
Neuroinform (2011) 9:69–84
DOI 10.1007/s12021-010-9092-8

Unified Framework for Development, Deployment
and Robust Testing of Neuroimaging Algorithms

Alark Joshi · Dustin Scheinost · Hirohito Okuda ·
Dominique Belhachemi · Isabella Murphy ·
Lawrence H. Staib · Xenophon Papademetris

Published online: 20 January 2011
© Springer Science+Business Media, LLC 2011

Abstract Developing both graphical and command-
line user interfaces for neuroimaging algorithms re-
quires considerable effort. Neuroimaging algorithms
can meet their potential only if they can be easily
and frequently used by their intended users. Deploy-
ment of a large suite of such algorithms on multiple
platforms requires consistency of user interface con-
trols, consistent results across various platforms and
thorough testing. We present the design and imple-
mentation of a novel object-oriented framework that
allows for rapid development of complex image analy-
sis algorithms with many reusable components and the
ability to easily add graphical user interface controls.
Our framework also allows for simplified yet robust
nightly testing of the algorithms to ensure stability and
cross platform interoperability. All of the functional-

A. Joshi (B) · D. Belhachemi · I. Murphy ·
L. H. Staib · X. Papademetris
Department of Diagnostic Radiology, Yale University,
300 Cedar Street, New Haven, CT 06520, USA
e-mail: alark1@gmail.com

D. Scheinost · L. H. Staib · X. Papademetris
Biomedical Engineering, Yale University, 300 Cedar Street,
New Haven, CT 06520, USA

H. Okuda
GE Healthcare, Tokyo, Japan

L. H. Staib
Electrical Engineering, Yale University, 300 Cedar Street,
New Haven, CT 06520, USA

Present Address:
A. Joshi
Boise State University, 1910 University Drive, MEC 302A,
Boise, ID 83725, USA

ity is encapsulated into a software object requiring
no separate source code for user interfaces, testing
or deployment. This formulation makes our frame-
work ideal for developing novel, stable and easy-to-use
algorithms for medical image analysis and computer
assisted interventions. The framework has been both
deployed at Yale and released for public use in the
open source multi-platform image analysis software—
BioImage Suite (bioimagesuite.org).

Keywords Neuroimaging software ·
Open source medical imaging software ·
Software development framework ·
Comprehensive software testing

Introduction

Image analysis algorithms are typically developed to
address a particular problem within a specific domain
(functional MRI, cardiac, image-guided intervention
planning and monitoring, etc.). Many of these algo-
rithms are rapidly prototyped and developed without
considerations for a graphical user interface (GUI),
robust testing, and integration into a large cohesive
software package. Sometimes these features are added
later, but require considerable effort on the part of
the developer of the original algorithm. This situation
makes it difficult for deployment and widespread adop-
tion of novel algorithms.

We present the design and development of a novel
framework in our image analysis suite—BioImage
Suite. In our experience, users may be divided into
three categories: (i) full-time “naïve” users—those who
interact with the software through its GUI, (ii) full-

http://www.bioimagesuite.org

70 Neuroinform (2011) 9:69–84

time “expert” users—those who use a mixture of GUI
and command-line tools for more efficient processing
and critically (iii) part-time users—users who may use
a combination of tools to accomplish their work, parts
of which may be from this software package and parts
from others. This last group is increasing in size with the
availability of greater numbers of high quality tools.

A critical aspect of being able to support all three
groups of users is the ability of the software to make
available almost all of its functionality both as GUI ap-
plications and as command-line tools while maintaining
consistency of performance between the two, i.e. a user
should get exactly the same results performing a given
task in either mode. The key issue is that as the software
evolves and additional functionality is requested, often
the changes get incorporated into either the GUI or the
command-line version as needed without synchronizing
the two. For example, the units of a smoothing kernel
may be “voxels” in the GUI and “mm” in the command
line interface. While the two invoke, deep down, the
same algorithm, it is invoked in slightly different ways
leading to different results and a major source of user
frustration. While such synchronization is easy to fix for

1–2 modules, it is a non-trivial task when one considers
more than 100 modules (Fig. 1).

To avoid this problem of integration/ resynchro-
nization, we have designed and implemented a new
object-oriented framework that enables us to inte-
grate the command line and GUI of BioImage Suite—
bioimagesuite.org within the same codebase. With this
framework, the developer can focus on the creation
of the algorithmic component and not worry about
software engineering aspects needed for image analysis
algorithms such as testing, integration, and creating cus-
tomized workflows. The GUI is automatically gener-
ated by the algorithm object when the object is invoked.
However, the developers may customize the GUI by
overriding the appropriate methods. Testing is handled
by the algorithm object simply by specifying the inputs,
expected outputs, and the test flag. Additionally, in this
new framework, it is possible to create data workflows
where the output of an algorithm can then be used as
the input of another algorithm. Thus, developers can
reuse existing algorithms, saving time and reducing pro-
gramming complexities. The simplified graphical user
interface creation, robust testing and easy creation of

Fig. 1 Views of the BioImage Suite GUI. a The mosaic viewer
which enables the display of multiple parallel images or multiple
images in different rows (e.g. multiple fMRI tasks). b The 4D
cardiac surface editor. c The intracranial electrode editor which
is used to localize intracranial electrodes from CT/MRI images—
this module will be enhanced by adding more automated local-

ization algorithms. d The datatree tool which enables the easy
management of large studies and the flexible transformation and
visualization of datasets. This tool serves as the underlying data
model for the more complex applications. e The objectmap editor
that enables interactive segmentation in all three orthogonal
planes

http://www.bioimagesuite.org

Neuroinform (2011) 9:69–84 71

Fig. 2 Orthogonal viewer of BioImage Suite. Three views show
2D slice views of the MNI brain, whereas the bottom right view
shows a volume rendered 3D representation of the data. The
menu bar at the top allows a user to perform basic file operations
(File tab), analyze images using the image processing tab, per-
form level set segmentation, histogram segmentation, math mor-
phology etc. on the current image (Segmentation tab), add and
perform operations on surfaces and landmarks (Features tab),
use Atlas tools such as the WFU Atlas or the Yale Brodmann
Atlas (Atlas Tools tab). The drop down menu shows various
options in this viewer that allow a user to visualize a single 3D
slice in a particular orientation (Axial, Coronal, Sagittal), 3D only
or the configuration shown here (3-slice + 3D Mode (2)). More
details regarding the viewers can be found in our manual online
at www.bioimagesuite.org. Chapter 5 in the manual is dedicated
to viewers

complex workflows are the technical innovations in the
design of our new framework. The aim of this paper is
to present the design of the framework and share our
experience of developing and testing the framework
with the neuroimaging community for further develop-
ment of similar open source software (Fig. 2).

Additionally, this framework facilitates communica-
tion with other software tools. The parameter handling
code, as defined, enables BioImage Suite components
to output descriptions for both the Slicer Execution
Model (Pieper et al. 2004) and the LONI Pipeline (Rex
et al. 2003) at no extra work to the developer. This
functionality is handled by the abstract parent class of
the component hierarchy. See Fig. 10.

Related Work

In the field of medical image analysis, software
engineering-based research has focused on describing a

customized architecture for a unique setting. Coronato
et al. (2006) developed an open-source architecture for
immersive medical imaging that used 3D graphics and
virtual reality libraries. Additionally, they also include
ubiquitous computing principles for context-aware in-
teraction with mobile devices. Shen et al. (2008) discuss
their system which works with stereoscopic displays and
uses projectors to provide an immersive experience in
environments such as the CAVE.

Medium to large imaging software projects such as
3D Slicer (Pieper et al. 2004) have a component-based
approach to developing software that allows for the
easy development of user interfaces. 3D Slicer’s mod-
ules have a thin interface and in theory the imple-
mentation of each module is completely unconstrained
other than for the definition of the I/O in the XML
structure. BioImage Suite modules derive from an ob-
ject oriented architecture/base class and hence can also
be independent mini-GUI applications (with full 3D
viewer capabilities). The Slicer module provides more
freedom/flexibility to the end-programmer whereas our
approach provides richer functionality and the ability
to write a custom application with the full viewing and
interaction capabilities included. This design also en-
sures additional consistency, since each instance creates
and manages its own user interface when included in a
larger “managed” application.

Medical Imaging Interaction Toolkit (MITK) (Wolf
et al. 2005) is a toolkit for medical image analysis that
has some features similar to those in our framework.
However, it is intended to be used as a toolkit and “is
not intended as an application framework” (Wolf et al.
2005) that can be used for development of novel image
analysis algorithms.

Table 1 shows a detailed comparison that facili-
tates the comparison of capabilities of medical im-
age analysis workflow environments. The workflow
environment most comparable to BioImage Suite is
the LONI Pipeline. We can import the pipelines cre-
ated in LONI pipeline to work with BioImage Suite
and have worked with Slicer to make BioImage Suite
functionality available as modules within 3D Slicer
as well. Some of the other workflow environments
provide the ability to create graphical user interfaces
automatically, but they lack either robust cross plat-
form testing and functionality, self contained installa-
tions, extensive documentation or are not being actively
developed.

There are some key differences in our module ap-
proach to that of 3D Slicer which is the most similar
package in many respects. The first lies in the struc-
ture of the modules themselves. Slicer modules are
(in theory at least) independent programs whose sole

http://www.bioimagesuite.org

72 Neuroinform (2011) 9:69–84

Table 1 Comparison of workflow environments for medical image analysis

LONI pipeline NiPype CamBAFx Fiswidgets JIST Slicer BIS

Medical image analysis API No Nipy CamBA No MIPAV ITK/VTK VTK/ITK
Self contained installation Yes No Yes No No Yes Yes
Extensions Binaries N/A N/A Binaries Plugins & Binaries Plugins Modules
Primary language Java Python N/A N/A Java C++ C++, Tcl
Distributed computing Yes Yes No No Yes Yes No
GPU computing Yes No No No No N/A Yes
Licensing Research only BSD GPL v2 GPL LGPL BSD GPL v2
Multi-platform Yes Yes No Yes Yes Yes Yes
Testing Yes N/A N/A N/A N/A Yes Yes
GUI framework Vis prog Desktop Desktop Desktop Vis prog Desktop Desktop
Active devpt. Yes Yes Yes No Yes Yes Yes

JIST—Java Image Science Toolkit (Lucas et al. 2010), BIS—BioImage Suite

interface with the main application is via the provi-
sion of an XML description. BioImage Suite modules,
by contrast, are objects (deriving ultimately from a
single parent class) which are accessed by the main
application via the parent class API. The Slicer ap-
proach allows for greater flexibility in terms of the
implementation of the modules, whereas our approach
provides greater functionality to the module writer.
For example, the module parent class in BioImage
Suite implements functionality to output a Slicer-style
XML description for the module which is automatically
inherited with no modification by the more than 100
modules in BioImage Suite. Furthermore while Slicer
modules are strictly commandline applications, BioIm-
age Suite modules can be used either as (i) parts of
a main application, (ii) as commandline executables
and (iii) as standalone applets with their own graphical
user interface and 3D viewer. The plumbing for all of
this functionality is in the abstract parent class of the
module hierarchy and is simply inherited by the derived
modules.

A secondary difference is in the relation of the main
application or module harness to the module. In the
case of 3D Slicer the modules are queried by the main
application for their description (in XML) and then
the main application creates the user interface for the
module. In BioImage Suite, by contrast, the modules
are asked by the main application to create their own
graphical user interfaces.

This key contribution of this paper lies in the descrip-
tion of how an established (over 10 years old) software
package has evolved to meet the needs of its users with
a focus on the underlying software architecture that
enables us to provide this type of functionality. It is
less an attempt to entice others to use this framework
and more an attempt to present an overall strategy
(a “design” pattern) that could be adapted in similar
situations.

A Brief Overview of BioImage Suite

BioImage Suite (www.bioimagesuite.org) is an open
source (GPL v2) multi-platform image analysis soft-
ware that has found successful usage among users
with a wide range of backgrounds and expertise. The
key functionalities of BioImage Suite (Fig. 3) includes
Anatomical image analysis (segmentation and reg-
istration tools), functional MRI analysis tools (sin-
gle/multi subject analysis), Diffusion Weighted Image
analysis (tensor analysis, fiber tracking), Neurosurgery
tools (intracranial electrode localization, vvlink tools,
differential SPECT tool), cardiovascular image analy-
sis (4D surface editor, estimation of LV deformation,
angiography tools).

BioImage Suite has been used in a number of peer-
reviewed publications in high-impact scientific journals.
These papers span both neuroimaging applications and
applications in the rest of the body including diabetes,
molecular imaging development, and tissue engineer-
ing. We would like to highlight two applications in
particular to illustrate some of the unique aspects of our
software.

Meltzer et al. (2008) used intracranial electro- en-
cephalography to study working memory load on oscil-
latory power. These studies were performed on patients
that had intracranial electrodes implanted as part of
the workup for epilepsy neurosurgery. BioImage Suite
was used for (i) intracranial electrode localization from
CT brain images, (ii) mapping these CT images to
anatomical MRI images of the same person and (iii)
mapping these MRI images to a single brain template
to enable the analysis of data from multiple patients in
a common coordinate system.

Petersen et al. (2007) and Taksali et al. (2008)
used (among other datasets) T1-weighted abdominal
MRI images to quantify fat in the abdomen. BioIm-
age Suite was used for slice inhomogeneity correction,

http://www.bioimagesuite.org

Neuroinform (2011) 9:69–84 73

Fig. 3 Key functionalities of BioImage Suite. This table lists all
the functionalities in BioImage Suite that includes anatomical
image analysis tools, functional MRI analysis tools, diffusion
weighted image analysis tools, neurosurgery tools and cardio-
vascular image analysis tools. Specifics regarding the tools and
their use can be found in our manual on our website at www.
bioimagesuite.org

bias field correction, outline of the peritoneum (the
bounding surfaces of the abdomen) and for interactive
segmentation of fat layers using the object map editing
tool.

System Design

Overview We present the design of our new frame-
work that allows for easy development, deployment,
and overall packaging of image analysis algorithms.
Using this framework user interfaces and testing capa-
bilities are created for the developer. Novel algorithms
can be added (in C++) and custom workflow pipelines
can be constructed (in Tcl) where each piece of the
pipeline is an algorithm that takes an input and per-
forms an operation. Figure 5 shows a flowchart for an
image analysis algorithm. Each new algorithm takes a
combination of images, surfaces, transformations, and
input parameters and produces a combination of im-
ages, surfaces, and transformations as outputs.

An overview of the framework design is provided
in Fig. 4. At the algorithm level of the architecture
(Fig. 4c), novel algorithms are written in C++ and
packaged as classes deriving from appropriate VTK-
derived parent classes (Schroeder et sl. 2003). CUDA
(NVIDIA 2007) and ITK (Ibanez and Schroeder 2003)
functionality is hidden within these VTK-style C++
classes, which are wrapped and exported as Tcl func-
tions. If a user does not have a modern CUDA capable
graphics card, we seamlessly fall back to CPU versions
of the same code at runtime instead of the CUDA
accelerated code. Each algorithm is wrapped as an
Incr-Tcl module using our new object-oriented frame-
work (Fig. 4b). Incr Tcl http://incrtcl.sourceforge.net/
itcl/ (Smith 2000) is an object-oriented extension to Tcl.
These modules can function as standalone command-
line applications, plugins/modules for other software
and as GUI applets. Modules can also be incorpo-
rated into more complex applications for specific tasks
(for e.g. surgical planning data tree). The application
structure (Fig. 4a) consists of a combination of view-
ers, an appropriate data model and a set of module
containers which manage the communication of the
application with the modules. This framework enables
us to create custom applications for different types of
processing (e.g. our cardiac segmentation editor, or our
fMRI Tool—Fig. 1) that share large aspects of their
underlying codebase. Different data models are used in
different applications to enable flexibility. For example,
single-algorithm applications such as image analysis
algorithms (registration, segmentation etc), bias field
correction contain a fixed model with enumerated vari-
ables. Complex applications such as the surgical plan-
ning data tree contain a collection of pre-operatively

Fig. 4 BioImage Suite architecture. Main application structure
a, module structure b and Algorithm level data processing (C++
Implementation) c all parts of A+B are written in Incr Tcl and
invoke C++ code wrapped with a TCL access layer as pioneered
by VTK

http://www.bioimagesuite.org
http://www.bioimagesuite.org
http://incrtcl.sourceforge.net/itcl/
http://incrtcl.sourceforge.net/itcl/

74 Neuroinform (2011) 9:69–84

Fig. 5 This diagram provides an overview of the new unified
framework for image analysis algorithm development. Any im-
age analysis algorithm has a combination of images, surfaces, and
transformations (from registrations) that serve as input to the
algorithm. The algorithm has some input parameters (the values
for which can be specified on the command line or using GUI
components). In our framework, the input parameters can be
one of boolean, real, integer, string, listofvalues (for drop down
options when using a GUI) or a f ilename. The output can be a
combination of images, surfaces and transformations

acquired images of varied modalities (CT, MR, DTI,
fMRI, electrode mappings) as well as linear/non-linear
transformations of each acquisition to the same space.
In some cases, surfaces are required and can be added
to the surgical planning data tree (Fig. 5).

Framework Design Details

Modules are implemented as derived classes of
bis_algorithm (or a more specialized subclass such
as bis_imagetoimagealgorithm.) There are two
key methods that must be implemented: Initialize
and Execute. In Initialize, the module interface
is formally specified in terms of three sets: (i) inputs,
which are objects such as images, surfaces, landmarks,
etc., (ii) parameters, which are single values such as
integers, strings, filenames and (iii) outputs, which are
also objects like the inputs. In addition, developers
can set other variables (e.g. category, and description)
which are used in automatically generating the module
documentation (Papademetris et al. 2009b).

Based on the definition of the input and output sets,
the base abstract classes have functionality (which need
not be touched by more concrete implementations) to
(i) parse command line arguments if the algorithm class
is invoked as an application; (ii) automatically create
a GUI using the CreateGUI method (this method
can be overridden by some algorithms to generate a
more customized interface); and (iii) perform testing by
parsing a test file. These classes can then be used (i)
to invoke the algorithm (using an Execute method),
(ii) to become a component of other algorithms (e.g.
the image smoothing algorithm is invoked by the edge
detection algorithm), (iii) to create standalone applica-
tions with an image viewer and a GUI, and (iv) to in-

tegrate individual components into a larger application
(Fig. 6).

Core Classes

The new framework has at its core the following [Incr
Tcl] classes:

1. bis_option encapsulates an option value (e.g.
smoothness factor, etc.). An option can have a
type of: listofvalues, boolean, real, integer, string
or filename. Within this class there is functionality
for creating an appropriate GUI for each option.
For example, if the boolean option is specified a
checkbox is created that allows the user to toggle
the variable.

2. bis_object encapsulates the input and output
objects of the algorithms. The core objects sup-
ported are: image, transform (both linear and
non-linear), polygonal surface, landmark set and
electrode grid.

3. bis_basealgorithm is the core algorithm class
from which all algorithms are derived. It has all the
functionality for manipulating options, inputs and
outputs.

4. bis_algorithm is derived from bis_
basealgorithm and adds the functionality
needed for taking an algorithm and making it into
a component or an executable. More specialized
classes are derived from bis_algorithm such as
bis_imagetoimagealgorithm which serves as
a base for algorithms which take a single image as
an input and produce a single image as an output.

5. bis_guicontainer is a derived class of bis_
algorithm and serves as a parent class for
creating multi-algorithm containers (e.g. a tabbed-
notebook style GUI where each tab is a separate
algorithm).

Application Architecture

Structure Applications in general have three parts
(Fig. 4a). Part I is the data model which can ei-
ther be the full-blown XML-based tree-like bis_
datamanager or a custom array for storing data as
needed. All applications in BioImage Suite can ex-
port their datamodels in the XML format used by
bis_datamanager to improve flexibility and data
reuse. Part II is a set of viewers and editors for visu-
alizing as well as editing images and polygonal objects
in a variety of ways. A core strength of BioImage Suite
is that the viewers are designed to handle 4D (3D+t)
data, a legacy of the origins of BioImage Suite as a

Neuroinform (2011) 9:69–84 75

Fig. 6 Sample algorithm implementation. A new algorithm usu-
ally requires the implementation of two methods. The first is
initialize (shown in detail in this figure) where the inputs, outputs
and parameters are defined. The second is execute (not shown)
which simply takes the specified inputs and parameters and runs

the actual algorithm to generate the desired output. Derived
classes can have customized graphical user interfaces by over-
riding the CreateGUI method. See Appendix B for a complete
example on integrating an algorithm into our framework

cardiac image analysis package. Part III is the set of
modules that are used to perform the task at hand in
customized pipelines.

Invocation Modes

An algorithm can be invoked in three ways: (i) com-
mand line, (ii) GUI and (iii) “managed” graphical
interface (see Fig. 8). The framework facilitates the
invocation of the same code regardless of the manner
in which the script is invoked. In Fig. 7, we can see
an example of a non-linear registration script being
invoked in three different ways. Labels A, A1 and
A2 show a GUI with different components showing
the input parameters. Label B in the figure shows a
command line invocation which also provides Unix-
style help to the users. Additionally, the same script
can be contained in a managed container for a larger
application (as shown by label D).

Using this framework the user can use the “Show
Command” button embedded in the GUI (shown in
Fig. 7c). The user can familiarize themselves with the
algorithm at the GUI level. Then, the user can press this
button and get a detailed command line specification
for performing exactly the same task by invoking exactly
the same code at the command line. This feature makes

it easier for end-users to develop customized batch
jobs/pipelines (Fig. 8).

In “standalone” mode, the module can either func-
tion as a command line only tool (depending on the
setting of the dogui flag), or as an applet with its own
GUI and viewer. There are four more global command-
line settings as follows:

1. -xml,-logo: used to generate Slicer XML de-
scriptions,

2. -loni: used to output LONI pipeline XML mod-
ule descriptions,

3. -pset: used to query the SQLite-based parameter
database for a complete parameter set, and

4. -ctest: used to run regression tests as part of
nightly testing.

The modules in “managed” mode can also be in-
voked directly inside other modules. For example, the
linear intensity registration module functions either as
a standalone module, or is called by the nonlinear
intensity registration module to estimate a registration
to be used as an initial condition for the subsequent
nonlinear registration. The fundamental idea behind
all of this is ensuring consistent performance. Each

76 Neuroinform (2011) 9:69–84

Fig. 7 This figure shows all the different ways in which a script
can be invoked. Inset (A), (A1) and (A2) shows the graphical
user interface (A) with the parameters in the standard tab (A1)
and the advanced tab (A2). Additionally, the user can click on
the “Show Command” button highlighted with a red rectangle
that shows how the script can be invoked on the command line
(Inset C). The script can also be invoked on the command line

(Inset B) and in the situation where incorrect input parameters
are provided, a Unix-style help is shown that shows the format
for the input and input parameters. Additionally, the script can be
contained in a managed framework (Inset D) where it becomes a
menu item that invokes the same graphical user interface options
as in Inset (A)

algorithm in BioImage Suite should be accessible in
exactly one way and packaged in a proper module
where the parameters are formally specified. Hence if
there is an error, that module can be invoked directly

using the exact same parameters that were used by
another module or component to debug the issue. Even
in managed mode, a module can generate (via the
API call GetCommandLine) a detailed command-line

Neuroinform (2011) 9:69–84 77

Fig. 8 BioImage Suite module architecture—detail view of
Fig. 4b: the structure of a module. The inputs and parameters
can be specified in three ways: (i) command line, (ii) GUI,

(iii) direct application programming interface (API) calls. Then
the exact same Execute method is invoked and the outputs
stored/displayed as appropriate

specification that can be used to invoke this module
directly.

Algorithm Implementation (see Fig. 4c)

Overview All core algorithms in BioImage Suite are
implemented in C++. These often have as an access
point a single C++ class which derives from a VTK
parent class (e.g. vtkAlgorithm, vtkImageAlgorithm,
etc.) that is wrapped to allow it to be accessed from Tcl
code.

Dataf low Data and parameters are supplied to the
algorithm from the module superstructure written in
Incr Tcl (Fig. 4b). BioImage Suite modules exchange
data in objects that are wrappers around VTK data
sets. These contain both a pointer to a VTK-derived
object (e.g. vtkImageData in the case of images), as well
as auxiliary information such as filenames, colormaps,
image headers, etc. There are five core objects that are
used to represent (i) images, (ii) transformations (either
linear or non-linear), (iii) surfaces, (iv) landmark sets
and (v) electrode grids (landmark set can be tailored to
the representation of implanted recording electrodes).
All five of these are implemented as Incr Tcl classes
and derive from a single parent class that specifies a
common interface (e.g. Clear, Load, Save, Copy, Shal-
lowCopy, Get/Set FileName, Get/SetVTKObject, etc.).
The input data and input parameters obtained from
the user interface (written in Tcl—Fig. 4b) are passed
onto the underlying algorithms written as C++ classes.
Within the C++ class, we have short VTK pipelines,

possibly augmented with ITK-derived code or CUDA
accelerated code. The outputs are made available as the
outputs of the core C++ class and these are copied
into the OutputArray objects (which use VTK data
structures) of the module, prior to the deletion of the
C++ object.

Base Functionality In addition to VTK and ITK,
BioImage Suite C++ code leverages functionality
from Lapack (Anderson et al. 1999) and the GDCM
DICOM library http://www.creatis.univ-lyon1.fr/software/
public/Gdcm/Main.html. A large amount of BioImage
Suite specific core functionality (e.g. optimizers) is also
available to speed up algorithm implementations.

Customized Workflow Example: Diff-SPECT
Processing for Epilepsy

Using this framework, customized workflows can be
created to enable the development of complex and
streamlined algorithms. In these customized workflows,
the output of one algorithm can be used as the input
to another algorithm. Here we present an example
of a customized workflow for Ictal-Interictal SPECT
Analysis by SPM Half Normalized (ISASHN) algo-
rithm (Scheinost et al. 2009) used to assist image-guided
surgery research. First, two SPECT images are linearly
registered to each other and then nonlinearly registered
into MNI (Montreal Neurological Institute) space. The
registered images are then masked, smoothed, and in-
tensity normalized. A t-test is performed comparing
these images to a healthy normal population. The resul-

http://www.creatis.univ-lyon1.fr/software/public/Gdcm/Main.html
http://www.creatis.univ-lyon1.fr/software/public/Gdcm/Main.html

78 Neuroinform (2011) 9:69–84

Fig. 9 Customized workflow using the unified BioImage Suite
framework. Here the algorithm modules are depicted in blue
(with the actual script name below it). In this workflow, the
interictal and ictal SPECT are first linearly registered and output
is then non-linearly registered with the MNI Template SPECT.
The result of the registration is then processed using various
algorithms (mask, smooth and intensity normalized). Then a t-
test is performed with the mean and standard deviation from
a control population. The output tmap is then thresholded and
clustered to get the final output image

tant image, containing a t-value at each image location,
is thresholded and clustered to produce the final out-
put. This workflow can be implemented as a single algo-
rithm object with its own GUI and testing protocol that
sequentially calls other algorithm objects as presented
in Fig. 9. The algorithm object can be instantiated from
our BioImage Suite VVLink gadget to connect to the
BrainLAB Vector Vision Cranial system for integra-
tion into neurosurgical research (Papademetris et al.
2009a). With the interoperability features that this new
framework provides (Fig. 9), we can create complex
workflows, such as the one presented here, using a
graphical tool such as the LONI Pipeline (Rex et al.
2003).

Interoperability

This framework supports easy interoperability of
BioImage Suite components with other software envi-
ronments. For example, all command line tools (over
90 of them at this point) support the Slicer 3 execu-
tion interface by providing an XML description when
invoked using the -xml flag (See Section “Invocation
Modes”). This allows Slicer to scan the BioImage Suite
binary directory and find all its components as plugins.
Panel B in Fig. 10 particularly shows BioImage Suite

modules being recognized (red rectangle in Panel B)
and available in Slicer. Similarly, we can recognize
other command line tools that adhere to this interface
and use them as plug-ins within some of the BioImage
Suite GUI applications/applets.

In addition (via the use of the -loni 1 construct),
BioImage Suite components output an XML descrip-
tion that is compatible with the LONI pipeline environ-
ment (Rex et al. 2003).

Testing and Verification

Regression and Unit Testing

Research software is continually evolving and adapting
to meet the ever changing needs of its users. These
needs put unique strains on the conventional software
engineering process of first designing the software, then
implementing it and finally thoroughly testing it prior
to its release to the community at large. In practice,
in research-related software, the design and implemen-
tation processes are always ongoing and the user in-
evitably gets a “cut” of the software that is frozen for
only a short amount of time. This problem has led to the
development of methodologies falling under the par-
adigm of “extreme programming” (Beck and Andres
2004) in which the components of the software are
continuously tested via a set of test functions and the
output of each test compared to the correct (manually
generated) output for each component.

Our object-oriented framework enables an ex-
panded testing setup and eliminates the need for indi-
vidual testing of scripts for each module—unit testing.
The process of creating tests boils down to the fol-
lowing straightforward two-step procedure: (i) creating
gold-standard results and (ii) adding a line in the test-
definition file.

The ease of this framework has enabled the addition
of over 300 tests (in this newer format). We use the
following test flags that allow robust testing of the
algorithms.

– ctestexact: If enabled then comparison is done
via subtraction; otherwise correlation is used. Al-
lowed values are either 0 (Off) or 1 (On—default).
This only applies to images and is useful in cases
such as image registration where we can never warp
the target image to look exactly like the reference.

– ctestthr: Threshold for subtraction or correla-
tion. Default value is “0.001”. Allowed range is
from 0 to 100000. If ctestexact ==1 then this will
cause the test to fail if Max|I1 − I2| > thr, where

Neuroinform (2011) 9:69–84 79

Fig. 10 The new framework facilitates interaction with 3D slicer.
Panel a shows the autogenerated BioImageSuite user interface
components in 3D Slicer. Panel b shows BioImageSuite modules
being identified and loaded directly into slicer’s user interface.

Panel c shows a 3D slicer command line module recognized and
loaded in BioImageSuite. Panel d shows a LONI pipeline form
where inputs can be connected to various algorithm using a user
interface

I1, I2 are image intensity values and thr is the
threshold value. If ctestexact ==0 then failure will
be declared if the output of the correlation value
r < thr.

– ctestsave: If ctestsave is enabled, then the re-
sults of the computation are saved. Allowed values
are either 0 (Off—default) or 1 (On). If the flag is
set to 0 (Off), testing output files are not saved, i.e.
the comparison is done (as always) in memory and
then these objects are simply deleted. If the flag is
set to 1 (On), the output is saved to automatically
generated filenames.

– ctesttmpdir: This flag specifies the output direc-
tory to save output files generated during testing.
The default value is “ ”. If the default value is given,
then an automatically generated filename is used to
save the file in the current directory; otherwise, the
directory of the automatically generated filenames
is changed to that specified by the ctesttmpdir
flag.

– ctestdebug: If the name of a text file is specified
for ctestdebug variable, then a textfile with that
name is created with debug output. Default value is
“ ”. If no name is specified for the text file, no log
file is created.

All of these can be specified either on the command
line e.g.

bis_castimage.tcl
--ctest testlist.txt \\
--ctestsave 1 --ctestdebug test2.log \\
--ctesttmpdir /tmp

or inside the testfile. This command takes the complete
test description file (testlist.txt), extracts the relevant
tests for the module at hand and runs them.

The regression testing is particularly valuable as
we migrate BioImage Suite to newer versions of the
base libraries (e.g. VTK and ITK). Regression testing
can highlight for us which aspects of the software are

80 Neuroinform (2011) 9:69–84

“broken” by migration and help with the upgrade. For
example, our testing suggests that the current version
runs just fine with Tcl 8.5/VTK 5.6—though we will still
use Tcl 8.4.14/VTK 5.2 for the upcoming 3.0 release.

Nightly Testing

Nightly testing is done with the help of the function-
alities in CDash (Martin and Hoffman 2009). The im-
plementation of our testing framework allows for easy
addition of test cases. For testing, we maintain a list of
all the test cases which have the following format:

algorithm name : \\
input parameters and their values: \\
input files : \\
expected output file

bis_smoothimage: -blursigma 2.0: \\
MNI_T1_1mm.nii.gz: MNI_T1_1mm_sm2.nii.gz

When the nightly testing process starts, it goes through
and tests each algorithm. Since in the new framework
each algorithm is a unit of BioImage Suite, our nightly
regression testing is similar to unit testing. For each
algorithm, it looks up its name in the first column
of the list, and if the name matches then it reads in
the remaining arguments and performs the test. As
shown above, to test the image smoothing algorithm we
specify the name of the script, the input parameters and
their values (blursigma = 2.0 in this case), the input file
name and the expected output file name to compare the
output with. The obtained output is compared with the
expected output and based on the comparison a “test

passed” or “test failed” result is obtained. Therefore,
adding more test cases is as simple as adding another
line to the list of nightly tests for that algorithm.

Virtualization Virtual Machines (VM) allow for com-
pletely controlled, hardware-independent operating
system environments with minimal software installa-
tion (e.g. Windows 2000, Visual Studio 2003.NET,
Emacs, Subversion, base libraries) avoiding any un-
necessary software that might interfere with develop-
ment (especially on Windows). We use VWware Server
(2005) to run multiple operating systems on a single
machine. We have a number of VM’s, including an
Open Darwin virtual machine that is binary compatible
with the x86 version of Mac OS X. This arrangement
is used for testing on a multitude of Linux, Mac and
Windows distributions which would be impractical on
actual machines.

Dashboard Setup Figure 11 shows a screenshot of the
nightly dashboard which shows the platforms that the
scripts are tested on. As of now, the nightly tests run
on Linux (CentOS), Windows (7, Vista and XP), Power
Mac and Mac OS X. Figure 12 shows a screenshot of
a list of some of the scripts as can be seen on the
dashboard. This list allows us to readily know whenever
a script fails on a particular platform.

Using our extensive virtual machine setup, we per-
form nightly testing on all three major platforms
(Linux, Windows, Mac OS X) as well as variations
within these (e.g. Windows XP/VISTA/7 with both Vi-
sual Studio 2008 and the mingwin gcc compiler, Linux

Fig. 11 In this figure, we can see the various platforms that the
scripts are tested on—Linux, Windows, Mac OS X and their
variations (e.g. Windows XP/VISTA/7 with both Visual Studio

2005/2008 and the mingwin gcc compiler, Linux 32-bit and 64-bit
with various versions of gcc, Mac OS X Intel and PowerPC). This
happens on a nightly basis and ensures multi-platform operability

Neuroinform (2011) 9:69–84 81

Fig. 12 This snapshot shows a sample list of scripts being tested
and their status on a particular platform. As of now 304 total tests
are being executed daily, as shown here

32-bit and 64-bit with various versions of gcc, Mac OS
X intel and powerpc). Specifically nightly testing is
performed on the following operating systems (all are
32-bit unless otherwise stated):

1. Windows 2000—using the MinGW gcc 3.4 com-
piler.

2. Windows XP—using Visual Studio 2008.
3. Windows VISTA—using Visual Studio 2008.
4. Mac OS X 10.4 powerpc—using gcc 4.0.
5. Mac OX X 10.4 intel—using gcc 4.0.
6. Mac OX X 10.5 intel—using gcc 4.0.
7. Linux (CentOS 4.3)—using gcc 3.2.
8. Linux (CentOS 5.4)—using gcc 3.4.
9. Linux 64-bit (CentOS 5.4)—using gcc 3.4.

10. Linux (Ubuntu 6.06 LTS)—using gcc 4.0.
11. Linux 64-bit (CentOS 5.4)—using gcc 4.1.
12. Linux 64-bit (KUbuntu 9.10)—using gcc 4.4.

Most of the above testing setups are run as virtual
machines with the exceptions of Windows VISTA and
the MacOS X test machines. We use a mixture of real

and synthetic data with total testing time ranging from
about 1 h on the newer machines to over 7 h on our G4
MacMini.

Testing the Binary Version A common problem with
many software testing setups is the fact that the testing
is done from the build directory. While this is useful,
most users will not have a build directory, rather they
will be using the binary version of the software which
is the result of a ‘make install’ type process. As part of
our testing setup we have the capability to run testing
from this binary version of the software. Specifically, a
CMakeLists.txt file is created as part of the installation
and included with this in a ‘testing’ subdirectory which
can subsequently be configured to run the tests. In this
way we can verify that libraries and other scripts do not
rely on the existence of the build directory to satisfy
dependencies, something that would be problematic
in real world use where the build directory does not
exist.

Other Issues The use of multiple operating systems
and compilers enables improved quality assurance as,
for example, questionable code constructs which do
not result in problems in one compiler might cause
failure using another. When a test passes on all com-
pilers/operating systems it suggests that the code is
reasonably clean.

In this multi-platform testing a key problem is
roundoff errors especially with respect to resampling
images. A voxel intensity value could be 1.0000001 in
platform A, whereas it ends up as 0.999999 in platform
B which when truncated to an integer results in a
difference of 1. While these events are rare, given an
image of tens of millions of voxels (e.g. 256 × 256 ×
256 voxels) such round off errors need only have a
probability of one in a million before they are prac-
tically guaranteed to occur in an image. To overcome
such issues, the regression testing often will compare
images by computing the correlation between them
(with a high threshold e.g. 0.999) as opposed to simply
subtracting them and looking for the maximum value—
this is controlled by the setting of the ctestexact and
ctestthr parameters.

Another related issue is roundoff errors in iterative
processes such as non-linear registration which only be-
come an issue after running multiple iterations. These
only become apparent when the testing is run with
real data (e.g. large images) and realistic numbers of
iterations. This is why we use full size images so as to
be able to discover errors of this type; small images and
low iteration counts never quite reveal problems of this
nature.

82 Neuroinform (2011) 9:69–84

Discussion & Conclusions

A core strength of this framework is that most devel-
opers can simply work at the lower two levels (Panels
B and C of Fig. 4) to produce new modules which
are also easily accessible as standalone applications
(both GUI and command-line). These modules can
be tested and used separately and then, if needed,
migrated to “larger” BioImage Suite applications later.
A second advantage of this setup is that users can learn
how to invoke these modules at the Graphical User
Interface level and then get a detailed command-line
specification using the “Show Command Line” option
embedded in the GUI. This command will perform
exactly the same task by invoking exactly the same code;
customized batch jobs/pipelines are easily created this
way.

The strengths of BioImage Suite’s new framework
are that it facilitates easy development and encapsu-
lation of image analysis algorithms which allows the
developer to focus on the development of the algo-
rithm. It allows for easy creation of user interfaces and
robust testing of the algorithms on multiple platforms.
Additionally, customized workflow pipelines have been
created by developers to allow for the creation of com-
plex algorithms.

Information Sharing Statement

The software described in this paper can be freely
downloaded at http://www.bioimagesuite.org. We would
greatly appreciate any suggestions, comments or feed-
back to improve the architecture and future releases of
BioImageSuite.

Acknowledgement This work was supported in part by the
NIH/NIBIB under grant R01 EB006494 (Papademetris, X. PI).

A Obtaining and Compiling the Source Code

Since we cater to a wide variety of users, we provide
binary distributions as well as source code for expert
users. We provide binaries for Windows, Linux and
Macs that can be easily installed. On Microsoft Win-
dows, we provide a self-contained installer file that
completely automates the procedure. On UNIX deriva-
tives (this includes Linux and the Apple Macintosh Op-
erating System) the procedure involves uncompressing
one file in the /usr/local directory or another location of
your choice.

A.1 Compiling the Source Code

To compile the source, we use CMake to configure
the user environment which then creates appropriate
project files (Solutions for Visual Studio, Makefiles for
Unix derivatives). To ensure complete compatibility,
we ship BioImage Suite with the exact versions of all
the software it depends on. This avoids compatibility
issues and reduces installation overheads for the user.
BioImage Suite includes compatible versions of the
Visualization Toolkit (VTK), Insight Toolkit (ITK),
Cross Platform Make (CMake), CLAPACK, MySQL,
TCL and Grassroots DICOM (GDCM). In the CMake
process, these libraries need to be accurately found
to ensure an compatibility issues. Once the project
files are created, compiling and source code is similar
to compiling VTK, ITK and other software that uses
CMake. More details including step-by-step instruc-
tions and screenshots can be found in Chapter 3—
Starting and Running BioImage Suite of our 343-page
manual available in HTML and PDF format on our
website—www.bioimagesuite.org.

B Integrating an Algorithm into the Framework

In order to use the framework, the actual algorithm
has to be written as a C++ class similar to any VTK
class. Once that class is compiled with Tcl wrapping on,
it is ready to be tested. Here we look at an example
where we create a application that creates a module for
the Gaussian Smoothing class in VTK (vtkImageGaus-
sianSmooth).

B.1 Initial Setup

#!/bin/sh
the next line restarts using wish \

exec vtk "$0" "$@"

lappend auto_path [file dirname
[info script]]

lappend auto_path [file join [file join
[file dirname \

[info script]] ".."] base]
lappend auto_path [file join [file join

[file dirname \
[info script]] ".."] apps]

B.2 Class Definition

Each class needs at least three methods (in addition to
the constructor). The Initialize method is used to define
the lists of inputs, outputs and options. This ends by

http://www.bioimagesuite.org
http://www.bioimagesuite.org

Neuroinform (2011) 9:69–84 83

calling the initialize method of its parent class which
will append to these lists and then go on to initialize
everything. The GetGUIName method simply gives the
“English” name for the class. The Execute method is
where the actual execution happens and where the
algorithm methods are invoked.

package provide bis_smoothimage 1.0
package require
bis_imagetoimagealgorithm 1.0

itcl::class bis_smoothimage {

inherit bis_imagetoimagealgorithm

constructor { }
{ $this Initialize }

public method Initialize { }
public method Execute { }
public method GetGUIName { }

{ return "Smooth Image" }
}

B.3 The Initialize Method

itcl::body bis_smoothimage::Initialize { } {

#commandswitch, description,
shortdescription, \
optiontype, defaultvalue, valuerange,
priority

set options {

{ blursigma "kernel size [mm/voxel] of FWHM
filter size"

"Filter Size" { real triplescale 100 }
2.0 { 0.0 20.0 }
0 }

{ unit "kernel size unit mm or voxels "
"Units"

{ listofvalues radiobuttons } mm
{ mm voxels } 1}

{ radius "radius factor of the gaussian
in voxels"

"Filter Radius" real 1.5 { 0.0 5.0 }
-1 }

{ dimension "2 or 3 to to do smoothing
in 2D or 3D"

"Dimensionality" { listofvalues
radiobuttons } 3
{ 2 3 } -999 }

}
set defaultsuffix { "_sm" }
set scriptname bis_smoothimage

set completionstatus "Done"
#
Documentation
#
set description "Smoothes an image
with a \ specific gaussian kernel."

$this InitializeImageToImageAlgorithm
}

B.4 The Execute Method

The Execute method contains the code that is executed when
the user executes the algorithm. The input data as well as the
input parameters are obtained and the algorithm is executed.
The output image or surface, depending on the algorithm
being tested, is saved as per the user’s preference.

itcl::body bis_smoothimage::Execute { } {

Part 1 — get the parameters and inputs

set blursigma [$OptionsArray
(blursigma) GetValue]

set unit [$OptionsArray
(unit) GetValue]

set radius [$OptionsArray
(radius) GetValue]

set dimension [$OptionsArray
(dimension)
GetValue]

}

Next get the actual input image. This is of type pxitclimage
(a wrapper around vtkImageData). For surfaces, we have
pxitclsurface, which is a wrapped around vtkPolyData.

set image_in [$this GetInput]
To get the spacing first we need a pointer
to the

encapsulated vtkImageData obtained using
the

GetImage method of pxitclimage
set spacing [[$image_in GetImage]
GetSpacing]

Compute proper smoothness kernels if unit
is voxels or mm
if { $unit == "voxels"} {
for { set j 0 } { $j <=2 } { incr j } {

set sigma($j) [expr $blursigma *
0.4247 / [lindex \
$spacing $j]]

}
} else {
for { set j 0 } { $j <=2 } { incr j } {

set sigma($j) [expr $blursigma *
0.4247]

}
}
set radiusz $radius
if { $dimension == 2 } {

84 Neuroinform (2011) 9:69–84

set radiusz 0
set sigma(2) 0.0

}

This is the actual VTK pipeline code, where vtkImage-
GaussianSmooth is invoked with the user specified input
image and input parameters.

Actual vtk code
set smooth [vtkImageGaussianSmooth
[pxvtable::vnewobj]]
$smooth SetStandardDeviations $sigma(0)
$sigma(1) $sigma(2)

$smooth SetRadiusFactors $radius $radius
$radiusz

$smooth SetInput [$image_in GetObject]
$this SetFilterCallbacks $smooth
"Smoothing Image"
$smooth Update

Next we store the output resulting from the execution of
the algorithm.

When done store the output in the Output
Object

set outimage [$OutputsArray
(output_image) GetObject]
$outimage ShallowCopyImage
[$smooth GetOutput]
$outimage CopyImageHeader
[$image_in GetImageHeader]

Add a comment to the image header
(if NIFTI!)
set comment [format " [$this
GetCommandLine full]"]
[$outimage GetImageHeader] AddComment
"$comment $Log" 0

Clean up
$smooth Delete
return 1

}

This checks if executable is called (in this case
bis_smoothimage.tcl) if it is, then execute

if { [file rootname $argv0] ==
[file rootname \ [info script]] } {

this is essentially the main function
set alg
[bis_smoothimage [pxvtable::vnewobj]]
$alg MainFunction

}

References

Anderson, E., et al. (1999). Lapack user’s guide. SIAM.
Beck, K., & Andres, C. (2004). Extreme programming explained:

Embrace change (2nd ed.). Addison-Wesley Professional.

Coronato, A., De Pietro, G, & Marra, I. (2006). An open-source
software architecture for immersive medical imaging. In
Proceedings of the IEEE international conference on virtual
environments, HCI and measurement systems.

Ibanez, L., & Schroeder, W. (2003). The ITK software guide: The
insight segmentation and registration toolkit. Kitware, Inc.,
Albany, NY. www.itk.org.

Lucas, B.C., Bogovic, J. A., Carass, A., Bazin, P.-L., Prince, J. L.,
Pham, D. L., et al. (2010). The java image science toolkit
(jist) for rapid prototyping and publishing of neuroimaging
software. Neuroinformatics, 8, 5–17.

Martin, K., & Hoffman, B. (2009). Mastering CMake. Kitware,
Inc.

Meltzer, J. A., Zaveri, H. P., Goncharova, I. I., Distasio,
M. M., Papademetris, X., Spencer, S. S., et al. (2008).
Effects of working memory load on oscillatory power
in human intracranial EEG. Cerebral Cortex, 18, 1843–
1855.

NVIDIA (2007). NVIDIA compute unif ied device architecture
(CUDA).

Papademetris, X., DeLorenzo, C., Flossmann, S., Neff, M., Vives,
K., Spencer, D., et al. (2009a). From medical image com-
puting to computer-aided intervention: Development of a
research interface for image-guided navigation. In Inter-
national journal of medical robotics and computer assisted
surgery (Vol. 5, pp. 147–157).

Papademetris, X., Jackowski, M., Joshi, A., Scheinost, D.,
Murphy, I., Constable, R. T., et al. (2009b). The BioImage
suite module description manual. A manual for the BioImage
Suite project.

Petersen, K. F., Dufour, S., Savage, D. B., Bilz, S., Solomon,
G., Yonemitsu, S., et al. (2007). The role of skele-
tal muscle insulin resistance in the pathogenesis of the
metabolic syndrome. Proceedings of the National Academy
of Sciences of the United States of America, 104, 12587–
12594.

Pieper, S., Halle, M., & Kikinis, R. (2004). 3D slicer. IEEE inter-
national symposium on biomedical imaging ISBI 2004.

Scheinost, D., Blumenfeld, H., & Papademetris, X. (2009).
An improved unbiased method for diffspect quantification
in epilepsy. IEEE international symposium on biomedical
imaging ISBI 2009.

Schroeder, W., Martin, K., & Lorensen, B. (2003). The visual-
ization toolkit: An object-oriented approach to 3D Graphics.
Kitware, Inc., Albany, NY. www.vtk.org.

Shen, R., Boulanger, P., & Noga, M. (2008). Medvis: A real-
time immersive visualization environment for the explo-
ration of medical volumetric data. In Proceedings of the
f ifth international conference on biomedical visualization
(pp. 63–68).

Smith, C. (2000). [Incr-tcl/tk] from the ground up. McGraw-Hill.
Taksali, S. E., Caprio, S., Dziura, J., Dufour, S., Cali, A. M.,

Goodman, T. R., et al. (2008). High visceral and low ab-
dominal subcutaneous fat stores in the obese adolescent: A
determinant of an adverse metabolic phenotype. Diabetes,
57, 367–371.

Rex, D. E., Ma, J. Q., & Toga, A. W. (2003). The LONI pipeline
processing environment. NeuroImage, 19(3), 1033–1048.

VWware Server (2005) http://www.vmware.com/products/server/.
Wolf, I., Vetter, M., Wegner, I., Bottger, T., Nolden, M.,

Schobinger, M., et al. (2005). The medical imaging interac-
tion toolkit. In Medical image analysis (pp. 594–604).

www.itk.org
www.vtk.org
http://www.vmware.com/products/server/

	Unified Framework for Development, Deployment and Robust Testing of Neuroimaging Algorithms
	Abstract
	Introduction
	Related Work
	A Brief Overview of BioImage Suite

	System Design
	Framework Design Details
	Core Classes
	Application Architecture
	Invocation Modes
	Algorithm Implementation (see Fig. 4c)
	Customized Workflow Example: Diff-SPECT Processing for Epilepsy
	Interoperability

	Testing and Verification
	Regression and Unit Testing
	Nightly Testing

	Discussion & Conclusions
	Information Sharing Statement
	A Obtaining and Compiling the Source Code
	A.1 Compiling the Source Code

	B Integrating an Algorithm into the Framework
	B.1 Initial Setup
	B.2 Class Definition
	B.3 The Initialize Method
	B.4 The Execute Method

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

