Neuroinform (2010) 8:183-196
DOI 10.1007/s12021-010-9082-x

Code Generation: A Strategy for Neural

Network Simulators

Dan F. M. Goodman

Published online: 21 September 2010
© Springer Science+Business Media, LLC 2010

Abstract We demonstrate a technique for the design of
neural network simulation software, runtime code gen-
eration. This technique can be used to give the user
complete flexibility in specifying the mathematical
model for their simulation in a high level way, along
with the speed of code written in a low level language
such as C++. It can also be used to write code only
once but target different hardware platforms, including
inexpensive high performance graphics processing units
(GPUs). Code generation can be naturally combined
with computer algebra systems to provide further sim-
plification and optimisation of the generated code. The
technique is quite general and could be applied to any
simulation package. We demonstrate it with the ‘Brian’
simulator (http://www.briansimulator.org).

Keywords Code generation -

Spiking neural networks - Simulation -

Graphics processing units -

Computer algebra systems - Numerical integration -
Python - C++

Introduction

Since the early days of computational neuroscience,
when Huxley computed numerical solutions to differ-

D. F. M. Goodman
Laboratoire Psychologie de la Perception, CNRS,
Université Paris Descartes, Paris, France

D. F. M. Goodman (&)

Département d’Etudes Cognitives, Ecole Normale
Supérieure, Paris, France

e-mail: dan.goodman@ens.fr

ential equations for the action potential (Hodgkin and
Huxley 1952) using a hand cranked mechanical cal-
culator over a period of three weeks, simulations in
theoretical and computational neuroscience have con-
tinually pushed the boundaries of available computa-
tional resources. Given the enormous complexity of
the central nervous system, this trend is likely to con-
tinue for the forseeable future. Software for simula-
tions must therefore be both efficient and capable of
exploiting the latest hardware, such as general purpose
graphics processing units (GPUs, chips consisting of
hundreds of specialised processor cores). However, it
must also be flexible, and not restrict which models sci-
entists can investigate. These two requirements present
a problem: computationally efficient software can be
designed by writing code in a low level language such
as C++, but this restricts flexibility. Users are typi-
cally required to choose from a fixed set of existing
neuron models (as in Nest; Gewaltig and Diesmann
2007), or design their own from a combination of pre-
defined mechanisms (as in Genesis; Bower and Beeman
1998).

An ideal software package would have the follow-
ing characteristics. It would allow the user to specify
models at a high level. This specification could be, for
example, directly specifying the equations in standard
mathematical notation, or a CellML or NeuroML doc-
ument (Garny et al. 2008; Gleeson et al. 2010). It would
not restrict what models or equations could be specified
based on what had already been implemented. The
resulting simulation would run close to as fast or prefer-
ably even faster than low level code written by hand. It
could be run on different hardware configurations, such
as a single desktop PC, a cluster, or a GPU, without the
user having to make any changes.

KU
%« Humana Press

http://www.briansimulator.org

184

Neuroinform (2010) 8:183-196

Code generation provides a way to achieve these
goals. The basic strategy is as follows: the user works
in a high level language such as Python (which fea-
tures excellent scientific computing packages for data
analysis and plotting; Oliphant 2007), or using a graphi-
cal interface. On running the simulation, the software
package writes code in a low level language such as
C++, compiles this code and then runs it (possibly just
for key sections of the code). In this way, the advan-
tages of a high level language can be combined with the
speed of code written in a low level language, without
sacrificing flexibility. In addition, because the model
is specified at a high level, the output low level code
can be targeted to the chosen hardware configuration
without change. Code that is optimal for a CPU for
example, is very different to code that is optimal for
a GPU.

The first neural simulator package that used this
strategy was Neuron (Carnevale and Hines 2006), with
the NMODL model specification language (Hines and
Carnevale 2000; based on the earlier MODL language
of SCoP; Kootsey et al. 1986). Neuron provides an
offline code generation tool which reads a model
specification file and generates and compiles code for
numerical integration and spike propagation for the
model. Neuron’s approach does require that the user
learn some specific syntax and it does not yet feature
automatic simplification via symbolic analysis or sup-
port for hardware such as GPUs, but it is already an in-
valuable improvement and may well account for some
of Neuron’s enormous success.

In this paper we introduce some general principles of
code generation in Section “Principles”, including a
simple worked example and some discussion of how
it could be used in other ways. In Section “Code
Generation in Brian” we discuss in detail the code
generation strategy used in the Brian neural network
simulator package (Goodman and Brette 2008, 2009).
Brian uses runtime code generation and compilation,
so that code generation is entirely transparent to the
user and does not require them to run a separate tool.
Finally, in Section “Future Work and Discussion”, we
outline plans for future work on Brian (including more
support for GPUs and automatic tuning of code at
runtime, which may allow for code that is faster than
hand written C++) and discuss the role of code gen-
eration in neural network simulation. Throughout, we
use the technique of symbolic analysis of mathematical
expressions, which we consider essential for efficient
code generation. We also consider GPU computing in
several places, as the necessity of using code generation
for the GPU has been one of the major motivations for
this work.

KU
%,& Humana Press

Principles

The technique of code generation involves taking a
high level representation of a model and generating
efficient low level code for various platforms (different
CPUs, GPUs, etc.). This code can then be compiled
and run behind the scenes, in a way that is entirely
transparent to the user. There are two main reasons
for doing this: speed and flexibility. For code that is
written in a high level language, the primary benefit
will typically be speed, because the high level language
will already be reasonably flexible (although this is
not an automatic property of writing code in a high
level language). For code that is written in a low level
language, including most existing simulator packages,
the primary benefit will be flexibility, as the code will
already be highly efficient (although again, this is not
an automatic property of writing code in a low level
language). A related aspect is that code generation
can also be used with multiple target platforms. For
example, models can be run on single CPUs, clusters
and GPUs. The optimal code may well be different
in each case. Using a code generation technique al-
lows us to write templates for each platform once,
and then generate code for specific models on any of
these platforms without having to duplicate and rewrite
them. This will be particularly important in the case
of GPUs, as there are many different types of GPUs
available and it is difficult to precompile code for all of
them.

Worked Example

We start by giving a detailed example of how code gen-
eration could work in the case of numerical integration,
using Python, C++ and GPU C++ as examples. We
consider a leaky integrate-and-fire neuron defined by
the following system of differential equations:

v
_Z_v+ge(Ee_v)+gi(Ei_v)

KT
dg.
- _ 1
Ty ge 1)
dgi
g T

This neuron fires a spike when the membrane potential
crosses a threshold, V > V;, and subsequently resets to
a fixed value, V <« V,. In this section we consider only
the numerical integration of the differential equations.

Neuroinform (2010) 8:183-196

185

These could be specified in Python as a multi-line
string:

equations = '''

dv/dt = (-v+ge*(Ee-v)+gi*(Ei-v))/taunm
dge/dt = -ge/taue

dgi/dt = -gi/taui

T

A simple pattern match on each line of the string gives
us the expression f(x) in the equation dx/dt = f(x). So
for the variable ge it is the string ' -ge/taue’. With
this stored in a Python dictionary expr (a dictionary in
Python is a mapping m associating keys k with values
m[k]), we can now generate C++ code for an Euler
integration scheme for a set of N neurons as follows (as-
suming that variable v is stored as an array v__array,
and so on):

code = 'for(int i=0; i<N; i++){\n'
for var in variables:

code += double &'+var+' = '+var+'__array[i];\n'
for var in variables:

code += ' double '+var+'__tmp = '+expr[var]+';\n'
for var in variables:

code += ' '+var+' += dtx'+var+'__tmp;\n'

code += '}

In our case, this gives the following C++ code as output:

for(int i=0; i<N; i++){
double &v = v__arrayl[il;
double &ge = ge__arrayl[i];
double &gi = gi__arrayl[il;
double v__tmp = (-v+ge*(Ee-v)+gi*(Ei-v))/taum;
double ge__tmp = -ge/taue;
double gi__tmp = -gi/taue;
v += dt*v__tmp;
ge += dt*ge__tmp;
gi += dt*gi__tmp;

In a similar way, we could generate Python code as
output, assuming that variable v is stored in Python
array v and so on, the generated code would be:

v__tmp = (-v+gex (Ee-v)+gi* (Ei-v))/taum
ge__tmp = -ge/taue
gi_ tmp = -gi/taue

v += dtxv__tmp
ge += dtxge_ tmp
gi += dtxgi_ tmp

The Euler scheme is particularly simple, but starting
from the same set of equations defined as a string,

we could define integrators for other schemes such
as Runge—Kutta or implicit Euler (see Section “Code
Generation in Brian”). We can also do some sym-
bolic analysis on the equations strings provided by the
user, for example substituting constant values, evalu-
ating them and simplifying the resulting expressions.
We discuss this further in the next section, but we
finish with an example in which divisions by a constant
have been replaced by less computationally expen-
sive multiplications using particular values for the con-
stants (t,, = 20 ms, 7, = 5ms, 7; = [0 ms, E, = 60 mV
and E; = —20 mV). This example uses the same equa-
tions, but integrated with a second order Runge Kutta
scheme, and the target platform is a GPU kernel (the
GPU specific code will be explained in more detail in
Section “Code Generation in Brian”):

__global__ void integrate(double *v__array,
double *ge__array,
double *gi__array,

double dt, int N)

{
int i = blockIdx.x * blockDim.x + threadldx.x;
if (i>=N) return;
double &v = v__arrayl[il;
double &ge = ge__arrayl[il;
double &gi = gi__array[i];
double v__buf = -50.0%v+50.0*ge*(0.06-v)
-50.0%gix*(0.02+v);
double ge__buf = -200.0%*ge;
double gi__buf = -100.0*gi;
double v__half = 0.5*%dt*v__buf;
double ge__half = 0.5*dt*ge__buf;
double gi__half = 0.5%dt*gi__buf;
v__half += v;
ge__half += ge;
gi__half += gi;
v__buf = -50.0*v__half+50.0%*ge__half
*(0.06-v__half)
-50.0%gi__half*(0.02+v__half);
ge__buf = -200.0*ge__half;
gi__buf = -100.0*gi__half;
v += dt*v__buf;
ge += dtxge__buf;
gi += dt*xgi__buf;
}

This last example is in fact the code generated by Brian,
which we will consider in more detail in Section “Code
Generation in Brian”.

Numerical Integration with Existing Libraries

An alternative approach to numerical integration al-
lowing us to straightforwardly make use of existing,
sophisticated numerical integration packages is exem-
plified by Neuron’s NMODL language (Hines and

KU
%« Humana Press

186

Neuroinform (2010) 8:183-196

Carnevale 2000). Here, the high level representation
is a Neuron mod file. This file includes various code
blocks containing the definition of the model, includ-
ing a DERIVATIVE block which gives the differential
equations of the state variables of the model in
standard mathematical form, as in the example above.
An example of such a block is:

DERIVATIVE states {
settables (v)

r’ = ((ralphax(l-r)) - (rbetax*r))
d’ = ((dbetax*(1-s-d)) - (dalphaxd))
s’ = ((salphax(l-s-d)) - (sbetaxs))

A tool included as part of Neuron generates C code and
compiles it to an executable file which can be loaded by
Neuron. Part of this C code is a function which executes
this code block. For the example above it is:

static int _ode_specl (doublex* _p,

Datum* _ppvar,
Datum* _thread,
_NrnThread* _nt)
{int _reset = 0; {

settables (_threadargscomma_ v) ;

Dr = ((ralpha * (1.0 - r))

(rbeta *x r)) ;

Dd = ((dbeta * (1.0 - s -d))
- (dalpha * d)) ;
Ds = ((salpha * (1.0 - s -4d))
- (sbeta * s)) ;
}
return _reset;

}

The main code of Neuron integrates the differential
equations using the CVODES routine of the SUN-
DIALS package (Hindmarsh et al. 2005), by passing
it a pointer to this function. CVODES then uses this
function to evaluate the derivatives at various points
as part of its numerical integration algorithm, which
includes many sophisticated features such as variable
time-stepping.

Whether this method or the method described in the
previous section is more appropriate depends on sev-
eral factors. In general, it is preferable to use code that
has been well researched and tested, such as CVODES,
as it is likely to be more efficient, to have less bugs,
and because doing so reduces duplicated development
time. There are, however, some reasons to prefer the

KU
%,& Humana Press

simpler, more direct approach of the previous section.
For Brian, we chose to do this as we decided on a
requirement that our package work in pure Python
(with NumPy and SciPy) to maximise portability, and
this ruled out the use of libraries written in C/C++.
However, the same choice may be made by develop-
ers working in C, as they still introduce an additional
external dependency, potentially complicating develop-
ment and distribution. In addition, some desired target
platforms may not be supported by the library, or may
not run efficiently on them. This is a particular concern
for GPU code, which often has to be written in a
very different way to CPU code, and the technology
is sufficiently new that many existing libraries do not
support them well.

Implementing XML Models

Code generation is not restricted to transforming math-
ematical equations into code. Indeed, an interesting
and timely problem is the generation of code from
extensible markup language (XML) documents such as
NeuroML, CellML and SBML. NeuroML is an XML
specification for the definition of models of neural
systems (Gleeson et al. 2010), CelIML for cellular and
subcellular processes (Garny et al. 2008), and SBML
for biochemical reaction networks (Hucka et al. 2003).
Standardised markup languages such as these can be
an invaluable tool for neuroscience, by facilitating the
reproducibility and testability of models (Morse 2007).
As yet, no neural simulator includes complete support
for these languages, however the situation is improving
and many simulators now support at least a subset of
them.

Simulator support for these languages can be partly
satisfied without code generation, by simply implemen-
ting the named models included in the specifications.
However, these specifications allow for the creation of
new models that have not been previously implemen-
ted. For example, NeuroML allows for the specification
of channel gating mechanisms via state-based kinetic
models, and plans for future versions include references
to much more general SBML, CellML and MathML
documents. Some work in neural simulation has already
beenrealised in this direction, for example the NeuroML
Validator (http://www.neuroml.org/NeuroMLValidator/
Validation.jsp) can be used to generate Neuron mod
files from NeuroML documents, and these can in turn
be used to generate code by Neuron. However, future
versions of NeuroML incorporating MathML (directly
or via CellML or SBML) will require code generation,
as MathML allows for the specification of arbitrary
mathematical expressions. This could be done, for

http://www.neuroml.org/NeuroMLValidator/Validation.jsp
http://www.neuroml.org/NeuroMLValidator/Validation.jsp

Neuroinform (2010) 8:183-196

187

example, using the MathDOM Python package (http://
mathdom.sourceforge.net/), which reads MathML doc-
uments and can generate output in various formats
suitable for use in code generation.

The problem of code generation has already been
partially addressed by the systems biology community,
although their solutions are not directly applicable
to neural simulation. There are several pure CellML
simulators that support code generation (Garny et al.
2008). In some cases, these build on the CellML Code
Generation Service (CCGS) of the CellML API (Miller
et al. 2010), which in turn uses the API’'s MathML
Language Expression Service (MalLaES) to convert
MathML fragments into expressions in several differ-
ent programming languages. Many SBML tools also
use code generation (http://sbml.org/SBML_Software_
Guide/SBML_Software_Summary), but there are no
common code generation tools equivalent to CCGS
and MaLaES.

Code Generation in Brian

From the earliest versions, the Brian simulator used
code generation for numerical integration of nonlinear
differential equations, although only Python code was
generated. The latest version features Python, C++
and GPU C++ code generation for numerical inte-
gration, thresholding (for example, firing spikes on the
condition that V > V,), resetting (after a spike, for ex-

a
Weight matrix
State matrix .
Y .
ge
g - STDP\
only
- - .Numerllcal - - - - »{Thresholding} - - - Splke.
integration propagation

creates

spikes array

Fig. 1 (a) Main simulation loop. Each time step, the following
operations are executed: numerical integration (updating the
state matrix); thresholding (producing a list of spiking neurons);
spike propagation (updating the state matrix and, in the case of
STDP, the weight matrix); and resetting. Each operation involves
calling generated code, illustrated in the right hand panel. (b)
Generated code consists of two objects, a namespace (a mapping

L - - - 3]

ample V <« V,), propagation and back-propagation of
spikes. In some situations, this can result in substantial
speed improvements even on a single CPU, because
the Python overheads are eliminated. In the case of
large N, we showed in Goodman and Brette (2008)
that pure Python performance approaches that of hand
written C++ code, because the relative costs of the
overheads become negligible. However, in order to ex-
tract the maximum advantage from a GPU, C++ code
generation is necessary. Figure 1 shows the structure of
Brian’s main simulation loop and how generated code is
used.

In Python, we can compile and execute code using
the built-in compile and eval functions, and the
exec keyword. The SciPy package (Jones et al. 2001)
includes “Weave”, a package for automatic compila-
tion and execution of C++ code in a way that easily
integrates with the high level data structures in Python.
For the GPU, we use the PyCUDA package (Klockner
et al. 2009). In each case, we pass a string representation
of the code (in Python, C++ or GPU C++) along
with a namespace (a mapping of variable names to
data), and low-level code is automatically compiled and
executed.

To implement code generation, we use a combina-
tion of string manipulation using regular expressions,
and the SymPy computer algebra system (CAS) pack-
age (SymPy Development Team 2009). The overall
process is illustrated in Fig. 2 for the case of numer-
ical integration (the other cases are similar). SymPy

b
Brian Simulation
initialisation loop

creates{ updates calls
i S [-----
i | Variables/ Executable | !
1 | namespace| " uses code !
! 1

Resetting |-- '=-===-=--=----cc-c---ooooonox

of variable names to data) and an executable code object. The
code executes in the namespace, that is, it acts on the objects in
the namespace. At initialisation, Brian creates a namespace and
executable object, the latter using code generation (see Fig. 2).
Each time step, the namespace is updated with the current values
of the variables before the executable object is called

KU
%« Humana Press

http://mathdom.sourceforge.net/
http://mathdom.sourceforge.net/
http://sbml.org/SBML_Software_Guide/SBML_Software_Summary
http://sbml.org/SBML_Software_Guide/SBML_Software_Summary

188 Neuroinform (2010) 8:183-196
) w Parsing . .
User equations » | String representation
dv/dt=-v**2/(10*ms) {‘“Ww’:"=v**2/(10*ms) ' }
m=re.search(...) . .
egn=m.group(l) = peemmmeemmememm— Substitution
egn=eqn.replace('ms’,’0.001")
Expanded representation
{7 =v*¥*2/(10%0.001) " }
String evaluation ________________.
ns = {’v’:Symbol ('v’)}
dv = eval (eqgn, ns)
Symbolic representation
‘v i-v**2/0.01}
Sympy simplification __________________.
dv = dv.simplify ()
Optimised representation
(W’ :-100*v**2}
Sympy code generation ... _________.
p = CCodePrinter ()
cexpr = p.doprint (dv)
C++ representation
{‘v’:-100*pow (v, 2)}
Template substitution _________________
subs = {...}
t = Template(...) . .
ccode = t.substitute (subs) Output code Compllatlon R
for (int 1=0; i<n; i++){ 7| Executable function
weave.inline(...)

Fig. 2 Code generation process for numerical integration. Start-
ing with the user equations, a string representation is built by
parsing the equations using regular expressions. An expanded
representation is built by substituting the value of constants.
These string representations are then evaluated symbolically
using Sympy, creating Sympy symbolic expression objects. These
expressions are then simplified using Sympy, for example replac-

can be used for algebraic manipulation of expressions,
including automatically simplifying expressions such
as x/ (10%ms) to x%100. It uses Python syntax to
define mathematical expressions, so that anything that
is valid Python will be valid for SymPy. It also includes
a module for generating C++ expressions, which in-
volves some non-trivial syntactic transformations. For
example, in Python there is a ** exponentiation op-
erator, whereas in C++ you need to use the pow
function. So the Python expression xx2 would need
to be rendered in C++ as pow (x,2). Beyond these
syntactic differences at the level of expressions, there
are differences in vectorisation strategies. For example,
a reset operation that sets the value of variable V to
V, for every neuron that has spiked could be coded in
Python as:

for i in spikes:
V[i] = Vr

KU
%,& Humana Press

ing division by a constant with multiplication. Sympy is then used
to output C++ code from these optimised representations (which
involves, for example, replacing x*+y with pow (x,y)). Finally,
this C++ code is inserted into templates defined by the numerical
integration scheme to form the final output code. This code is
then compiled and executed using the SciPy Weave package

However, this incurs a performance penalty of O(n)
Python operations, for n the number of neurons that
have spiked. This penalty comes about as follows. Ex-
ecuting this code in C + + requires Cn machine code
instructions, whereas executing it in Python requires
the same Cn machine code instructions to actually per-
form the computation plus Prn additional instructions to
interpret the Python expression V[i] = Vr for each
iteration of the loop, where P > C. Writing it as follows
reduces that penalty to O(1), that is, requiring only
const. + Cn instructions:

V[spikes] = Vr

We do not attempt to address the general case of
optimal vectorization strategies, which is an ongo-
ing research area. Projects attempting to address this
for Python include Psyco and PyPy (Rigo 2004), and
Theano (http://deeplearning.net/software/theano/).

http://deeplearning.net/software/theano/

Neuroinform (2010) 8:183-196

189

In the sections below, we cover how Brian handles
code generation for numerical integration and spike
propagation, including STDP. We do not discuss other
algorithmic components of model specification, such as
the thresholding and reset mechanisms, as the same
techniques apply fairly straightforwardly to these cases.
By default, Brian handles thresholding by finding the
indices of all neurons satisfying V' > V,, but any mathe-
matical expression can be given and code can be gener-
ated from these. Resetting is again typically handled by
setting V = V, for all neurons that have spiked, and,
in the case of refractoriness, is held at that value by
repeatedly executing that statement for the duration of
the refractory period. Again, any statement or series
of statements can be given and code can be gener-
ated from them, including more complicated schemes
having, for example, one statement to be evaluated at
the initial reset time, and another statement for the
refractory period. In Brian, spike times are constrained
to the grid, which can cause numerical problems in
some cases, although these could be ameliorated by
introducing spike time interpolation (Hansel et al. 1998;
Morrison et al. 2007).

There are various possible sources of error in the
process outlined above that need to be handled. First
of all, users may write equations with syntactic errors:
these will be handled at parsing time, as the attempt to
convert them into SymPy expressions will raise an ex-
ception. Secondly, users may write syntactically correct
but semantically incorrect equations. These cannot be
detected automatically, although in Brian they will raise
an error if they are dimensionally inconsistent, as Brian
has a system for defining variables with physical units.
Finally, some errors may occur if the user writes an ex-
pression that is well defined in Python but not in C++,
for example using a Python function they have defined.
This will also raise an error when attempting to compile
the C++ code, but in this case a fall-back strategy can
be used: revert to using Python code generation if C++
code generation fails.

Numerical Integration

The most important aspect of code generation in
Brian is the generation of numerical integration code.
Brian currently features four integration schemes: exact
solution of linear differential equations; Euler method;
2nd order Runge-Kutta method; exponential Euler
method (MacGregor 1987). We do not use code gen-
eration for linear differential equations as the exact
solution for these can be computed as a matrix-vector
product (x(t 4+ df) = Mx(¢) + afor a fixed matrix M and
vector a; Rotter and Diesmann 1999) which can be com-

puted efficiently with the NumPy package (Oliphant
2006).

The integration schemes are expressed as a list of
code blocks. Each code block is a string, possibly
consisting of multiple lines. Output code is constructed
by evaluating the first code block for each variable, then
the second code block, and so on. The following substi-
tutions are made: ${var} is replaced by the name of
the variable (extracted by pattern matching from the
user defined equations); ${var_expr} by the expres-
sion for the right hand side of the differential equation
for that variable (also extracted by pattern matching);
${vartype} by the data type of the variable (none
in Python, and either float or double in C++). In
this framework, the Euler scheme is expressed very
simply as:

euler = ['${vartype} ${var}__tmp = ${var_exprl}',
'${var} += ${var}__tmpx*dt']

The way Python code is generated from this scheme
is then essentially the same as was demonstrated in
Section “Worked Example” for C++ code, only more
general. First of all, a list of differential equations
defined by the name of the variable (var) and the
expression defining its derivative (var_expr) is ex-
tracted by pattern matching on the equations string.
Then, for each variable defined in the user equations,
each of the code block templates are filled out with
the appropriate values and joined together. The output
of this scheme is valid Python code, all that is added
to it is to define the variable names of the differential
equations. In Brian, the variables are stored in a single
two-dimensional array S of dimensions (M, N) for M
variables and N neurons. The final Python code for
the integration scheme is joined to code that loads
the variable names of the differential equations with
pointers to this array (“views” in NumPy terminology).
So, for the differential equations of Section “Worked
Example” the complete Python code would be:

v = s[0, :]
ge = S[1, :]
gi = S[2, :]

v__tmp = -50.0%v + 50.0%*ge*x(0.06 - v)
- 50.0%gi*(0.02 + v)

ge__tmp = -200.0%*ge

gi__tmp = -100.0*gi

v += dt*xv__tmp

ge += dtxge__tmp
gi += dt*xgi__tmp

If this code is stored as a string pycode, and the
variables S and dt are stored in a namespace ns, then

KU
%« Humana Press

190

Neuroinform (2010) 8:183-196

the code above can be executed with the Python state-
ment exec pycode in ns. For C++4 code output,
we have to loop over all neurons, and we use references
to load the variable names, as follows:

double *v__ptr = S+0*num_neurons;
double *ge__ptr = S+l*num_neurons;
double *gi__ptr = S+2*num_neurons;
for(int i=0; i<num_neurons; i++){
double &v = *v__ptr++;
double &ge = *ge__ptr++;
double &gi = *gi__ptr++;

On the GPU, we do not loop over neurons, instead
we launch a GPU kernel process with one thread per
neuron. A GPU consists of a large number of processor
cores which can execute code in parallel (512 cores in
the current state of the art chips). There are restric-
tions on what code can be executed on these cores,
which we do not go into in detail here except to say
that roughly speaking, each core has to execute the
same code on a different piece of data. Code run-
ning on the GPU is called a “kernel”. A GPU ker-
nel launch involves multiple blocks and threads that
can be divided into a one-, two- or three-dimensional
structure. In our case, we launch a one-dimensional
kernel but with multiple blocks, each block consisting
of multiple threads. The neuron index can be computed
from the block index blockIdx.x, the block dimen-
sionblockDim.x and the thread index threadIdx.x
as blockIdx.xxblockDim.x+threadIdx.x. If the
number of neurons does not divide perfectly into
the block dimension, then too many threads will be
launched. The GPU kernel has to check for this condi-
tion and return without doing anything in that case. The
neuron model state variables v__array, ge__array
and gi__array are stored in the global memory of the
GPU, that is, memory that is accessible to every thread.
The GPU kernel code for our example is then:

__global__ void integrate(double *v__array,
double *ge__array,
double *gi__array,

double dt, int N)

{
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i>=N) return;
double &v = v__arrayl[i];

}

KU
%,& Humana Press

The code written in this way is optimal for the GPU
since if two threads are adjacent (say i and i + 1) they
read and write to global memory at adjacent locations,
meaning that the memory access can be “coalesced”
into a single operation for several adjacent threads.
Ensuring coalesced global memory access patterns is
the key to optimal GPU code efficiency, as global
memory access can take hundreds of clock cycles to
complete (NVIDIA 2009), in many cases dwarfing the
arithmetical operations involved in the numerical inte-
gration itself.

Moving on to more complicated numerical integra-
tion schemes, we require one addition to the framework
developed above. We use the syntax @substitute
(expr, subs) to make substitutions of different
names or values into an expression. The substitute
function evaluates the Python code subs which should
be a dictionary of key-value pairs (v, e). This dic-
tionary is then used to make substitutions into expr,
replacing variable v with expression e. With this, we
can define the 2nd order Runge-Kutta method. For
the differential equations dx/dt = f(x) (for vector x)
we define Xy = x + (d#/2) f(x) and the numerical inte-
gration step is then x <— x + df - f(Xpai¢). In our frame-
work, this can be written as follows:

rk2 = [

${vartype} ${var}__buf = ${var_expr}

${vartype} ${var}__half = (.5*dt)
*${var}__buf

${var}__half += ${var}

[N

${var}__buf = @substitute(var_expr,
dict((v, v+'__half ')for v in variables))

${var} += dt*${var}__buf
I|l]

We require the @substitute to replace each variable
with its half timestep value. In this case, the ex-
pression (for example) ’'xxy’ would be replaced by
'x__halfxy half’ after applying the substitution
dictionary {'x’:'x_half’, 'y’:'y__half’}.
The Python expression dict(...) creates a
dictionary consisting of all key-value pairs (v,
v+’ _half’) for each variable v (a string) in the list
variables.

Finally we have the exponential Euler method for
stiff differential equations such as those of Hodgkin—
Huxley type. This method can be applied to differential
equations which are conditionally linear, that is, where
the right hand side of each differential equation is
linear with respect to the variable being differentiated
while holding the other variables constant. For each
variable x, the differential equation is dx/dt = Ax + B

Neuroinform (2010) 8:183-196

191

for A and B depending on the other variables. We
compute the solution to this differential equation under
the assumption that A and B are constant as x(¢ + df) =
(x(t) + B/ A)e Y — B/ A. We implement this in our
framework as follows, using @substitute to compute
the A and B values for each variable:

exp_euler = [
[]

$ {vartype} $ {var}__B

O@substitute(var_expr,
{var:0})
@substitute(var_expr,

{var:1})

¢ {vartypel} ¢ {var}__A

$ {var}__A -=${var}__B
$ {var}__B /=${var}__A
$ {var}__A *= dt

>
[}

$ {var} +=$ {var}__B

$ {var} *= exp@® {var}__A)
$ {var} -=8{var}__B
]

The expression {var:0} is a Python dictionary con-
sisting of a single key-value pair (var, 0).The effect
of this in the code above is to substitute the value
var=0 in var_expr. If dx/dt = f(x) = Ax + B then
substituting x = 0 gives us f(0) = B. Substituting x = 1
givesus f(1) = A+ Bsowecompute Aas A = f(1) —
£(0).

Propagation and Back-propagation

Simulation of spike-timing dependent plasticity
(STDP) of a general nature (defined by user-specified
equations) requires code-generation integrated with
propagation and back-propagation. We implement
STDP by defining a set of synaptic differential
equations, and code that is executed for each synapse
after a pre- or post-synaptic spike. This code is provided
by the user in a high level way, and we generate Python
or C++ from it. As an example, the standard model of
STDP is defined by a weight change AW depending on
a pair of pre- and post-synaptic spikes at relative times
Al = tpost — fpre!

A_eAt/r_

A+€_At/r+

if At <0

AW = 2
{ if At>0 @

Typically, A, > 0 for potentiation and A_ < 0 for de-
pression. This can be implemented using our STDP
mechanism using the technique of (Song et al. 2000).

Define pre- and post-synaptic traces a_ and a; which
evolve according to the differential equations:

da_

‘57 —
dr
da+

Tp—— = —a,.
+d[+

3)

When a pre-synaptic spike arrives, we update a, <«
ay+ Ay and W < W+a_. When a post-synaptic
spike arrives, we update a_ <—a_+A_ and W <~ W+a,.
You can see that if a pre-synaptic spike arrives time
At before a post-synaptic spike then at the time of
the pre-synaptic spike ay will be set to A, and W
will be increased by a_ = 0. At the time of the post-
synaptic spike, a; will have decayed to A e "% and
W will be increased by this amount, as required. In a
similar fashion, if the post-synaptic spike arrives —A¢
before the pre-synaptic spike, then initially a_ will be
set to A_ and W will be increased by a; =0, and
then at the time of the pre-synaptic spike a_ will have
decayed to A_e~2/™ and W will be increased by this
amount, again as required. These equations for STDP
are specified in Brian by the differential equations
string:

equations = '''
dam/dt = -am/taum
dap/dt = -ap/taup

Here m and p are used in place of - and +. The pre-
synaptic code is specified as:

pre =
ap += Ap
W += am

LI

And the post-synaptic code as:

post = '"!
am += Am
W += ap

The user can also optionally specify limits for the
weight. Note that the variable ap only depends on pre-
synaptic spikes and the variable am only depends on
post-synaptic spikes, so we do not store one copy of
these per synapse, but only per neuron. We then use
numerical integration as in the previous section to solve
the differential equations. In Python, the pre-synaptic
code generated for these equations is as follows, where

KU
%« Humana Press

192

Neuroinform (2010) 8:183-196

spikes is an array of the indices of the pre-synaptic
neurons that have spiked:

ap[spikes] += Ap
for i in spikes:

Wi, :1 += am

Wli, :] = clip(W([i, :], O, wmax)
The line ap += Ap in the original string has been
vectorized over the pre-synaptic neurons and replaced
by ap [spikes] += Ap. Theline W += am has been
vectorized once for each spike i over the post-synaptic
neurons as W[i, :] += am. The expression W[1i,
:] refers to row i of the matrix W. Finally, a line
has been added to clip the values of W between 0 and
wmax. For the code run on a post-synaptic spike, we do
the same thing but replace Wi, :] withw[:, 1i] to
refer to column 1 of W instead of row i.

This code is generated by analyzing the equations
and the pre- and post-synaptic code strings. The first
step is to divide the equations into pre- and post-
synaptic equations. This is done by creating a depen-
dency graph on the differential equations (with nodes
the variables of the equations, and edges indicating a
dependency between the two variables), and splitting
it into two connected components. Variables which are
modified in the pre-synaptic code are considered pre-
synaptic and those which are modified in post-synaptic
code are considered post-synaptic. The consistency of
all this is checked and an error raised if there is a prob-
lem. To generate the pre- and post-synaptic Python
code, the strings are split into lines that do and lines
that do not modify the weight matrix. For lines that
do not modify it, each variable x is simply replaced
by x [spikes]. Lines that do modify the weight are
wrapped in a loop for i in spikes: and the sym-
bol Wis replaced by w[i, :] for propagationorwl(:,
i] for back-propagation.

Code generation for customised propagation and
back-propagation is complicated by several factors. In
Brian there are at least 12 types of propagation that
can occur: there can be homogeneous or heterogeneous
neuronal delays; the connection matrix structure can
be dense, sparse or ‘dynamic’ (and more structures are
planned); there can be synaptic weight modulation or
not. There is also the difference between propagation
(which involves iterating over rows of the connection
matrix) and back-propagation (which involves iterat-
ing over columns). The difference between rows and
columns is not entirely trivial in sparse matrix data
structures. Normally, sparse matrices are optimised ei-
ther for efficient row access (CSR type) or efficient
column access (CSC type). We use our own sparse
matrix data structure which allows for efficient row and

KU
%,& Humana Press

column access at the cost of slightly higher memory
requirements. With STDP, further complications are
added by the fact that we may use the value of a vari-
able at an earlier point in time rather than the current
time if neuronal delays are being used (although we will
not cover this case here).

In Python, we solve these problems by requiring
that connection matrix structures define row and col-
umn based vector operations, and then we work on a
spike-by-spike basis as in the Python code for STDP
above. This means that (back-)propagation involves
O(n) Python instructions, for n the number of spikes
per time step.

Using C++ we can reduce this to O(1) Python in-
structions, at the cost of slightly more complexity.

Code is specified in an iterative scheme similar to
Python, with iteration allowed over the array of spike
indices spikes, or over a row or column of a matrix.
Neuron model variables can be loaded with the load
keyword. For example, standard propagation of spikes
is defined by the following scheme:

for j in spikes:
for k in row j of W:
load VI[k]
V += W

That is, we iterate over each neuron index j in the array
spikes. Now we iterate over row j of the matrix W, so
that for each iteration step the target neuron index is
k. Finally, we load the target neuron state variable Vv
corresponding to neuron index k, and execute the code
V += W.

In the case of a sparse matrix W, this generates the
following C++ code (annotated with the line of the
scheme that generated it):

// for j in spikes:
for(int spike_index=0; spike_index<spikes_len;

spike_index++)

{
int j = spikes[spike_index];
// for k in row j of W:
for(int p=rowindex[j]; p<rowindex[j+1]; p++)
{
int k = alljlp]l;
double &W = alldatalp];
// load VI[k]
double &V = V__arrayl(k];
// VU +=W
V +=W;
}
}

The rowindex, allj and alldata variables be-
long to the sparse matrix data structure. The weight

Neuroinform (2010) 8:183-196

193

values for row i are stored in alldata with in-
dices from rowindex[i] up to but not including
rowindex [i+1]. The corresponding column index
are stored in array allj.

For STDP, the post-synaptic code is generated with
the following scheme:

for j in spikes:

for var in post vars:
load var[j]

per_neuron_post

for 1 in row j of W:
for var in pre vars:

load var[i]

per synapse_post
clip

The variables pre_vars and post_vars are dic-
tionaries of pairs (var, array) associating vari-
able name var with its array of values array, for
the pre- and post-synaptic variables. The variables
per neuron post and per synapse post are the
lines of code corresponding to the per-neuron or per-
synapse code (determined by whether it modifies the
weights or not). The variable c1ip is code to clip the
value of W depending on whether upper or lower limits
have been given. The pre-synaptic code is similar but
uses row i of W instead of col i of W. Here is
the generated post-synaptic code for a dense matrix
(annotated as before):

// for j in spikes:
for(int spike_index=0; spike_index<spikes_len;
spike_index++)
{
int j = spikes[spike_index];
// for var in post_vars:
// load var[j]
double &am = am__array[j];
// per_neuron_post ('am += Am')
am += -0.000105;
// for i in row j of W:
for(int i=0; i<num_source_neurons; i++)
{
double &W = W__array[i+j*num_target_neurons];
// for var in pre_vars:
// load var[il]
double &ap = ap__arrayl[il;
// per_synapse_post ('W += ap')
W += ap;
// clip
if (W<0.0) W = 0.0;
if (W>0.01) W = 0.01;

}

In the case of STDP with delays, the scheme is slightly
more complicated. We do not present further details
here. In addition, Brian does not yet support propaga-

tion and back-propagation on the GPU. This is possible
but technically challenging due to the difficulty of de-
vising algorithms that involve coalesced memory access
patterns (Nageswaran et al. 2009). GPU propagation is
planned for release 2.0 of Brian. Finally, we should note
that in Brian we do not use the exact syntax above for
propagation and back-propagation, but it is equivalent.

Results

We demonstrate the results of using code generation
in Brian in Fig. 3. These results are designed to show
that code generation allows us to bridge the gap be-
tween speed and flexibility in a simulator written in
a high level language (with the interpretation costs to
overcome). A simulator already designed in a low level
language will not see any speed improvements from
using code generation, but rather gain an improvement
in flexibility. We compared performance in numerical
integration using the exponential Euler method for
Hodgkin-Huxley neurons (with no synapses), and in
propagation and back-propagation using STDP (using
a null neuron model with no numerical integration, and
spikes introduced by hand). For the Hodgkin—-Huxley
neurons we used the model from Brette et al. (2007).
For the numerical integration, we tested a standard ver-
sion of Brian (1.2.0) without code generation, against
Brian using Python code generation, Brian using C++
code generation, and the same numerical integration
using hand-coded C++.

Consistent with our previous work (Goodman and
Brette 2008), we found that in the case of a large
number N of neurons, Brian performance with or with-
out code generation approached that of hand-coded
C++. This follows because the Python interpretation
overheads are constant, and so for large N they become
tiny relatively. In fact, it appears that both Python
and C++ code generation, and hand-coded C++ tend
towards a constant factor faster than Brian. This is
probably because Brian without code generation does
not include the simplification via symbolic algebra, and
so it is actually performing a more complicated calcu-
lation. In the case of small N, each step from Brian
to Python code generation to C++ code generation to
hand-coded C++ gave a considerable speed improve-
ment. This appears very strongly in the case of relative
timings, but in the absolute timings it appears that there
was virtually no difference between the speed of Brian
with C++ code generation and hand-coded C++.

These speed improvements will be useful in the
case of relatively small networks running for a long
period of time (giving speed increases of up 40 times),

KU
%« Humana Press

194

Neuroinform (2010) 8:183-196

10t E

=
o
N
T
24
L4
|

=
o
[
T
i
1

-~]
‘W]
=

LR R R I IR
R

Speed improvement

10! 10°
Number of neurons

=
o
o

10° 10°

Fig. 3 Left panels: Performance for numerical integration in
Brian without code generation (thick line), Brian with Python
code generation (dotted), Brian with C++ code generation
(dashed) and hand-coded C++ (dash-dot). The upper plot is the
absolute time for a simulation of a number of Hodgkin—-Huxley
neurons. The lower plot is the speed improvement compared
to a standard Brian run. The neurons were integrated with the

and in the case of large networks with complicated
differential equations such as Hodgkin—Huxley type
neurons thanks to the automatic simplification (around
twice as fast). More important than that though will be
the ability to run code on the GPU. In an earlier paper,
using the Euler method on relatively simple differential
equations, we showed that Brian using a simpler form
of code generation on the GPU (no symbolic alge-
bra) could give speed improvements of 60-80 times
(Rossant et al. 2010).

We also compared the performance in the case of
STDP. In this case, we compared a standard version
of Brian against a version using C++ code generation.
The standard version of Brian uses some static C++
code, but requires O(n) Python operations for n spikes.
The code generation version only requires O(1) Python
operations. The results show that the improvement in-
creases as the number of spikes per timestep increases.
To give an idea of a reasonable number of spikes per

KU
%,& Humana Press

102_ ——‘-__--___
; ¢’—’
: —’
‘—
10' F :
100 | |
10° 10! 10° 10°

Spikes per timestep

exponential Euler method, but the graphs are qualitatively simi-
lar for other integration schemes. Right panels: Performance for
STDP in Brian without code generation (thick line), and with
code generation (dashed). The upper figure is absolute times and
the lower figure is the speed improvement of code generation
compared to standard Brian

timestep, a neuron firing at 50 Hz simulated with a dr
of 0.1 ms would fire around 0.005 spikes per timestep.
So for a small network of 1,000 such neurons, we would
expect around 5 spikes per timestep, and for a large
network of 100,000 such neurons, we would expect
around 500 spikes per timestep. In this case, we get a
speed improvement of around 100 times.

Future Work and Discussion

The most important extension of this work for the
Brian simulator is the development of GPU propa-
gation data structures and algorithms, and integration
with the code generation framework. This will allow
Brian to run all user defined models on the GPU as
simply as on the CPU, providing potentially enormous
speed improvements for users. Indeed, we demon-
strated a 60-80 times speed improvement in the case of

Neuroinform (2010) 8:183-196

195

simulations of models without propagation in Rossant
et al. (2010), and Nageswaran et al. (2009) showed a 26
times speed improvement over CPU code in simulating
a network with delays and STDP. GPU support for
Brian is currently planned for the 2.0 release.

We are also working to extend the role and scope of
symbolic analysis in Brian. At the moment, equations
have to be specified in the form dx/dt = f(x), and not,
for example, as tdV/dt = —V, and differential equa-
tions are restricted to being first order. More general
forms could be supported with suitable symbolic analy-
sis to reduce them to this form. In addition, at the mo-
ment Brian automatically detects if equations are linear
and uses an exact solver in that case, but for nonlinear
equations the user has to specify the solver by hand.
In certain cases, the best solver could be determined
by symbolic analysis (for example, if the differential
equation was of Hodgkin—-Huxley type the exponential
Euler solver could be selected automatically). Finally,
although most biophysically plausible properties can be
reduced to systems of first order differential equations,
it can be more natural to express them in other ways.
For example, an «-synapse gives a current or conduc-
tance of the form g(¢) = (¢/t)e' ~"/*. This can be reduced
to the system of ODEs dx/df = (y — x)/t and dy/df =
—y/7.Symbolic analysis could be used to perform these
reductions automatically. In general, symbolic analysis
can be used to further the goal of having the user spec-
ify their model at the highest level possible in standard
mathematical notation (so that there is no particular
syntax to learn), but allow for efficient simulation.

More speculatively, it may be possible using this
approach to have models specified at a high level
running faster than code written in a low level lan-
guage. This is possible because the simulator could
analyse the performance of the simulation as it runs,
and adapt the code dynamically in response. These
techniques have already been used for making high-
level interpreted languages run as fast or even faster
than low-level compiled languages. Java Just-In-Time
(JIT) interpreters can analyse the code as it runs and
generate machine code at run-time for key portions of
the code that are run repeatedly (typically inner loops).
Consequently, Java code can now run close to as fast,
and in some cases actually faster, than generic C++
using the standard template library (Bull et al. 2001).
The Psyco package (Rigo 2004) applies JIT techniques
to the Python language. Speed improvements can be as
large as 100 times in some cases, although code typically
still runs considerably slower than equivalent C++
code. Development has now shifted to the PyPy project
(Ancona et al. 2007). Runtime analysis and tuning of
code is likely to be particularly important in the case

of GPU code, as different GPUs have very different
characteristics (number of cores, memory bandwidth,
etc.) and minor changes in the code can lead to much
larger performance differences than in the case of CPU
code (Klockner et al. 2009).

Discussion

Scientists working in the field of computational neuro-
science require the use of cutting edge computational
hardware, but they should not be required to be experts
in this technology. In principle, neural network simu-
lation software should solve this problem. In practice,
because they require more flexibility than the software
easily allows, many scientists choose to write their own
code by hand, usually in either C/C++, which is fast
but time consuming to write, or in Matlab, which is
slower but simpler. This has some unfortunate side
effects. Firstly, writing code by hand is time consuming,
and a drain on scientists’ time. Secondly, it restricts
the practice of computational neuroscience research
to those with the technical skills to write their own
software by hand. Thirdly, hand written code is more
difficult for other scientists to analyse, is more likely
to contain subtle bugs compared to simulations written
with dedicated software, and may lead to results which
are not reproducible.

We have shown that the techniques of symbolic
analysis combined with run-time code generation can
be used to write neural network simulation software
that is both user-friendly, making it possible to write
model definitions at a high level, and computationally
efficient. This high level representation can be in many
different forms, including standardised declarative
languages such as CellML and NeuroML (discussed
in Section “Implementing XML Models”), or explicit
mathematical equations in standard form (as in Brian).
The appropriate high level description may depend
on the context. In biophysical models, declarative lan-
guages specifying the model in terms of ion channels,
reaction networks, and so forth are probably the most
appropriate, whereas if reduced models of integrate-
and-fire type are being used, a specification based on
equations would be preferable. In both cases, a high
level specification of the model improves the repro-
ducibility and facilitates the verification of the model
(although in neither case does it entirely solve the
problem).

We demonstrated these techniques primarily with
the Brian simulator, however they are quite general
and could be used in other software. Indeed, we make
use of freely available Python packages such as Weave,
PyCUDA and SymPy.

KU
%« Humana Press

196

Neuroinform (2010) 8:183-196

Information Sharing Statement

Brian is an open source software package that can be
downloaded from http://www.briansimulator.org. The
complete source code is available online at http:/
neuralensemble.org/trac/brian.

Acknowledgements The author would like to thank Romain
Brette, Cyrille Rossant and Bertrand Fontaine for their work on
Brian, testing of code generation, and helpful comments on the
manuscript. This work was partially supported by the European
Research Council (ERC StG 240132).

References

Ancona, D., Ancona, M., Cuni, A., & Matsakis, N. D. (2007).
RPython: A step towards reconciling dynamically and sta-
tically typed OO languages. In Proceedings of the 2007
Symposium on Dynamic Languages (pp. 53-64). Montreal,
Quebec, Canada: ACM.

Bower, J. M., & Beeman, D. (1998). The Book of GENE-
SIS: Exploring Realistic Neural Models with the GEneral
NEural SImulation System (2nd ed.). New York: Springer-
Verlag.

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D.,
Bower, J. M., et al. (2007). Simulation of networks of spiking
neurons: A review of tools and strategies. Journal of Com-
putational Neuroscience, 23, 349-98.

Bull, J. M., Smith, L. A., Pottage, L., & Freeman, R. (2001).
Benchmarking Java against C and Fortran for scien-
tific applications. In Proceedings of the 2001 joint ACM-
ISCOPE conference on Java Grande (pp. 97-105). Palo Alto,
California: ACM.

Carnevale, N. T., & Hines, M. L. (2006). The NEURON Book.
Cambridge University Press.

Garny, A., Nickerson, D. P., Cooper, J., dos Santos, R. W.,
Miller, A. K., McKeever, S., et al. (2008). CellML and as-
sociated tools and techniques. Philosophical Transactions.
Series A, Mathematical, Physical, and Engineering Sciences,
366(1878), 3017-3043. PMID: 18579471.

Gewaltig, O., & Diesmann, M. (2007). NEST (NEural Simulation
Tool). Scholarpedia, 2(4), 1430.

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G.
O., Farinella, M., et al. (2010). NeuroML: A language for
describing data driven models of neurons and networks with
a high degree of biological detail. PLoS Comput Biol, 6(6),
e1000815.

Goodman, D., & Brette, R. (2008). Brian: A simulator for spik-
ing neural networks in Python. Frontiers in Neuroinfor-
matics, 2, 5.

Goodman, D. F. M., & Brette, R. (2009). The Brian simulator.
Frontiers in Neuroscience, 3(2), 192-197.

Hansel, D., Mato, G., Meunier, C., & Neltner, L. (1998). On nu-
merical simulations of Integrate-and-Fire neural networks.
Neural Computation, 10(2), 467-483.

Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L.,
Serban, R., Shumaker, D. E., et al. (2005). SUNDI-
ALS: Suite of nonlinear and differential/algebraic equation

KU
%,& Humana Press

solvers. ACM transactions on mathematical software, 31(3),
363-396.

Hines, M. L., & Carnevale, N. T. (2000). Expanding NEURON’s
repertoire of mechanisms with NMODL. Neural Computa-
tion 12(5), 995-1007.

Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative descrip-
tion of membrane current and its application to conduction
and excitation in nerve. The Journal of Physiology, 117(4),
500-544. PMID: 12991237.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J.
C., Kitano, H., et al. (2003). The systems biology markup
language (SBML): a medium for representation and ex-
change of biochemical network models. Bioinformatics,
19(4), 524-531.

Jones, E., Oliphant, T., Peterson, P., et al. (2001-2005). SciPy:
Open source scientific tools for Python. http://www.
scipy.org/.

Klockner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., &
Fasih, A. (2009). PyCUDA: GPU Run-Time code genera-
tion for High-Performance computing. 0911.3456.

Kootsey, J. M., Kohn, M. C., Feezor, M. D., Mitchell, G. R,
& Fletcher, P. R. (1986). SCoP: An interactive simulation
control program for micro- and minicomputers. Bulletin of
Mathematical Biology, 48(3-4), 427-441.

MacGregor, R. J. (1987). Neural and Brain Modeling. Academic
Press.

Miller, A., Marsh, J., Reeve, A., Garny, A., Britten, R., Halstead,
M., et al. (2010). An overview of the CellML API and its
implementation. BMC Bioinformatics, 11(1), 178.

Morrison, A., Straube, S., Plesser, H. E., & Diesmann, M. (2007).
Exact subthreshold integration with continuous spike times
in discrete-time neural network simulations. Neural Compu-
tation, 19(1), 47-79. PMID: 17134317.

Morse, T. (2007). Model sharing in computational neuroscience.
Scholarpedia, 2(4), 3036.

Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., &
Veidenbaum, A. (2009). Efficient simulation of large-scale
spiking neural networks using CUDA graphics processors.
In Proceedings of the 2009 international joint conference on
neural networks (pp. 3201-3208). Atlanta, USA: TEEE.

NVIDIA (2009). CUDA programming guide 2.3.

Oliphant, T. (2006). Guide to NumPy. USA: Trelgol Publishing.

Oliphant, T. E. (2007). Python for scientific computing. Comput-
ing in Science and Engineering, 9(3), 10-20.

Rigo, A. (2004). Representation-based just-in-time specialization
and the Psyco prototype for Python. In Proceedings of the
2004 ACM SIGPLAN symposium on partial evaluation and
semantics-based program manipulation (pp. 15-26). Verona,
Italy: ACM.

Rossant, C., Goodman, D. F. M., Platkiewicz, J., & Brette, R.
(2010). Automatic fitting of spiking neuron models to elec-
trophysiological recordings. Frontiers in Neuroinformatics.
doi:10.3389/neuro.11.002.2010.

Rotter, S., & M. Diesmann (1999). Exact digital simulation of
time-invariant linear systems with applications to neuronal
modeling. Biological Cybernetics, 81(5-6), 381-402. PMID:
10592015.

Song, S., Miller, K. D., & Abbott, L. F. (2000). Competitive
Hebbian learning through spike-timing-dependent synaptic
plasticity. Nature Neuroscience, 3, 919-26.

SymPy Development Team (2009). SymPy: Python library for
symbolic mathematics.

http://www.briansimulator.org
http://neuralensemble.org/trac/brian
http://neuralensemble.org/trac/brian
http://www.scipy.org/
http://www.scipy.org/
http://dx.doi.org/10.3389/neuro.11.002.2010

	Code Generation: A Strategy for Neural Network Simulators
	Abstract
	Introduction
	Principles
	Worked Example
	Numerical Integration with Existing Libraries
	Implementing XML Models

	Code Generation in Brian
	Numerical Integration
	Propagation and Back-propagation

	Results
	Future Work and Discussion
	Discussion

	Information Sharing Statement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

