multivariate Gaussian
parameters via a mean vector, μk, and covariance
matrix, �k.

A common technique for the non-parametric variant
is to define pk using Parzen windowing of the sample
observation histogram of y, i.e.

pk (yi|lk) = 1
NB

NB
∑

j=1

1
√

2πσ 2
j

exp

(

−(yi − c j)
2

2σ 2
j

)

(4)
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where NB is the number of bins used to define the
histogram of the sample observations (in Atropos the
default is NB = 32) and c j is the center of the jth bin
in the histogram. σ j is the width of each of the NB

Gaussian kernels. For multi-modal data in which the
number of components of yi is greater than one, a
Parzen window function is constructed for each com-
ponent. The likelihood value is determined by the joint
probability given by their product.

Atropos segmentation likelihood estimates are
based on the classical finite mixture model (FMM).
FMM assumes independency between voxels to cal-
culate the probability associated with the entire set
of observations, y. Spatial interdependency between
voxels is modeled by the prior probabilities discussed
in the next section. Marginalizing over the set of pos-
sible labels, L, leads to the following probabilistic
formulation

p(y|x) =
N

∏

i=1

(

K
∑

k=1

γk pk(yi|lk)

)

(5)

where γk is the mixing parameter (Ashburner and
Friston 2005).

Prior Probability Models

By modeling F via the set of observation models �,
this so called finite-mixture model could be used to
produce a labeling or segmentation (e.g. Wells et al.
1996). However, as pointed out by Zhang et al. (2001),
exclusive use of the intensity profile produces a less
than optimal solution because spatial contextual con-
siderations are ignored. This has been remedied by
the introduction of a host of prior probability models
including those characterized by use of MRF theory
and template-based information. For example, in the
works of Leemput et al. (1999b) and Weisenfeld and
Warfield (2009), the original global prior term given
in Wells et al. (1996) is replaced by the product of
the template-based and the MRF-based prior terms.
In addition to their descriptions below, we discuss a
third possible prior/objective combination in the form
of a (sparse) prior labeling which fixes specific points
of the segmentation and uses EM to propagate this
information elsewhere in the image.

Generalized MRF Prior

One may incorporate spatial coherence into the seg-
mentation by favoring labeling configurations in which

voxel neighborhoods tend towards homogeneity. This
intuition is formally described by MRF theory in which
spatial interactions in voxel neighborhoods can be mod-
eled (Li 2001).

We assume the random field introduced earlier, X,
is an MRF characterized by a neighborhood system, Ni,
on the lattice, I, composed of the neighboring sites of
i. This neighborhood system is both noninclusive, i.e.
i /∈ Ni, and reciprocating, i.e. i ∈ N j ⇔ j ∈ Ni. As an
MRF, X also satisfies the positivity and locality condi-
tions, i.e.,

p(x) > 0, ∀x (6)

and where x is any particular labeling configuration on
X (in other words, any labeling permutation on X is a
priori possible). The MRF locality condition is then,

p
(

xi|xI−{i}
) = p

(

xi|xNi

)

(7)

where xI−{i} is the labeling of the entire image lattice
except at site i and xNi is the labeling of Ni. This locality
property enforces solely local considerations based on
the neighborhood system in calculating the probability
of the particular configuration, x. Following these two
assumptions, the Hammersley–Clifford theorem pro-
vides the basis for treating the MRF distribution (cf.
Eq. 6) as a Gibbs distribution (Besag 1974; Geman and
Geman 1984), i.e.

p(x) = Z −1 exp (−U(x)) (8)

with Z a normalization factor known as the partition
function and U(x) the energy function which can take
several forms (Li 2001). In Atropos, as is the case
with many other segmentation algorithms of the same
family, we choose U(x) such that it is only composed of
a sum over pairwise interactions between neighboring
sites across the image,3 i.e.

U(x) = β

N
∑

i=1

∑

j∈Ni

Vij(xi, x j) (9)

3Using a more expansive definition of U(x),

U(x) =
N

∑

i=1

⎛

⎝Vi(xi) + β
∑

j∈Ni

Vij(xi, x j)

⎞

⎠

would permit casting the other prior terms inside the definition
of U(x) in the form of the external field Vi(xi) but, for clarity
purposes, we consider them separately.
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where Vij is typically defined in terms of the Kronecker
delta, δij, based on the classical Ising potential (also
known as a Potts model) (Besag 1974)

Vij(xi, x j) = δij

=
{

0 if xi = x j

1 otherwise
(10)

and β is a granularity term which weights the contri-
bution of the MRF prior on the segmentation solution.
Since Atropos allows for non-uniform neighborhood
systems and systems in which not just the immediate
face-connected neighbors are considered, we use the
modified function also used in Noe and Gee (2001),
which weights the interaction term by the Euclidean
distance, dij, between interacting sites i and j such that

Vij = δij

dij
(11)

so that sites in the neighborhood closer to i are
weighted more heavily than distant sites.

Template-based Priors

A number of researchers have used templates to both
ensure spatial coherence and incorporate prior knowl-
edge in segmentation. A common technique is to se-
lect labeled subjects from a population from which a
template is constructed (e.g. Avants et al. 2010b, which
is also available in ANTs). Each labeling can then be
warped to the template where the synthesis of warped
labeled regions produces a prior probability map or
prior label map encoding the spatial distribution of la-
beled anatomy which can be harnessed in joint segmen-
tation/registration or Atropos/ANTs hybrids involving
unlabeled subjects.

We employ the strategy given in Ashburner and
Friston (2005) in which the stationary mixing propor-
tions, Pr(xi = lk) = γk (cf. Eq. 5), describing the prior
probability that label lk corresponds to a particular
voxel, regardless of intensity, are replaced by the fol-
lowing spatially varying mixing proportions,

Pr(xi = lk) = γktik
∑K

j=1 γ jtij
. (12)

The tik is the prior probability value at site i which was
mapped, typically by image registration, to the local
image from a template data set. The user may also
choose mixing proportions equal to

Pr(xi = lk) = tik
∑K

j=1 tij
(13)

via the command line interface to the posterior
formulation.

Supervised Semi-interactive Segmentation

Brain segmentation methods have relied on user in-
teraction for many years (Lim and Pfefferbaum 1989;
Julin et al. 1997; Freeborough et al. 1997; Yushkevich
et al. 2006). Atropos is capable of benefitting from
user knowledge via an initialization and optimization
that depends upon a spatially varying prior label image
passed as input. Rapid, sparse labeling—with visual-
ization provided by ITK-SNAP (www.itksnap.org)—
enables an interaction and execution processing loop
that can be critical to solving segmentation problems
with challenging clinical data in which automated ap-
proaches fail. This part of Atropos design is inspired
by the interactive graph cuts pioneered by Boykov and
Jolly (2001) and which has spawned many follow-up ap-
plications. The Atropos prior label image prespecifies
the segmentation results at a subset of the spatial do-
main by fixing the priors and likelihood (and, thus, the
posterior) at a subset of I to be 1 for the known label
and 0 for each other label at the same site. The user
input therefore not only initializes the optimization, but
also gives boundary conditions that influence the EM
solution outside of the known sites. While the graph-
based min-cut max-flow solution is globally optimal for
two labels, only locally optimal optimizers are available
for 3 or more classes. Thus, in most practical appli-
cations, EM is a reasonable and efficient alternative
to Boykov’s solution. Furthermore, one may automate
the initialization process. We provide this capability
to allow the user to implement an interactive editing
and segmentation loop. The user may run Atropos
with sparse manual label guidance, evaluate the results,
update the manual labels and repeat until achieving
the desired outcome. This processing loop may be per-
formed easily with, e.g., ITK-SNAP.

Optimization

Atropos uses expectation maximization to find a locally
optimal solution for the user selected version of the
Bayesian segmentation problem (cf. Eq. 1). After initial
estimation of the likelihood model parameters, EM it-
erates between calculation of the missing optimal labels
x̂ and subsequent re-estimation of the model parame-
ters by maximizing the expectation of the complete
data log-likelihood (cf. Eq. 5). The expectation maxi-
mization procedure is derived in various publications
including Zhang et al. (2001) which yields the optimal
mean and variance (or covariance), but sets the mixing

http://www.itksnap.org
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parameter γk as a constant. The Atropos imple-
mentation estimates γk at each iteration, similar to
Ashburner and Friston (2005).4 When spatial coher-
ence constraints are included as an MRF prior in
Atropos, the optimal segmentation solution becomes
intractable.5 Although many optimization techniques
exist (see the introduction in Marroquin et al. (2002)
for a concise summary of the myriad optimization
possibilities)—each with their characteristic advantages
and disadvantages in terms of computational complex-
ity and accuracy—Atropos uses the well-known Iter-
ated Conditional Modes (ICM) (Besag 1986) which is
greedy, computationally efficient and provides good
performance. The EM employed in Atropos may there-
fore be written as a series of steps:

Initialization In all cases, the user defines the number
of classes to segment. The simplest initialization is by
the classic K-means or Otsu thresholding algorithms
with only the number of classes specified by the user.
Otherwise, the user must provide prior information for
each class in the form of either a single n-ary prior
label image or a series of prior probability images, one
for each class. The initialization also provides starter
parameters.

Label Update (E-Step) Given the initialization and
fixed model parameters, Atropos is capable of updating
the current label estimates using either a synchronous
or asynchronous scheme. The former is characterized
by iterating through the image and determining which
label maximizes the posterior probability without up-
dating any labels until all voxels in the mask have
been visited at which point all the voxel labels are
updated simultaneously (hence the descriptor “syn-
chronous”). This option is specified with --icm [0].
However, unlike asynchronous schemes characteristic
of ICM, synchronous updates lack convergence guar-
antees. To determine the labeling which maximizes the
posterior probability for the asynchronous option, an
“ICM code” image is created once for all iterations
by iterating through the image and assigning an ICM
code label to each voxel in the mask such that each

4Due to the lack of parameters in the non-parametric approach,
it is not technically an EM algorithm (as described in Wells et al.
(1996)). However, the same iterative maximization is applica-
ble and is quite robust in practice as evidenced by the num-
ber of researchers employing non-parametric models (see the
Introduction).
5Consider N sites each with a possible K labels for a total
of NK possible labeling configurations. For large K � 3, exact
optimization is even more intractable than for the traditional
3-tissue scenario.

MRF neighborhood has a non-repeating code label set.
Thus each masked voxel in the ICM code image is
assigned a value in the range {1, . . . , C} where C is the
maximum code label. Such an image can be created
and viewed with Atropos by assigning a valid filename
in the --icm [1] set of options. An example adult
brain slice and the associated code image is given in
Fig. 1 for an MRF neighborhood of 5 × 5 pixels. This
produces a maximum code label of ‘13’. For each iter-
ation, one has the option to permute the set {1, . . . , C}
which prescribes the order in which the voxel labels are
updated asynchronously. After the first pass through
the set of code labels, additional passes can further
increase the posterior probability until convergence (in
∼5 iterations). One can specify a maximum number of
these “ICM iterations” on the command line. For our
example in Fig. 1, this means that for each ICM itera-
tion, we would iterate through the image 13 times only
updating those segmentation labels associated with the
current ICM code.

Parameter Update (M-Step) Note that the posteriors
used in the previous iteration are used to estimate the
parameters at the current iteration. We use a common
and elementary estimate of the mixing parameters:

γk ← 1
N

N
∑

i=1

pk(lk|yi). (14)

We update the parametric model parameters by com-
puting, for each of K labels, the mean,

μk ←
∑N

i=1 yi pk(lk|yi)
∑N

i=1 pk(lk|yi)
(15)

and variance,

σ 2
k ←

∑N
i=1(yi − μk)

T pk(lk|yi)(yi − μk)
∑N

i=1 pk(lk|yi)
. (16)

The latter two quantities are modified, respectively, in
the case of multivariate data as follows:

μk ←
∑N

i=1 yi pk(lk|yi)
∑N

i=1 pk(lk|yi)
(17)

and the kth covariance matrix, �k, is calculated from

�k ←
∑N

i=1 pk(lk|yi)(yi − μk)
T(yi − μk)

1 − ∑N
i=1 p2

k(lk|yi)
. (18)

This type of update is known as soft EM. Hard EM, in
contrast, only uses sites containing label lk to update the
parameters for the kth model. A similar pattern is used
in non-parametric cases.

EM will iterate toward a local maximum. We track
convergence by summing up the maximum posterior



388 Neuroinform (2011) 9:381–400

4

1

6

4

1

2

7

11

2

5

5

8

10

3

8

3

9

1

4

9

4

2

6

7

2

Fig. 1 An adult brain image slice is shown with its ICM code
image corresponding to a 5 × 5 MRF neighborhood. To the right
of the ICM code image, we focus on a single neighborhood with
a center voxel associated with the ICM code label of ‘10’. Each
center voxel in a specified neighborhood exhibits a unique ICM

code label which does not appear elsewhere in its neighborhood.
When performing the segmentation labeling update for ICM, we
iterate through the set of ICM code labels and, for each code
label, we iterate through the image and update only those voxels
associated with the current code label

probability at each site over the segmentation domain.
The E-step, above, depends upon the selected coding
strategy (Besag 1986). Atropos may use either a classi-
cal, sequential checkerboard update or a synchronous
update of the labels, the latter of which is commonly
used in practice. Synchronous update does not guar-
antee convergence but we employ it by default due
to its intrinsic parallelism and speed. The user may
alternatively select checkerboard update if he or she
desires theoretical convergence guarantees. However,
we have not identified performance differences, rela-
tive to ground truth, that convince us of the absolute
superiority of one approach over the other.

Implementation

Organization of the implementation section roughly
follows that of the theory section.

The Atropos User Interface

As with other classes that comprise ANTs, Atropos
uses the Insight Toolkit as a developmental foundation.
This allows us to take advantage of the mature portions
of ITK (e.g. image IO) and ensures the integrity of
the ancillary processes such as those facilitated by the
underlying statistical framework. Although Atropos is
publicly distributed with the rest of the ANTs package,

we plan to contribute its core elements to the Insight
Toolkit where it can be vetted and improved by other
interested researchers.

An overview of Atropos components can be gleaned,
in part, from the flowchart depicted in Fig. 2. Given
a set of input images and a mask images, each is pre-
processed using N4 to correct for intensity inhomo-
geneity. For our brain processing pipeline, the mask
is usually obtained from the standard skull-stripping
preprocessing step which also uses Atropos. Initializa-
tion can be performed in various ways using standard
clustering techniques, such as K-means, to prior-based
images. This initialization is used to provide the initial
estimate of the parameters of the likelihood model for
each class. These likelihoods combine with the current
labeling to generate the current estimate of the poste-
rior probabilities at each voxel for each class. At each
iteration, one can also integrate N4 by using the current
posterior probability estimation of the white matter to
update the estimate of bias field.

To provide a more intuitive interface without the
overhead costs of a graphical user interface, a set of
unique command line parsing classes were developed
which can also provide insight to the functionality of
Atropos. The short version of the command line help
menu is given in Listing 1 which is invoked by typing
‘Atropos -h’ at the command prompt. Both short
and long option flags are available and each option
has its own set of possible values and parameters intro-



Neuroinform (2011) 9:381–400 389

N4 Bias
Correction

Update
Likelihoods

Calculate Posterior
Probabilities

Label
Propagation

N4 using white
matter posterior
probability image

Initialization

Mask Image

Input Image(s)

Output Image(s)
Convergence? yes

no

Prior Probability
Images

Prior Label
Image

K-Means Otsu

Gaussian
(parametric)

Parzen Windowing
(nonparametric)

Geodesic Euclidean

Fig. 2 Flowchart illustrating Atropos usage typically beginning
with bias correction via N4. Initialization provides an estimate
before the iterative optimization in which the likelihood models
for each class are tabulated from the current estimate followed
by a recalculation of the posterior probabilities associated with

each class. The multiple options associated with the different
algorithmic components are indicated by the colored rounded
rectangles connected to their respective core Atropos processes
via curved dashed lines

duced in a more formal way in both the previous discus-
sion and related papers cited in the introduction. Here
we describe these options from the unique perspective
of implementation.

Initializing the Atropos Objective

Atropos has a number of parameters defined within
Listing 2 and will function on 2, 3 or 4 dimensional
data. However, the majority of the time, users will
be concerned with a smaller set of input parameters.
Here, we list the recommended input and an example
definition for each parameter:

Input images to be segmented If more than one input
image is passed, then a multivariate model will be in-
stantiated. E.g. -a Image.nii.gz for one image and
-a Image1.nii.gz -a Image2.nii.gz for mul-
tiple images.

Input image mask This binary image defines the spa-
tial segmentation domain. Voxels outside the masked
region are designated with the label 0. E.g. -x
mask.nii.gz.

Convergence criteria The algorithm terminates if it
reaches the maximum number of iterations or produces
a change less than the minimum threshold change in the
posterior. E.g. -c [5,1.e-5].

MRF prior The key parameter to increase or decrease
the spatial smoothness of the label map is β. A useful
range of β values is 0 to 0.5 where we usually use

0.05, 0.1 or 0.2 in brain segmentation. E.g. -m [0.1,
1x1x1] would define β = 0.1 with a MRF radius of
one voxel in each of three dimensions.

Initialization The initialization options include
(where the first parameter defines K, here 3 for each
below),

• -i Kmeans[3] standard K-means initialization
for three classes,

• -i PriorLabelImage[3,label_image.nii.
gz] and

• -i PriorProbabilityImages[3, label_
prob%02d.nii.gz,w] where w = 0 (use the
prior probability images only for initialization)
or w > 0.0 (use the prior probability images
throughout the optimization). If one chooses
0 < w < 1.0 then one will increase (from zero)
the weight on the priors. These images, like the
PriorLabelImage, should be defined with the
same domain as the input images to be segmented.

Posterior formulation The user may choose to es-
timate the mixture proportions (or not) by setting
-p Socrates[1] or -p Socrates[0]. Fixed label
boundary conditions may be employed by selecting the
PriorLabelImage initialization and -p Plato[0].

Output Atropos will output the hard segmentation
and the probability image for each model. E.g. -o
[segmentation.nii.gz, seg_prob%02d.nii.
gz] will write out the hard segmentation in the first
output parameter and a probability image for each
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COMMAND:
Atropos

OPTIONS:
-d, --image-dimensionality 2/3/4
-a, --intensity-image [intensityImage,<adaptiveSmoothingWeight >]
-b, --bspline [<numberOfLevels=6>,<initialMeshResolution=1x1x...>,<splineOrder=3>]
-i, --initialization Random[numberOfClasses]

KMeans[numberOfClasses]
Otsu[numberOfClasses]
PriorProbabilityImages[numberOfClasses,

fileSeriesFormat(index=1 to numberOfClasses) or vectorImage,
priorWeighting,<priorProbabilityThreshold >]

PriorLabelImage[numberOfClasses,labelImage,priorWeighting]
-p, --posterior-formulation Socrates[<useMixtureModelProportions=1>,

<initialAnnealingTemperature=1>,<annealingRate=1>,
<minimumTemperature=0.1>]

Plato[<useMixtureModelProportions=1>,
<initialAnnealingTemperature=1>,<annealingRate=1>,
<minimumTemperature=0.1>]

-x, --mask-image maskImageFilename
-c, --convergence [<numberOfIterations=5>,<convergenceThreshold=0.001>]
-k, --likelihood-model Gaussian

HistogramParzenWindows[<sigma=1.0>,<numberOfBins=32>]
-m, --mrf [<smoothingFactor=0.3>,<radius=1x1x...>]
-g, --icm [<useAsynchronousUpdate=1>,<maximumNumberOfICMIterations=1>,

<icmCodeImage=`'>]
-o, --output [classifiedImage,<posteriorProbabilityImageFileNameFormat >]
-u, --minimize-memory-usage (0)/1
-w, --winsorize-outliers BoxPlot[<lowerPercentile=0.25>,<upperPercentile=0.75>,

<whiskerLength=1.5>]
GrubbsRosner[<significanceLevel=0.05>,<winsorizingLevel=0.10>]

-e, --use-euclidean-distance (0)/1
-l, --label-propagation whichLabel[sigma=0.0,<boundaryProbability=1.0>]
-h
--help

Listing 1 Atropos short command line menu which is invoked using the ‘-h’ option. The expanded menu, which provides details
regarding the possible parameters and usage options, is elicited using the ‘--help’ option

class named, here, seg_prob01.nii.gz, seg_prob02.nii.gz,
etc.

Higher dimensions than 4 are possible although we
have not yet encountered such an application-specific
need. Multiple images (assumed to be of the same
dimension, size, origin, etc.), will automatically enable

multivariate likelihoods. In that case, the first image
specified on the command line is used to initialize the
Random, Otsu, or K-means labeling with the latter
initialization refined by incorporating the additional in-
tensity images, i.e. an initial univariate K-means cluster-
ing is determined from the first intensity image which,

COMMAND:
N4BiasFieldCorrection

OPTIONS:
-d, --image-dimensionality 2/3/4
-i, --input-image inputImageFilename
-x, --mask-image maskImageFilename
-w, --weight-image weightImageFilename
-s, --shrink-factor 1/2/3/4/...
-c, --convergence [<numberOfIterations=50>,<convergenceThreshold=0.001>]
-b, --bspline-fitting [splineDistance,<splineOrder=3>,<sigmoidAlpha=0.0>,

<sigmoidBeta=0.5>]
[initialMeshResolution,<splineOrder=3>,<sigmoidAlpha=0.0>,
<sigmoidBeta=0.5>]

-t, --histogram-sharpening [<FWHM=0.15>,<wienerNoise=0.01>,<numberOfHistogramBins=200>]
-o, --output [correctedImage,<biasField>]
-h
--help

Listing 2 N4 short command line menu which is invoked using the ‘-h’ option. The expanded menu, which provides details regarding
the possible parameters and usage options, is elicited using the ‘--help’ option
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along with the other images, provides the starting mul-
tivariate cluster centers for a follow-up multivariate
K-means labeling. More details on each of the key
implementation options are given below.

Likelihood Implementation

As mentioned previously in the introduction, different
groups have opted for different likelihood models
which have included either parametric (Gaussian) or
non-parametric variations. However, these approaches
are similar in that they require a list sample of intensity
data from the input image(s) and a list of weighting
values for each observation of the list sample from
which the model is constructed. In general, one may
query model probabilities by passing a given pixel’s
single intensity (for univariate segmentation) or mul-
tiple intensities (for multivariate segmentation) to the
modeling function, regardless of whether the function
is parametric or non-parametric. These similarities per-
mitted the creation of a generic plug-in architecture
where classes describing both parametric and non-
parametric observational models are all derived from
an abstract list sample function class. Three likelihood
classes have been developed, one parametric and two
non-parametric, and are available for usage although
one of the non-parametric classes is still in experimental
development. The plug-in architecture even permits
mixing likelihood models with different classes during
the same run for a hybrid parametric/non-parametric
model although this possibility has yet to be fully
explored.

If the Gaussian likelihood model is chosen, the list
sample of intensity values and corresponding weights
comprised of the posterior probabilities are used to esti-
mate the Gaussian model parameters, i.e. the mean and
variance. For the non-parametric model, the list sample
and posteriors are used in a Parzen windowing scheme
on a weighted histogram to estimate the observational
model (Awate et al. 2006).

Prior Probability Models

Label Regularity

Consistent with our previous discussion, we offer both
an MRF-based prior probability for modeling spatial
coherence and the possibility of specifying a set of prior
probability maps or a prior label map with the latter
extendable to creating a dense labeling. To invoke the
MRF ‘-m/-mrf’ option, one specifies the smoothing
factor (or the granularity parameter, β, given in Eq. 9,
and the radius (in voxels) of the neighborhood system

using the vector notation ‘1x1x1’ for a neighborhood
radius of 1 in all 3 dimensions. This radius is defined
such that voxels including but not limited to those that
are face-connected will influence the MRF.

Registration and Probability Maps

Image registration enables one to transfer informa-
tion between spatial domains which may aid in both
segmentation and bias correction. We rely heavily on
template-building strategies (Avants et al. 2010a, b)
which are also offered in ANTs. Since aligned prior
probability images and prior label maps are often as-
sociated with such templates, Atropos can be initial-
ized with these data with their influence regulated
by a prior probability weighting term. Although prior
label maps can be specified as a single multi-label
image, prior probability data are often represented
as multiple scalar images with a single image corre-
sponding to a particular label. For relatively small
classifications, such as the standard 3-tissue segmenta-
tion (i.e. white matter, gray matter, and cerebrospinal
fluid), this does not typically present computational
complexities using modern hardware. However, when
considering dense cortical parcellations where the num-
ber of labels can range upwards of 74 per hemisphere
(Destrieux et al. 2010), the memory load can be pro-
hibitive if all label images are loaded into run-time
memory simultaneously. A major part of minimizing
memory usage in Atropos, which corresponds to the
boolean ‘-u/--minimize-memory-usage’ option,
is the sparse representation of each of the prior prob-
ability images. Motivated by the observation that these
spatial prior probability maps tend to be highly local-
ized for large quantities of cortical labels, a threshold is
specified on the command line (default = 0.0) and only
those probability values which exceed that threshold
are stored in the sparse representation. During the
course of optimization, the prior probability image for
a given label is reconstructed on the fly as needed.
For instance, the NIREP (www.nirep.org) evaluation
images are on the order of 300 × 300 × 256 with 32
cortical labels. Our novel memory minimizing image
representation typically shrinks run-time memory us-
age from a peak of 10+ GB to approximately 1.5 GB
and enable these datasets to be used for training/prior-
based cortical parcellation.

Integrating N4 Bias Correction

Assumptions about bias correction may be thought
of as another prior model. As such, the typical seg-
mentation processing pipeline begins with an intensity
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normalization/bias correction step using a method such
as the recently developed N4 algorithm (Tustison et al.
2010a). N4 extends the popular nonparametric nonuni-
form intensity normalization (N3) algorithm (Sled et al.
1998) in two principal ways:

• We replace the least squares B-spline fitting with
a parallelizable alternative (which we also made
publicly available in the Insight Toolkit)— the ad-
vantages being that 1) computation is much faster
and 2) smoothing is not susceptible to outliers as
is characteristic with standard least squares fitting
algorithms.

• The fitting algorithm permits a multi-resolution ap-
proach so whereas standard N3 practice is to select
a single resolution at which bias correction occurs,
the N4 framework permits a multi-resolution cor-
rection where a base resolution is chosen and cor-
rection can then occur at multiple resolution levels
each resolution being twice the resolution of the
previous level.

Specifically, with respect to segmentation, there exists
a third advantage with N4 over N3 in that the for-
mer permits the specification of a probabilistic mask
as opposed to a binary mask. Recent demonstrations
suggest improved white matter segmentation produces
better gain field estimates using N3 (Boyes et al. 2008).
Thus, when performing 3-tissue segmentation, we may
opt to use, for instance, the posterior probability map
of white matter at the current iteration as a weighted
mask for input to N4. This is done by setting the
‘--weight-image’ option on the N4 command line
call (see Listing 2) to the posterior probability image
corresponding to the white matter produced as output
in the Atropos call, i.e. ‘Atropos --output’. N4 was
recently added to the Insight Toolkit repository6 where
it is built and tested on multiple platforms nightly. The
evaluation section will illustrate inclusion of Atropos,
N4 and ANTs in a brain processing pipeline.

Running the Atropos Optimization

The Atropos algorithm is cross-platform and compiles
on, at minimum, modern OSX, Windows and Linux-
based operating systems. The user interface may be
reached through the operating system’s user terminal.
Because of its portability and low-level efficiency,
Atropos can easily be called from within other
packages, such as Matlab or Slicer, or, alternatively,

6http://www.itk.org/Doxygen/html/classitk_1_
1N4MRIBiasFieldCorrectionImageFilter.html

integrated at compile time as a library. A typical call
to the algorithm, illustrated here with ANTs example
data, is: Atropos -d 2 -a r16slice.nii.gz
-i kmeans[3] -c [5,0] -x mask.nii.gz -m
[0.2,1x1] -o [r16_seg.nii.gz,r16_prob_%
02d.nii.gz]. In this case, Atropos will output
the segmentation image, the per-class probability
images and a listing of the parameters used to
set up the algorithm. A useful feature is that
one may re-initialize the Atropos EM via the -i
PriorProbabilityImages[...] option. This
feature allows one to compute an initial segmentation
via K-means, alter the output probabilities by
externally computed functions (e.g. Gaussian
smoothing, image similarity or edge maps) and re-
estimate the segmentation with the modified priors.
Finally, the functionality that is available to parametric
models is equally available to the non-parametric
models enabled by Atropos.

Evaluation

Atropos encodes a family of segmentation techniques
that may be instantiated for different applications but
here we evaluate only two of the many possibilities.
First, we perform an evaluation on the BrainWeb
dataset using both the standard T1 image with multiple
bias and noise levels and also the BrainWeb20 data
(Aubert-Broche et al. 2006; Battaglini et al. 2008). In
combination, these data allow one to vary not only
noise and bias but also the underlying anatomy. Second,
we evaluate the use of Atropos in improving whole-
brain parcellation and exercise its ability to efficiently
solve many-class expectation maximization problem.
We choose this evaluation problem in part to illustrate
the flexibility of Atropos and also the benefits of the
novel, efficient implementation that allows many-class
problems to be solved with low memory usage (<2GB
for a 69-class model on 1 mm3 brain data).

BrainWeb Evaluation

The BrainWeb data is freely available at http://
mouldy.bic.mni.mcgill.ca/BrainWeb/. We employ both
the individual subject data and the BrainWeb20 data in
this evaluation.

Single-subject Evaluation

We use the single-subject data with 3% noise and three
levels of bias referred to as 0, 20 and 40% RF inho-
mogeneity. We study the effect of the MRF prior term

http://www.itk.org/Doxygen/html/classitk_1_1N4MRIBiasFieldCorrectionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1N4MRIBiasFieldCorrectionImageFilter.html
http://mouldy.bic.mni.mcgill.ca/BrainWeb/
http://mouldy.bic.mni.mcgill.ca/BrainWeb/
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Fig. 3 BrainWeb single-subject results for each tissue. The re-
sults show that N4 bias correction, combined with Atropos,
results in a minimal effect of bias, even at the 40% level. The
optimal β for the MRF term appears to be between 0.1 and 0.2.

The legend is in the same position in each graph, allowing a
visual comparison of the results. As one may see, the N4-assisted
overlap values are consistent across bias field/RF inhomogeneity

and initialization on the Dice overlap between ground
truth and the segmentation result for each tissue. We
test both K-means and prior label image initialization
with MRF β ∈ {0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30} at
each bias field. We also feed the white matter prob-
ability map derived from K-means into N4 to guide
the bias correction.7 Segmentation is then repeated,
with the same parameters, but with the N4-corrected
image as input. The resulting algorithm is similar to
those that fix segmentation parameters while estimat-
ing bias and fix bias while estimating segmentation
parameters. Thus, with this simple evaluation, we are
able to compare the impact of bias on the combina-
tion of N4 and Atropos and also the validity of our
prior label image initialization. Results of these eval-
uation scenarios, in terms of Dice overlap, are shown
in Fig. 3. Because overlap ratios with N4 bias correc-

7A comprehensive evaluation of N4 reported in Tustison et al.
(2010a) used the BrainWeb data set to compare performance
with the original N3 algorithm (Sled et al. 1998).

tion approximate those of the zero bias data, we may
conclude that simple N4 pre-processing is adequate
to correct even the 40% RF bias level. An example
of this procedure, using BrainWeb data with 40% RF
bias, is in Fig. 4. We supply the information necessary
to repeat the results in this figure in the script enti-
tled ‘atroposBwebRF40FigureExample.sh’ which
is available in the ANTs Atropos documentation folder
as of SVN commit 711. The script may be easily
modified to run the whole evaluation. Figure 4 shows
the results of simultaneously using proton density and
T1-weighted BrainWeb data to perform the segmen-
tation. This multivariate input data outperforms the
univariate T1-weighted data alone.

20-subject Evaluation

The single-subject BrainWeb study in the previous
section tested the basic Atropos options and the
benefit of N4 for segmentation in the presence of
bias. The 20 subject BrainWeb data allows us to use
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(b)(a) (c) (d)

(e) (f) (h)(g)

Fig. 4 We combine N4 and Atropos by simple sequential
processing and apply to BrainWeb T1-weighted single-subject
data with 40% RF bias and 3% noise. The β for the MRF term
is, here, 0.2. Slice 71 of the input data is in a. The initial K-means
(K = 3) segmentation is in panel b. We use the brain mask to
guide N4 bias correction and produce the image in c. We repeat
the K-means segmentation, but with the N4-corrected image as
input and produce the segmentation in d. The average 3-tissue
Dice overlap of result b is 0.906 while the average overlap for
d is 0.954. Arrows highlight a region of large before-after seg-
mentation discrepancy. In e we see the BrainWeb proton density
image with no inhomogeneity and 3% noise. Its segmentation
is in f with average 3-tissue Dice overlap of 0.895. In g we use
both proton density data and T1 data as multiple modality input

to Atropos. The segmentation of this two-modality input data,
using a multivariate Gaussian model, produces average 3-tissue
Dice overlap of 0.958, which exceeds the univariate solution.
An arrow highlights one region where there is small, visually
recognizable improvement in sulcal segmentation relative to the
result from T1 data alone. A second area of improvement is
the putamen segmentation. The ground truth segmentation is
in h. The multivariate segmentation result, in combination with
the low PD segmentation performance, suggests PD and T1
provide complementary information that may improve 3-tissue
segmentation and serves to validate the multivariate Atropos
implementation. In this case, the benefit is likely to derive from
the fact that the PD image has no bias

2-fold cross-validation to test our ability to segment
different individuals reliably. In this study, we divide
the 20 subjects equally into training and testing
groups. We then exploit the ground-truth labeling
of the training data to build both a group template

(Avants et al. 2010b) and also prior probability maps
for each of the three major tissues in the cerebrum.
Each prior probability map is gained by deforming
the ground truth labels from each of the 10 training
subjects to their template and averaging component

Fig. 5 BrainWeb 20-subject results for each tissue as a function of MRF-β parameter where MRF-β is in {0, 0.05, 0.1, 0.15, 0.2} and
increases left to right. The results show that the PriorProbabilityImages with w = 0.5 (far right) gives the best performance for all tissues
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Neuroanatomical Region Label Atropos Majority    PVal Sign

Right_Hippocampus 1 0.8522 0.8347 0.000183 +
Left_Hippocampus 2 0.8363 0.8234 0.005046 +
Right_Amygdala 3 0.832 0.8029 5.53E-08 +
Left_Amygdala 4 0.8346 0.8108 2.16E-05 +
Right_Anterior_temporal_lobe_medial_part 5 0.9078 0.8822 1.41E-12 +
Left_Anterior_temporal_lobe_medial_part 6 0.9092 0.8838 6.04E-12 +
Right_Anterior_temporal_lobe_lateral_part 7 0.8935 0.8652 7.55E-15 +
Left_Anterior_temporal_lobe_lateral_part 8 0.9022 0.8742 1.46E-13 +
Right_Parahippocampal_and_ambient_gyri 9 0.8651 0.8421 1.90E-10 +
Left_Parahippocampal_and_ambient_gyri 10 0.866 0.8441 3.91E-10 +
Right_Superior_temporal_gyrus 11 0.8907 0.874 1.16E-11 +
Left_Superior_temporal_gyrus 12 0.8976 0.8798 6.76E-09 +
Right_Middle_and_inferior_temporal_gyri 13 0.89 0.874 1.27E-09 +
Left_Middle_and_inferior_temporal_gyri 14 0.8908 0.873 9.39E-11 +
Right_Fusiform_gyrus 15 0.7667 0.7461 6.79E-08 +
Left_Fusiform_gyrus 16 0.7556 0.7391 0.000685 +
Right_Cerebellum 17 0.9829 0.9702 6.94E-18 +
Left_Cerebellum 18 0.9833 0.9703 3.72E-17 +
Brainstem 19 0.9523 0.9544 0.159323 ~
Left_Insula 20 0.8812 0.8797 0.06472 ~
Right_Insula 21 0.8754 0.8738 0.18553 ~
Left_Lateral_remainder_of_occipital_lobe 22 0.8603 0.8444 1.05E-12 +
Right_Lateral_remainder_of_occipital_lobe 23 0.8594 0.8434 3.70E-16 +
Left_Gyrus_cinguli_anterior_part 24 0.7671 0.7842 0.00263 -
Right_Gyrus_cinguli_anterior_part 25 0.8234 0.8407 0.000209 -
Left_Gyrus_cinguli_posterior_part 26 0.8332 0.8418 0.001878 -
Right_Gyrus_cinguli_posterior_part 27 0.8154 0.8233 0.015334 ~
Left_Middle_frontal_gyrus 28 0.8674 0.8554 1.50E-11 +
Right_Middle_frontal_gyrus 29 0.8717 0.8608 4.93E-15 +
Left_Posterior_temporal_lobe 30 0.872 0.8617 2.52E-10 +
Right_Posterior_temporal_lobe 31 0.8683 0.8578 9.39E-11 +
Left_Inferolateral_remainder_of_parietal_lob 32 0.8706 0.8581 1.98E-11 +
Right_Inferolateral_remainder_of_parietal_lo 33 0.8573 0.8434 2.08E-11 +
Left_Caudate_nucleus 34 0.8829 0.8952 5.81E-06 -
Right_Caudate_nucleus 35 0.8853 0.8921 0.000305 -
Left_Nucleus_accumbens 36 0.7361 0.7382 0.822167 ~
Right_Nucleus_accumbens 37 0.7204 0.7158 0.406373 ~
Left_Putamen 38 0.8925 0.8951 0.215131 ~
Right_Putamen 39 0.8936 0.8981 0.015623 ~
Left_Thalamus 40 0.9089 0.9148 0.002933 -
Right_Thalamus 41 0.9054 0.9102 0.003462 -
Left_Pallidum 42 0.7996 0.8288 0.000563 -
Right_Pallidum 43 0.7966 0.8284 0.002293 -
Corpus_callosum 44 0.839 0.886 3.02E-09 -
Right_Lateral_ventricle_excluding_tempora 45 0.8911 0.89 0.581331 ~
Left_Lateral_ventricle_excluding_temporal_ 46 0.9003 0.8986 0.408928 ~
Right_Lateral_ventricle_temporal_horn 47 0.6557 0.625 0.037556 ~
Left_Lateral_ventricle_temporal_horn 48 0.6523 0.62 0.001961 +
Third_ventricle 49 0.8313 0.817 9.85E-05 +
Left_Precentral_gyrus 50 0.8297 0.824 0.001547 +
Right_Precentral_gyrus 51 0.8463 0.8365 1.15E-06 +
Left_Gyrus_rectus 52 0.8132 0.7991 8.73E-08 +
Right_Gyrus_rectus 53 0.8245 0.8062 8.53E-08 +
Left_Orbitofrontal_gyri 54 0.8625 0.8451 3.75E-11 +
Right_Orbitofrontal_gyri 55 0.8787 0.8599 1.69E-12 +
Left_Inferior_frontal_gyrus 56 0.8491 0.833 3.51E-11 +
Right_Inferior_frontal_gyrus 57 0.8429 0.8282 1.49E-09 +
Left_Superior_frontal_gyrus 58 0.8806 0.8679 1.42E-10 +
Right_Superior_frontal_gyrus 59 0.8894 0.8778 6.43E-11 +
Left_Postcentral_gyrus 60 0.8119 0.7949 1.74E-06 +
Right_Postcentral_gyrus 61 0.8189 0.8009 7.95E-08 +
Left_Superior_parietal_gyrus 62 0.8604 0.8472 6.32E-10 +
Right_Superior_parietal_gyrus 63 0.8714 0.8562 7.95E-08 +
Left_Lingual_gyrus 64 0.855 0.8371 1.87E-08 +
Right_Lingual_gyrus 65 0.8453 0.8259 6.71E-08 +
Left_Cuneus 66 0.834 0.8077 4.66E-10 +
Right_Cuneus 67 0.8515 0.8278 5.93E-08 +
Unlabeled 68 0.7767 0.7579 0.002256 +

average 0.851 0.8412

� Fig. 6 The figure compares the Dice overlap results from Atro-
pos versus the raw results from majority voting for each of 68
neuroanatomical regions and, in addition, the unlabeled portions
of the brain from the Hammers evaluation dataset. We evaluated
Atropos via N-fold cross-validation and employed PriorProb-
abilityImages for each class where probabilities are gained by
averaging mapped subject labels. The color coding highlights
those regions that have the highest (yellow) and lowest (pink)
improvement. The significance of the improvement, measured
by pairwise T-test, is also shown as is a trinary coding of that
improvement as: + significant improvement, − performance re-
duction, ∼ no change

by component. We then deform the template—and
priors—to the ten testing subjects and run Atropos
with not only KMeans[3] initialization but also Prior
ProbabilityImages[3,priors%02d.nii.gz,w]
where w ∈ {0.0, 0.5}. We then switch the roles of testing
and training sets to gain 3-tissue segmentation for each
of the twenty subjects. When w = 0, the priors are
only used in initializing the model parameters but not
during subsequent EM iterations. When w = 0.5, the
priors are maintained in the product with the likelihood
during all EM iterations. Results, in terms of bar plots
for Dice overlap mean and standard deviation, are
shown in Fig. 5.

The Hammers Dataset Evaluation

We evaluate the ability to improve multi-template
labeling results by converting the group labels to
probability maps and using them to drive many-class
EM segmentation. The ground truth labels cover 69
classes and much of the brain. Some unlabeled regions
remain which we assign to label 69 such that all brain
parenchyma contains a unique label. Following Avants
et al. (2010a), the initialization of our evaluation applies
the script ants_multitemplate_labeling.sh
(available in ANTs) to the 19 Hammers evaluation
datasets located at http://www.brain-development.org/
and currently under the adult atlases section (Hammers
et al. 2003; Heckemann et al. 2006). These initial
majority voting results are competitive with prior work
(Heckemann et al. 2006, 2010) and serve as a baseline
against which we compare.

We first convert each of the 69 labels within
the original evaluation dataset to an individual
image. The remaining steps, summarized briefly,
are the same for each of the 19 subjects. We select
one subject as an unlabeled target. The other 18
datasets are then mapped (as in the script above)
to that subject. We then deform, individually, the
69 × 18 label images to the unlabeled subject. The
label probability map is gained by averaging the 18

http://www.brain-development.org/
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deformed images associated with each label. We repeat
this for each subject. The following parameters
are the most relevant to this discussion: -i
PriorProbabilityImages[69,label_prob%
02d.nii.gz,0.5] -m [0.2,1x1x1] -c [5,0]
-p Socrates[1]. Results, in terms of Dice overlap,
are shown in Fig. 6.

Reproducibility of this Evaluation

Data The BrainWeb data is freely available. We
used single-subject BrainWeb data as is but added a
metaformat data header to the raw binary files. An
example copy of this header is contained in atropos
BwebRF40FigureExample.sh. The 20-subject data,
however, required excluding non-cerebrum tissue
classes. The Hammers data was also used as is
(http://www.brain-development.org/).

Software The ANTs software is available at http://
www.picsl.upenn.edu/ANTs with download and com-
pilation instructions at http://www.picsl.upenn.edu/
ANTS/download.php. SVN release 711 was used
for the examples and evaluations performed in
this paper. Some components of ANTs depend
on the Insight ToolKit. The most critical depen-
dency, for Atropos, is the ITK statistics framework
used to implement the univariate and multivari-
ate parametric models. We linked to the git ver-
sion of ITK current as of Dec. 1, 2010. See http://
www.itk.org/Wiki/ITK/Git/Download for instructions
on git ITK.

Scripts The complete script for the single-subject
BrainWeb study is based on generalizing atropos
BwebRF40FigureExample.sh, which is available
in the ANTs toolkit (SVN release 711 or greater)
and which reproduces Fig. 2 results. The template-
based normalization procedure for the BrainWeb
20 and the Hammers evaluation data is based on
freely available scripts included with ANTs, ants_
multitemplate_labeling.sh and buildtem-
plateparallel.sh. A release version of ANTs—
with a final version of Atropos—will be prepared with
the final version of this manuscript.

Discussion

We introduced Atropos, the theory and implemen-
tation details and documented its performance in a
variety of use cases. We also showed evidence that
the openly available N4 bias correction can easily be
used with Atropos to improve segmentation. Further-

more, we used multiple subject BrainWeb data to build
dataset-specific priors that provided the most consistent
segmentation performance across tissues. Finally, we
used majority voting to initialize an Atropos EM solu-
tion to a 69-class brain parcellation problem. Significant
improvements were gained in multiple brain regions,
in particular in temporal lobe cortex, the hippocampi
and amygdalae and the lateral ventricles. This work, in
summary, proves the applicability of Atropos in both
basic and extended use cases.

Performance on BrainWeb Data

Atropos results are competitive with the state of the
art. For instance, Ashburner and Friston (2005) (SPM5)
evaluated on 0% RF bias field, 3% noise BrainWeb
single subject data finding 0.932 (GM) and .961 (WM)
Dice overlap. Results on 40% RF bias were 0.934 (GM)
and 0.961 (WM). SPM5 exhibits insensitivity to bias
similar to our own best results on the 40% RF bias,
3% noise case (MRF-β = 0.2, K-means + N4) with
Dice overlap for GM is 0.951 and for WM is 0.963.
Nakamura and Fisher (2009) gave GM Dice overlap
results (BrainWeb single 3% noise) of 0.962 (0% RF
bias), 0.964 (20% RF bias) and 0.956 (40% RF bias)
which are slightly higher than either SPM5 or Atro-
pos results. However, Nakamura and Fisher (2009)
do not report WM or CSF numbers for comparison.
Topology-preserving methods also perform well. Shiee
et al. (2010) achieved Dice overlap for 3% noise 20%
RF bias BrainWeb single subject with 0.912 (GM),
0.927 (WM) and 0.900 (CSF) Dice overlap. These
are excellent numbers given the topological constraint
applied to the segmentation. Bazin and Pham (2007)
proposed TOADS and, estimating from the paper’s
graph, showed that the average Dice overlap accuracy
for 3% noise for various RF was 0.930–0.950 (GM),
0.950–0.960 (WM), and 0.920–0.940 (CSF). Perhaps
the most recent balanced evaluation was performed
in (Klauschen et al. 2009), which reports confusion
matrix numbers, rather than Dice overlap. Because
the absolute true number of GM and WM voxels for
BrainWeb are known, we can convert the confusion
matrix to Dice overlap. In that case, the SPM5 Dice
overlap for BrainWeb single-subject data is 0.885 (GM)
and 0.909 (WM), while FreeSurfer and FSL’s accuracy
is lower. The best GM Dice overlap result for the 20
subject BrainWeb data is obtained by SPM5: 0.930; the
best WM Dice overlap is from FSL: 0.950. We note that
Klauschen et al. (2009) used a comprehensive evalua-
tion where quality of brain extraction also contributed
to the outcome. Thus, the results must be interpreted
slightly differently than those from other papers. Fi-

http://www.brain-development.org/
http://www.picsl.upenn.edu/ANTs
http://www.picsl.upenn.edu/ANTs
http://www.picsl.upenn.edu/ANTS/download.php
http://www.picsl.upenn.edu/ANTS/download.php
http://www.itk.org/Wiki/ITK/Git/Download
http://www.itk.org/Wiki/ITK/Git/Download
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nally, in our evaluation of 20-subject BrainWeb data,
the prior probability models performed best of all the
models used. Compared to the K-Means based seg-
mentation, the prior based segmentation performance
also peaked at lower values of the MRF-β term (0.0
and 0.05). This is reasonable in that the spatial priors
themselves impose a degree of regularity on the seg-
mentation, as in SPM5.

Performance on Hammers Data

Our prior work, (Avants et al. 2011), showed that
the majority vote initialization provided to Atro-
pos by ANTs template mapping is competitive with
Heckemann et al. (2006). Overall, the Atropos EM
extension improved these results further. However, in a
few regions of the mid-brain, the Atropos EM segmen-
tation performed significantly worse. This is not surpris-
ing, in that Atropos EM assumes that signal from the
likelihood and MRF term is valuable in improving the
segmentation. This assumption held for amygdala and
lateral ventricles among other areas. However, in pal-
lidum and corpus callosum (the most significant areas
with loss of performance), this is not true. We believe
the explanation is that the intensity varies within these
structures and that a more complex intensity model (or
finer parcellation) would be needed here. An alterna-
tive solution would be to use boundary conditions for
these structures, as in the PriorLabelImageAtropos
initialization option.

Clinically-related Evaluation

While specifying performance on BrainWeb is highly
valuable, clinical validation is a second important
aspect of segmentation evaluation. For instance,
(Freeborough and Fox 1997; Westlye et al. 2009;
Sánchez-Benavides et al. 2010; Chou et al. 2009;
de Bresser et al. 2011) are only a few of the papers
that evaluate segmentation performance with respect
to a known neurobiological outcome measure. Atropos
is currently used in clinical studies and a number of
clinically focused, application-specific evaluations are
ongoing and will constitute future work. One early
example of a clinically-focused Atropos neuroimaging
application is in (Avants et al. 2010c). A second suc-
cessful application area is that of ventilation-based seg-
mentation of hyperpolarized helium-3 MRI (Tustison
et al. 2010b) which also used the open source Glam-
orous Glue algorithm to impose topology constraints
(Tustison et al. 2010c). Thus, future work may in-
corporate topology more closely into the Atropos
methodology.

A more general advantage which extends beyond
the scope of the experimental evaluation section of this
paper is the flexibility of Atropos. This includes not
only n-tissue segmentation and dense volumetric cor-
tical parcellation, as reported in this work, but Atropos
is also used in conjunction with our ANTs registration
tools for robust brain extraction which has reported
good performance in comparison with other popular,
publicly available brain extraction tools (Avants et al.
2010a).

Conclusion

The Atropos software is freely available to the public.
We release this code not only to make it available to
clinical researchers but with the hope that other re-
searchers in segmentation will provide feedback about
the implementation decisions that we made. EM seg-
mentation is non-trivial and there are numerous design
alternatives available not only in the models selected
but also in the ICM coding, alternatives to ICM and
the method in which prior and likelihood are combined.
Due to the flexibility of Atropos, we also hope that
some of its capabilities, though not evaluated here, are
explored by the segmentation or clinical community.

Information Sharing Statement

Atropos software is available in ANTs http://www.
picsl.upenn.edu/ANTs which depends on ITK http://
www.itk.org/Wiki/ITK/Git/Download. The data used in
this work is available in the ANTs software repository,
BrainWeb http://mouldy.bic.mni.mcgill.ca/BrainWeb/
and at www.brain-development.org. We employed itk-
SNAP for visualization www.itksnap.org.
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