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Abstract Research on the neural basis of language
processing has often avoided investigating spoken lan-
guage production by fear of the electromyographic
(EMG) artifacts that articulation induces on the
electro-encephalogram (EEG) signal. Indeed, such ar-
ticulation artifacts are typically much larger than the
brain signal of interest. Recently, a Blind Source
Separation technique based on Canonical Correlation
Analysis was proposed to separate tonic muscle ar-
tifacts from continuous EEG recordings in epilepsy.
In this paper, we show how the same algorithm can
be adapted to remove the short EMG bursts due to
articulation on every trial. Several analyses indicate
that this method accurately attenuates the muscle con-
tamination on the EEG recordings, providing to the
neurolinguistic community a powerful tool to investi-
gate the brain processes at play during overt language
production.
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Introduction

Psychologists and neuroscientists have made extensive
use of brain activity measures to construct models of
language processing (e.g. Stemmer and Whitaker 2008).
In most of these studies, human participants are re-
quested to understand or decode language (e.g. reading
or listening to utterances). By contrast, the research
on how the brain produces spoken language is con-
siderably under-developed (e.g. Indefrey and Levelt
2004). Such an underdevelopment is, partly, related
to the artifacts induced by overt speaking on the sig-
nals measured by imaging techniques. For example,
articulatory movements tend to reduce the signal-to-
noise ratio in functional magnetic resonance imaging.
Magneto- and Electro-encephalography suffer from the
contamination of the brain activity (evoked fields or
potentials) by the Electromyographic (EMG) activity
of the face muscles involved in overt speaking.

Previous research has shown how these artifacts
may render the data uninterpretable. For example,
McAdam and Whitaker (1971) reported large slow
potentials in an EEG experiment during both the
production of polysyllabic words, and in analogous
non-speech articulatory movements (e.g. puffing). The
critical finding was that these slow potentials were
left-lateralized during word production but not in the
control condition. This effect was interpreted as a
reflection of linguistic processing tied to left inferior
frontal cortical activity.
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Shortly after publication, however, this interpreta-
tion was questioned by Morrell et al. (1971) on the basis
of methodological concerns. Recordings of EMG activ-
ity of various articulators suggested that the reported
lateralization effect may not have occurred during the
preparation of the verbal response, but instead during
articulation itself. Consequently, it may be a mere con-
sequence of EMG activity.

Brooker and Donald (1980) investigated this issue in
close detail (see also references therein) by comparing
speech to non-speech articulatory responses; they mea-
sured both EEG scalp activity and the EMG of several
articulators. The results showed strong correlations be-
tween the activity recorded by electrodes placed over
the articulators and the electrodes placed over the
scalp (with the notable exception of the vertex scalp
electrode). Further analyses were conducted in which
the muscle-related activity was included as a co-variate
factor. They did not reveal any lateralization of speech
related cortical potentials.

The general conclusion from this thread of research
was that pre-vocalization potentials are severely con-
founded by muscle artifacts. In light of these difficulties,
scholars investigating speech production have devel-
oped strategies of various kinds, which are discussed in
the following subsections.

Avoiding Articulation Altogether

The most radical strategy has been to investigate cogni-
tive stages of speech production without speech being
overtly produced during experimental trials (in this
case, speech is generally produced during interleaved
filler trials). In an influential article (van Turennout
et al. 1998), participants were asked to press buttons
in response to visually presented pictures; critically, the
responses were guided by linguistic properties of the
pictures’ names. For example, participants pressed one
of two buttons depending on the first phoneme of the
picture’s name. In this way, participants had to process
linguistic information without having to speak overtly.

A somewhat similar strategy was adopted by
Jescheniak et al. (2002). In their experimental par-
adigm, participants named pictures while their EEG
activity was recorded. However, they did not name the
pictures directly after their presentation but when a
visual cue was presented to them. In the critical ex-
perimental trials, participants heard a distractor word
just after the presentation of the picture. The EEG
activity of interest was recorded between this distractor
word and the visual cue. In this way, the data were free
of EMG activity, yet they presumably reflected a com-

bination of brain activities elicited by both speaking
and listening.

These experimental protocols have provided infor-
mation about the neural basis of linguistic processing.
However, what is being investigated in these stud-
ies may not only reflect processes of natural speech
production. This is because the complex instructions
that participants are requested to follow presumably
induce considerable non-speech brain activity (e.g. at-
tention focused on decision making in button press or
on withholding verbal responses). Furthermore, these
protocols do not allow investigating neural processes
involved in articulatory control.

Heavy Signal Filtering

One current strategy, adopted by various authors, is
to elicit speech in a spontaneous manner (e.g. im-
mediate picture naming). The recorded EEG signal,
which is heavily muscle contaminated, is tentatively
distinguished from muscle artifacts with heavy low-
pass filters. For example, Masaki et al. (2001) and
Ganushchak and Schiller (2008) used respectively 10
and 12 Hz low pass filters.

This method is not without problems, however. The
frequency spectrum of muscle artifacts has been shown
to largely overlap with that of brain signals of theoret-
ical interest. Friedman and Thayer (1991) showed that
EMG activity is present both in the alpha (8–13 Hz)
and in the beta bands (13–20 Hz). Goncharova et al.
(2003) reported that facial EMG has a broad frequency
distribution, from almost DC to more than 200 Hz,
even with weak muscle contraction (see especially their
Fig. 3). Moreover, heavy low pass filtering has two
major drawbacks: first, it prevents investigations of
EEG activity present above 10 Hz (e.g. beta band),
and, second, it may reduce dramatically the amplitude
of phasic activities. An example of the latter problem
comes from visually evoked potentials, whose compo-
nents often last less than 100 ms and is therefore largely
affected by 10 Hz filters (Luck 2005, see also below for
a more thorough consideration of this problem).

Blind Source Separation

A possibly more promising approach to disentangle
EEG and EMG signals comes from Blind Source Sep-
aration (BSS) techniques. These allow decomposing
the signal in elementary sources; explicit hypotheses
are then made to disentangle EEG and EMG signals
among these sources. Since the current study is also
based on BSS, we describe its principles in some more
detail.
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General Principle

In the case of EEG, BSS assumes that the electrical
signals recorded on the electrodes (D) result from a
weighted sum (M) of elementary sources (S), defining
the basic linear statistical model:

D = M · S (+N) (1)

where D ∈ R
I×T is the EEG observation matrix, S ∈

R
J×T the source matrix and M ∈ R

I×J is the mixing
matrix, that distributes the contribution of each source
to each electrode. I is the number of electrodes, J is
the number of sources, and T the number of samples in
each observation (i.e. duration × sampling rate). N ∈
R

I×T is the additive noise, which will not be modeled
explicitly.

The goal of BSS is to estimate the mixing matrix M,
and/or the source vector S, given the observation matrix
D only (Comon and Jutten 2010). In other words, BSS
tries to estimate the underlying, generating sources
from the observed mixture. This is done by introducing
the de-mixing matrix W∈ R

J×I such that the estimated
sources

S̃ = W · D, (2)

approximate the unknown physiological source signals
in S, up to a scaling factor. Ideally, W is the inverse
of the unknown mixing matrix M, up to scaling and
permutation.

Separating Sources

Different W’s will provide different source estimations
S̃. In order to break down the EEG into elementary
sources in a unique way, explicit assumptions about
the sources have to be made and a decomposition
algorithm has to be defined. The appropriateness of
the assumptions will determine how well the estimated
sources S̃ approximate the real contributing sources S.

We first discuss a decomposition based on the as-
sumption of statistical independence, “Independent
Component Analysis”, that has been previously used
to discriminate EEG and EMG signals. We then
present the decomposition method central to this ar-
ticle, “Canonical Correlation Analysis” (BSS-CCA),
where sources are separated on the basis of autocor-
relation properties.

Independent Component Analysis (ICA) A commonly
used assumption for estimating W is that the sources
are mutually statistically independent, as well as inde-
pendent from the noise components. In this context,
ICA (Comon 1994) has been proposed to clean ictal

EEG from the EMG contamination (Weidong and
Gotman 2004; Urrestarazu et al. 2004).

ICA has been shown to have some success in remov-
ing continuous EMG activity in the context of epileptic
seizures. However, in several cases, the separation be-
tween EEG and EMG sources was not optimal (see e.g.
De Clercq et al. 2006). In Crespo-Garcia et al. (2008),
ICA was used to remove muscle artifacts from sleep
recordings. However, since the authors did not show
cleaned EEG data, it is hard to judge how appropriately
ICA reached this goal. With respect to separating EEG
from EMG signal, an interesting validation approach
was proposed by McMenamin et al. (2009, 2010). The
authors assessed in an objective way (based on bio-
equivalence tests) the sensitivity and specificity of ICA
as a tool to remove muscle artifacts. It was shown
that ICA-based techniques outperformed regression-
based correction techniques, but also highlighted that
no perfect artifact removal was obtained with ICA.

One common aspect of these studies is that the
categorization of the sources as EEG signal vs EMG
noise was made manually by expert raters, on the basis
of selected properties of the sources (e.g. topography,
spectrum, time-course, etc. . . ). Note also that this ap-
proach imposes constraints on the size of the data ma-
trix (a rule of thumb is that for a data matrix D ∈ R

I×T ,
T is in the order of I2 × 20).

Canonical Correlation Analysis (CCA) Canonical
Correlation Analysis is a statistical method originally
developed to measure the linear relationship between
two multidimensional variables A and B (Hotelling
1936). A multidimensional dataset is represented in a
predefined basis, that can be changed by rotation for
example. CCA rotates the two data sets independently,
searching for two bases that are maximally correlated.
If two datasets are well-described in similar bases, they
can be considered as similar. When applied to a time-
series and its shifted version, the method provides an
estimate of autocorrelation in the signal.

EMG activity is weakly autocorrelated over time:
given its broad spectrum it tends to have white noise
properties (Goncharova et al. 2003). In contrast, brain
activity is considerably coherent over time, and tends
to be more autocorrelated. Under the assumptions
that (a) the shapes of EEG and EMG sources are
uncorrelated, and (b) EEG sources are individually
autocorrelated in time (see below for more details on
these hypotheses), a BSS method based on Canonical
Correlation Analysis (BSS-CCA) can be defined.1

1Similar applications of BSS-CCA to other signals can be found
in Hardoon et al. (2004), De Vos et al. (2007).
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In De Clercq et al. (2006), the BSS-CCA method
was introduced for decomposing the EEG observation
matrix D into sources. The method yielded sources
sorted in decreasing order of autocorrelation (highly
autocorrelated sources ranked first, weakly autocorre-
lated ones ranked last). The sources with the highest
autocorrelation should correspond to EEG, while the
sources with the lowest autocorrelation should cor-
respond to EMG. Expert neurologists inspected the
reconstructed signal visually. They removed presumed
muscle components one by one until ictal activity,
otherwise completely masked in the background tonic
EMG activity, became visible. The method has been
further validated in detail on continuous EEG data
from 37 patients with refractory partial epilepsy and is
now used in clinical practice (Vergult et al. 2007).

One highly relevant aspect of this method for our
current purpose is that the BSS method can be applied
on relatively short stretches of signal, for example on
single-trials of a psycho-neuro-linguistic experiment,
which usually last between 1 and 3 sec.

The Current Study

Goal We investigated whether the BSS-CCA method
could be used in practice to distinguish between corti-
cal and EMG signals in electrophysiological recordings
performed during spoken language production. We did
so on a dataset recorded using the picture naming
task, a popular method for eliciting speech in psycho-
and neuro-linguistic experiments (Alario et al. 2004;
Glaser 1992). In this task, EMG contamination from
the muscles involved in articulating words is not a tonic,
continuous activity, but instead appears as short EMG
bursts, localized in time around the window of interest.
Here, we focused on the removal of phasic EMG con-
tamination induced by the facial muscles involved in
articulation. There are also other possible sources of
EMG activity (see e.g. Whitham et al. 2007), but we
do not explicitly address the issue of ongoing EMG
activity, either related to the task or not, originating
from other muscular patterns.

Hypotheses a) The recorded signal is a linear combi-
nation of EEG and EMG sources. b) The time courses
of these sources are not strongly correlated. Coherence
between EEG and (limb) EMG signals has been re-
ported (Mima and Hallett 1999; Conway et al. 1995)
but only in a rather narrow frequency range and as-
sociated with very different frequency spectra in two
signals. The frequency range where this coherence was
observed was rather narrow, however, and associated
with very different frequency spectra in the two signals.

Such limited coherence is not expected to result in
strong temporal correlation. c) The EMG signal has
a broad frequency range, approximating white noise,
thus its autocorrelation will be very low; on the con-
trary, the EEG signal has a much larger autocorrelation
(De Clercq et al. 2006). Finally, d) the muscular pattern
engaged for articulation may depend on the word to be
uttered, hence a trial-by-trial identification of the EMG
sources may be required (Chan et al. 2002).

Evaluation Ideally, an evaluation of a source sepa-
ration method should provide an exhaustive evalua-
tion of its sensitivity (i.e. how well it detects signal
in noise) and of its specificity (i.e. how much signal
is incorrectly classified as noise) (McMenamin et al.
2009). Unfortunately, this is not an easy task for the
problem at hand, given that the brain activity (of main
interest) is, by construction, in close temporal vicinity
with overt articulation. Therefore one cannot construct
the exhaustive factorial design devised for example by
McMenamin et al. (2009). Eliciting covert speech would
not solve the problem, as it would obviously not involve
articulation and could thus modify the brain activity of
interest. Furthermore without overt speech production,
an important temporal marker of response execution
(onset of speech) is unavailable.

Despite these limitations, we attempt to provide a
careful assessment of the methodology we introduced.
De Clercq et al. (2006) have already evaluated the va-
lidity of BSS-CCA to remove EMG artifacts by means
of simulations. Evaluating the validity of the method
on real data is a much more difficult matter, since, by
definition, both the unaffected signal and the EMG
contamination are unknown. However, characteristic
features of both phasic EMG signal and “clean” EEG
are well known.

We will first present several analyses comparing di-
rectly the raw with the cleaned data, providing evidence
that the clean data are more similar to characteristic
EEG than the raw data. We will show the effect of
BSS-CCA on single trial level, the change in frequency
content after BSS-CCA and the topography of the
muscle components. We will discuss the impact of com-
puting averages with or without cleaning and we will
compare in a statistical way the results of BSS-CCA
with those from alternative available methods (ICA
and frequency filtering).

Materials and Methods

This experiment was originally conducted for other
(psycholinguistic) purposes that will be described
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elsewhere (e.g. Riès et al. 2010). Only the aspects rel-
evant for our current purposes are detailed here.

Participants and Task

Twelve right-handed native French-speakers (three fe-
males) with normal or corrected to normal vision and
no diagnosed language pathology participated in the
experiment (mean age: 24.5). They all gave their in-
formed consent. Participants were presented with line
drawings representing common objects, which they had
to name as fast and accurately as possible (Alario and
Ferrand 1999). Forty-five different drawings were used.
The pictures were presented individually (11 ×11 cm).
Participants were presented with a sequence of 20
blocks, each of which comprised the 45 pictures. The
order of presentation within blocks was random.

Vocal responses were recorded with a software
voice-key (Eprime 2.0 Professional, Pittsburgh, PA:
Psychology Software Tools), and individually checked
off-line for accuracy (using CheckVocal Protopapas
2007).

Electrophysiological Recordings

The EEG was recorded from 64 Ag/AgCl pre-amplified
electrodes (BIOSEMI, Amsterdam) (10–20 system po-
sitions). The sampling rate was 512 Hz (anti-aliasing
filters: DC to 104 Hz, 3 db/octave). The passive ref-
erence was obtained by averaging off-line the signal
recorded over the left and right mastoids. The vertical
Electro-oculogram (EOG) was recorded by means of
two electrodes (same type as EEG) just above and be-
low the left eye, and the horizontal EOG was recorded
with two electrodes positioned over the two outer
canthi.

Signal Preprocessing

After acquisition, the EEG data was filtered (high
pass = 0.16 Hz). Eye movement artifacts were cor-
rected using the statistical method of Gratton et al.
(1983). The continuous EEG was epoched off-line,
time-locked to stimulus presentation, starting from
−0.2 s until 2 s after stimulus onset.

Blind Source Separation with Canonical Correlation
Analysis

Starting from Eq. 1

D = M · S (+N)

where D is the EEG observation matrix, we con-
structed2

A = D(:, 1 : (T − 1))

B = D(:, 2 : T)

A is thus (a truncated version of) the observation ma-
trix and B is (a truncated version of) the same observa-
tion matrix shifted by one time sample. CCA will look
for a linear combination of the signals A that correlates
best with a linear combination of B. In practice all
sources are estimated simultaneously by solving matrix
equations (see Appendix and, e.g. Borga and Knutsson
2001; Friman et al. 2001; Golub and Van Loan 1996).
For illustration purposes, we explain here the extrac-
tion of sources as if it was a sequential process.

The first extracted source (the first row of the S
matrix) will be a linear combination of the EEG obser-
vation matrix D with maximized autocorrelation (using
time lag 1, as defined above), thus explaining most
of the variance between A and B. This first extracted
source, also called canonical correlation component,
defines a first basis vector whose coefficients are the
regression weights of the linear combination; they pro-
vide the first row of the demixing matrix W.

The data is then projected away from this basis vec-
tor (which ensures the mutual orthogonality between
different sources), and a similar procedure is used to
find the second source. The second extracted source
will also be a linear combination with maximal auto-
correlation, but this time under the constraint that it
is uncorrelated to the first component. The coefficients
defining this linear combination will define the second
row of W. This procedure of finding autocorrelated
source signals is repeated until the data are fully de-
composed.

Different muscular patterns are associated with
different words (Chan et al. 2002), hence the decompo-
sition should be word-dependent. BSS-CCA was com-
puted, as defined above, on each epoch separately,
obtaining a W matrix and source signals for each trial
(duration 2.2 sec).

In contrast to ICA, where the source signals do not
have a fixed order, BSS-CCA decomposes the observa-
tion matrix D into sources that are sorted in decreasing
order of autocorrelation (highly autocorrelated sources
ranked first, weakly autocorrelated ones ranked last).
Because the autocorrelation of a source is an abstract
value, another criterion has to be used to select the
sources that are considered to be EMG. One can define

2We use (:) to denote that all channels are involved.
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explicit quantitative criteria that provide an automatic
classification. For example, a criterion can be defined
on the basis of Power Spectral Density (PSD), because
a differential power density across the sources can be
assumed. EEG has lower power at high frequencies,
while EMG has higher power at high frequencies. Here,
components were considered to be EMG activity if
their average power in the EMG band (approximated
by 15–30 Hz) was at least 1

n (with n being by default
set to 7) of the average power in the EEG band (ap-
proximated by 0–15 Hz). These values were empirically
determined but, as will be shown below, the results do
not appear to depend critically on them.

The contributions of the source signals identified as
EMG were removed from the surface EEG by setting
to zero the corresponding columns in the M matrix,
estimated as the inverse of W. The new mixing matrix
Mclean was then used to reconstruct the denoised EEG
signal matrix Dclean. More specifically, consider again
the corresponding source estimation and signal decom-
position

Ŝ = W · D and D = M · S (3)

In BSS-CCA the sources are ordered by decreas-
ing autocorrelation, thus McleanEEG and MEMG can be
defined as:

McleanEEG = M ·

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . .

0 1 0 . . .
...

...
. . .

0
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

and

MEMG = M ·

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 . . .
...

. . .

1
1

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

(4)

DcleanEEG, containing the cleaned EEG, and DEMG,
containing muscle artifacts, are then

DcleanEEG = McleanEEG · S and DEMG = MEMG · S (5)

Finally, the processed EEG segments with muscle
artifacts removed, were re-epoched, this time centered
on the verbal response onset.

Topography of the Removed Components

Although the topography was never taken into ac-
count for selecting EMG sources, we do have strong
expectations about the location of those EMG sources:

they should mainly be close to the facial muscles,
hence largely present on frontal electrodes. As an extra
validation criterion, a representative topography can be
obtained by normalizing the estimated source signals to
a variance of one, and weighting the mixing vectors by
the appropriate variance. The average of all mixing vec-
tors is then a representative estimate of the topography
of the EMG sources.

More specifically, as defined in Eq. 4, only the last
columns will be retained in MEMG. These coefficients
are constant within trials, and hence do not reflect the
exact EMG contribution at any time instant, since this
contribution is the product of the topography (given by
MEMG) and the time course of the component, which is
ignored in this analysis. However, they give an estimate
of how much each EMG source loads on the obser-
vation signal on a given trial. Averaging EMG mixing
vectors across trials provides a global representation of
EMG topography. A similar reasoning can be applied
to the effect of filtering via Fourier transform. Indeed,
it was already derived in the literature that singular
value decomposition (SVD) can be interpreted as a
filter (Hansen and Jensen 1998).

Comparison with Other Methods

We implemented two previously used procedures to
provide a comparison with BSS-CCA. In the first
method, we applied a low-pass filter (10 Hz, 24db/oct)
to the EEG signal. In the second method, we applied
an ICA algorithm based on higher order statistics,
namely RobustICA (Zarzoso and Comon 2008) to the
EEG signal. RobustICA is an improved version of the
popular fastICA algorithm. We decomposed every trial
with RobustICA and used exactly the same criterion for
selecting the EMG-related sources as we proposed for
BSS-CCA. This allows for a direct comparison on the
quality of the decomposition itself.

Statistical Evaluation

In order to compare the impact of EMG removal with
BSS-CCA, low-pass filtering, and ICA we computed
the peak-to-peak amplitude of the visually evoked po-
tentials. This was done for two electrodes: Fp2, a frontal
electrode close to the facial EMG sources, and P3,
a more posterior electrode where the visual evoked
potentials are larger. For Fp2, the peak-to-peak value
is defined as the difference between the first clear
negativity and the following positivity. The values are
computed in the time interval 60–190 ms. For P3, the
value was the difference between the first negativity
and the preceding positivity (see Fig. 6). This value is
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computed in the time interval 40–160 ms. The peak-
to-peak value was estimated for all participants and its
variation across BSS methods was assessed by means of
Student-t tests.

Furthermore, in order to evaluate the influence of
the parameters chosen above for the source selection
criterion, we compared three different parameter set-
tings (border frequency 15, and removing an EMG
source when there is more than 1/7 of the power above
this frequency; 16 and 1/10; 13 and 1/5). We then
computed the relative amount of removed variance for
the different settings. We also compared the impact of
the different parameter settings on the peak-to-peak
values of the averaged ERPs, as defined above. The
influence of the parameter settings on these measures
was assessed with a multivariate repeated measures
ANOVA.

Results

We illustrate in different ways the effect of BSS-CCA.
First, we derive qualitative descriptions on one repre-
sentative participant (mean response time (RT) 686 ±
108 ms, mean error rate 1.8% ± 0.96 %) with consider-
able EMG contamination. Although we focus on this
subject, similar results are obtained on all other par-
ticipants, as the statistical evaluation will show. After-
wards, we also present some quantitative descriptions,
to confirm that our results are globally valid.

Qualitative Description

Following clinical practice (e.g. De Clercq et al. 2006),
we first provide a qualitative description of the findings.
Figure 1 presents the data for a single epoch over
five anterior-central channels (FPz, AFz, Fz, FCz and
Cz). The removed components present a sizeable EMG
burst around response time. Such burst is absent in
the reconstructed EEG signal, which shows a typical
pattern of EEG traces.

The same pattern of results is apparent for two
representative electrodes in Fig. 2, where all the trials
of a given participant are represented with the ERP-
image technique (Jung et al. 2001). The comparison
of the original epochs (panels a and c) and the recon-
structed signal after removal of the identified EMG
components (panels b and d) shows a reduction of the
high frequency noise (visible as a pixelisation of the
plot), especially around response time.

An overview of these observations is given by the
power spectra computed on a sample of 19 electrodes
(Fig. 3). The comparison of the original data and the

Fig. 1 Single trial of EEG data on five channels around voice
onset (0 ms). The top panel presents the original recorded signal,
the middle one shows the components that BSS-CCA removed
and the bottom panel presents the reconstructed EEG data after
EMG removal. The removed components correspond to high fre-
quency activity, and the cleaned trial contains the low-frequency
fluctuation

signal reconstructed after BSS-CCA shows a reduction
of power in high frequencies, and reveals the expected
1/ f α shape.

Finally, we plotted the topography of the removed
muscle components in Fig. 4. Most of the “activation”
is frontal, as expected given that muscles involved in
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Fig. 2 ERP image (a.k.a. raster plot) for all individual trials of
a given participant at channels Fp2 and T7 before (a,c) and after
(b,d) removal of the identified EMG components. The trials are
represented as parallel color lines, where color codes the polarity
and strength of the activity. The trials are sorted as a function of
RT, represented as the black S-shaped line (trials for shortest RT

are at the bottom, trials with the longest RT are at the top). The
blue line at the bottom of each panel represents the average of all
trials. On the left panel, the high frequency components appear as
a pixelisation of the graph. Such a pixelisation is largely reduced
after BSS-CCA (right panel)

speech production are mainly facial. Some EMG con-
tributions of the neck muscles are also observed, which
may correspond to postural activity stabilizing the head
during speech.

Impact of Muscle Removal on the Average ERP

One goal of EMG removal is to improve the quality
of the measurement. Since 1) EMG activity is different
from trial to trial, 2) EEG activities are induced by the
cognitive operation of interest, and 3) EMG activity
is assumed to be independent from EEG activity, the
averaging procedure across trials reduces the impact
of EMG and reveals the EEG activities of interest. If
BSS-CCA removes the EMG part of the signal, less

trials should be necessary to reach an equivalent quality
of the average. To assess this point, we performed
separated averages on a subset N of all the trials, and
compared the quality of such averages to the grand
average for the same subject of all the trials, before and
after cleaning. We consider this ERP as the golden stan-
dard. N was varied from 15 to 480, and for each N, 100
random subsamples were used. Figure 5, presents the
mean correlation coefficients between these subaver-
aged ERPs and the ERPs of the grand average for Fp2
and P3. On channel P3, there is very little difference
between the averages before and after cleaning. This
can be expected, since little muscle activity is present
on this channel. On Fp2, to the contrary, the EEG is
severely contaminated. The impact of EMG removal is
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Fig. 3 Averaged spectral
content (between 0 and
100 Hz) of all epochs on a
sample of 19 channels
represented topographically
in the black original data,
green after EMG removal
with BSS-CCA, and red after
low-pass filtering. The green
and red spectra have a 1

f α

shape. However, the green
spectrum follows the original
spectrum more closely

very large on this channel. Indeed, for a given number
of averaged trials, the correlation is much higher after
BSS-CCA than on raw data. For example, with only 30
trials, the correlation coefficient is already close to .85
after BSS-CCA, while it is less than .70 for raw data. It
is also evident that, for a given correlation coefficient,
data after BSS-CCA requires consistently fewer than
half the trials required using raw data (at least when few
trials are averaged). For example, to reach a correlation
coefficient of 0.9, only 50 trials are needed with BSS-
CCA cleaning, while 200 trials are needed with raw
data. This represents an impressive improvement.

Quantitative Assessment: Comparison Between
BSS-CCA and Alternative Cleaning Methods

We quantified the impact of the various source sep-
aration methods on the evoked potentials. To do so,
we first averaged all the trials of each individual par-
ticipant, thus obtaining average traces per participant.
We then measured the amplitude (see Material and
Methods section above) of the visual evoked potentials
observed for each participant. This was done for the
raw data, the BSS-CCA processed data, the low-pass
filtered data, as well as the ICA processed data. We

Fig. 4 Averaged topography
of the removed muscle
components. Mainly frontal
activity, corresponding to
face muscles, can be
observed. Note that the
colors outside the EEG
electrodes are not very
reliable, due to extrapolation.
Panel (a) gives a lateral view
and (b) a frontal view. The
scale is expressed in Volts
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Fig. 5 Correlation between the average of N trials and the grand
average of raw and cleaned trials, where N is varied from 15 to
480. (a) on P3 and (b) on Fp2. On Fp2, where there is a lot of

EMG contamination, much less trials are needed to obtain the
same ERP quality than without cleaning

then computed Student t-tests to compare the ampli-
tude of the potentials obtained through the various
methods.

The results of the comparisons are presented on
Fig. 6 and Table 1. Figure 6 indicates a large am-
plitude reduction of the evoked potentials after low-
pass filtering. This is confirmed by statistical analy-
sis: evoked potentials were significantly lower after

heavy low-pass filtering than after BSS-CCA (t(11) =
5.54, p < 0.001 on Fp2 and t(11) = 6.67, p < 0.001 for
P3). By contrast, there was no significant difference be-
tween the amplitude measured on the raw data and on
BSS-CCA data for Fp2 (t(11) = 1.51, p = 0.10), while
a significant reduction was observed on P3 (t(11) =
3.29, p < 0.01). Note that we did not correct for mul-
tiple testing.

Fig. 6 The averaged ERP on
two channels. Both the full
epoch (from −0.2 ms to 2 s)
and a zoomed version (from
−0.1 s to 0.4 s) are shown. We
compare the unfiltered ERP
and the ERP after muscle
removal with BSS-CCA and
with filtering. BSS-CCA
follows much more closely
the ERP from the raw data
than filtering
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Table 1 The average peak-to-peak value (and its standard deviation) on Fp2 and P3 over the 12 subjects

Channel Raw data BSS-CCA ICA Filtering

Fp2 8.36 (σ = 3.25) 7.98 (σ = 3.05) 7.67 (σ = 2.70) 6.10 (σ = 2.37)
P3 5.06 (σ = 2.27) 4.48 (σ = 2.33) 4.45 (σ = 2.15) 2.90 (σ = 1.94)

The value is defined as the difference between the first negativity and the following positivity for Fp2, and the difference between the
first negativity and the preceding positivity for P3. Filtering largely reduced this amplitude difference, while BSS-CCA least reduced
the amplitude

We then compared the evoked potentials obtained
after cleaning with BSS-CCA and with ICA. Figure 7
indicates that CCA was able to attenuate high fre-
quency noise better. This was confirmed by statistical
analyses: there was a significant difference in amplitude
between the peak-to-peak values measured on the raw
data compared to those measured after ICA processing
(t(11) = 4.44, p < 0.05 and t(11) = 5.92, p < 0.001, for
Fp2 and P3, respectively).

Influence of Selection Criterion on EMG Removal

Contrary to previous reports using BSS-CCA to re-
move EMG activities (De Clercq et al. 2006; Vergult
et al. 2007), we introduced an automatic parameterized
criterion to detect muscle components. The criterion is
based on a ratio between power in the “EMG” band
and power in the “EEG” band. Two parameters are

thus necessary: the lower limit for the “EMG” band and
the value for the ratio (see Materials and Methods for
more details).

We compared three different parameter settings:
frequency limit of EMG band set at 15 Hz and ratio
set at 1/7, then 16 Hz and 1/10, finally 13 Hz and
1/5. The averaged ERPs for three parameters settings
are presented in Fig. 8. Tables 2 and 3 summarize the
removed variance and the peak-to-peak amplitudes for
the different parameter sets. Clearly, the average ERP
is almost unaffected by the parameter choice. Indeed,
although changing the selection criterion will to some
extent modify the selected sources and hence affect
the removed variance, the peak-to-peak values are not
significantly different (p = 0.61). Note that the fact
that the averages are very similar does not imply that
single trial denoising was not affected by the different
parameters settings. However, such small changes, do

Fig. 7 Averaged ERP on two
channels. We compare the
unfiltered ERP, the ERP
after muscle removal with
BSS-CCA and with filtering
by ICA. BSS-CCA removes
more high-frequency noise
and reduces the peak-to-peak
values less than ICA
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Fig. 8 Averaged ERP on two
channels for three different
source selection parameter
settings of BSS-CCA (see text
for details). The influence of
source selection parameters
on the final ERP is minor

not seem to be critical, since the averages were virtu-
ally equivalent. This guarantees the robustness of the
method.

Discussion

Psycholinguists have long avoided electrophysiological
(EEG and MEG) investigations of spoken language
because of (justified) fear of the artifacts induced by fa-
cial EMG. Here we propose a solution to this problem
based on a BSS technique that exploits the difference
in autocorrelation between brain and muscle signals
in order to separate them. This method was originally
developed and validated for 10s epochs of epilepsy
recordings. In the present study, we adapted and au-
tomated the method, and applied it to the removal of
short bursts of myographic activity related to speech
production.

Table 2 The relative removed variance for three different para-
meter settings in the selection of EMG sources on Fp2 and P3.
Relative variance is not much influenced by the parameter choice

Channel 5/13 7/15 10/16

Fp2 0.10 (std 0.08) 0.11 (std 0.09) 0.12 (std 0.09)
P3 0.053 (std 0.037) 0.059 (std 0.041) 0.063 (std 0.044)

We automated BSS-CCA by selecting the muscle
components based on their power spectrum. The com-
ponents that were selected with this criterion were the
least autocorrelated. This confirms the appropriateness
of the BSS-CCA decomposition.

Validating artifact removal techniques in this context
is a challenging task since neither the EMG artifact nor
the EEG signal related to speech production are well
known. We thus investigated in detail the effects of the
proposed method in various ways.

Sensitivity

BSS-CCA provided a considerable reduction of the
EMG artifacts in the EEG signal recorded during
speech. The benefits of BSS-CCA are visible on a
trial by trial basis (Figs. 1 and 2), and also on the
power spectra of the grand averages (Fig. 3). Before

Table 3 In order to asses the impact of the different parameters
in the selection of EMG sources, we compare peak-to-peak
values (average and standard deviation) for the three different
source selection parameter settings of BSS-CCA (see text for
details)

Channel 5/13 7/15 10/16

Fp2 8.07 (std 3.06) 7.98 (std 3.05) 7.94 (std 3.02)
P3 −4.52 (std 2.29) −4.47 (std 2.32) −4.43 (std 2.34)
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muscle artifact removal, the power spectra showed high
frequency activity. After source separation, the power
spectra had a clear 1/ f α shape on all electrodes. This is
exactly the shape of the EEG power spectrum reported
by Goncharova et al. (2003) in the condition where
participants were asked not to contract facial muscles
(see their Fig. 3). The 1/ f α shape is obtained both
with filtering and after BSS-CCA, although the actual
α value in filtering will be higher, and the spectra after
filtering will not follow the original spectra as well as
after BSS-CCA.

In order to further validate the EMG removal by
BSS-CCA, we studied the part of the signal that was
removed by the algorithm. The average topography
(Fig. 4) of the rejected sources was mostly frontal,
which fits well with the anatomical positions of the
muscles involved in speech production. Interestingly,
the locations where most activity was found on these
topographies also correspond to where the power spec-
tra of the raw data contained most high frequencies.

Specificity

The results discussed above show the sensitivity of the
BSS-CCA method in attenuating EMG activity. A sym-
metrical question concerns its specificity, i.e. whether
the method specifically targets EMG while leaving
EEG signal “intact”. To address this issue, we focused
on the activities that are most often the subject of at-
tention in psycho-neuro-linguistic EEG studies, namely
event-related activities. In this approach, the theoreti-
cally relevant differences between experimental condi-
tions are differences in ERP amplitudes (e.g. Osterhout
et al. 1997).

On these ERPs, the removal of EMG contamination
with BSS-CCA preserved the original amplitudes sig-
nificantly more than EMG removal through low-pass
filtering (Fig. 6) or through ICA (Fig. 7). On Fp2, the
statistical test performed on the peak-to-peak ampli-
tudes across participants shows no significant difference
between the values on raw data and the values after
BSS-CCA. On P3, all the methods induce a significant
reduction of the peak-to-peak value in a pair-wise test.
However, the reduction in amplitude is the smallest
after BSS-CCA.

These observations may be unsurprising, given that
ERPs are generally rather phasic and thus contain high
frequencies, especially those that lie close to the event
to which they are time locked, be it stimulus presenta-
tion or overt response triggering. Applying heavy low-
pass filtering will remove those high frequency compo-
nents and hence dramatically reduce the amplitude of
the evoked potentials. Differences between conditions

visible on amplitudes may be reduced, or will even
disappear as a consequence of heavy low-pass filtering.
As BSS-CCA selects a subset of sources based on
differential autocorrelations instead of removing all the
high frequency components indiscriminately, it does
not (or significantly less) flatten these peaks.

Again, although we cannot produce explicit speci-
ficity values given the nature of the data at hand, the
analysis suggests more specificity with BSS-CCA than
with filtering or ICA.

Other Considerations

We also compared BSS-CCA for EMG removal to
another BSS algorithm based on higher order statis-
tics: ICA (Zarzoso and Comon 2008). ICA has been
proposed and validated as a method to remove arti-
facts and in particular EMG artifacts (e.g. McMenamin
et al. 2010 and references therein). However, there
are different reasons why ICA might not be optimal.
Cleaning EEG data with ICA relies on the idea that un-
wanted activities (EMG in our case) will be captured by
a relative low number of components. However, as the
muscular pattern induced by articulation depends on
the word to articulate, the EMG sources contaminating
the EEG will be largely word-dependent. With many
different words, the number of components necessary
to capture all the possible EMG sources will likely be
high, and the risk of mixing brain activity with EMG
becomes problematic in this context.

Alternatively, one may compute ICA on a word by
word basis (as we did), but accurate estimate of high
order statistics requires a large number of samples.
As every trial is limited in time, there are maybe not
enough samples for ICA to reliably decompose the
EEG into brain and muscle activity. Although based on
our results we can not claim that BSS-CCA is superior
to ICA in all applications of EMG removal, our results
show that at least for this particular application BSS-
CCA better preserves the shape of the ERPs while
removing more disturbing signal and is thus more ap-
propriate than ICA.

Practical Application

A direct example of the benefit brought by BSS-CCA
to the field of psycholinguistic research comes from a
recent study of speech monitoring (Riès et al. 2010).
The authors report the observation of an EEG compo-
nent, known as the error-negativity (Ne or error-related
negativity, ERN), which reaches its maximum shortly
after response-onset (i.e. precisely during intense ar-
ticulation movements). Unprecedentedly, Riès et al.
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(2010) showed that the error-negativity component is
present in correct utterances as well, although with a
considerably smaller amplitude. Presumably because
of articulation-related artifacts, heavy low-pass filtering
procedures were used in previous studies (e.g. 1–12
Hz band-pass filters in Ganushchak and Schiller 2008;
10 Hz low pass in Masaki et al. 2001), and this may
be a cause for the non-observation of the Ne in correct
utterances. The Ne can still be observed on errors after
such filtering, as it generally involves a rather large
deflection. By contrast, the Ne observed on correct
trials appears to be smaller (in-line with results from
studies of non-speech action control) and thus might
have been filtered out. In Ries et al.’s study, heavy
filters were avoided because articulation artifacts were
successfully reduced with the BSS-CCA algorithm.

Conclusions

Whether or not part of the brain signal is also removed
by BSS-CCA remains an important point of concern
and will have to be addressed in future studies. Further
validation can be also performed with bio-equivalence
tests, described in Shackman et al. (2009) and
McMenamin et al. (2009). Future experiments may
further clarify possible limitations. Other neurosci-
entific research groups are also encouraged to also
use this algorithm (freely available at www.neurology-
kuleuven.be/index.php?id=210) on their event-related
potentials and start thorough speech research.

Our study clearly showed that BSS-CCA outper-
formed heavy filtering for the removal of EMG artifact.
This method therefore enables more accurate neuro-
scientific investigations of spoken language production
without avoiding direct overt speech. Besides, the re-
sults open perspectives towards new applications, both
with continuous and event-related EEG.
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Appendix: CCA

Ordinary correlation analysis quantifies the relation
between (realizations of) two variables a(t) and b(t) by
means of a correlation coefficient ρ:

ρ = Cov[a, b]√
V[a]V[b] (6)

in which Cov and V indicate respectively the co—and
variance. CCA is a multivariate extension of ordinary
correlation analysis.

Consider 2 multivariate zero-mean vectors A and B,
and two new scalar variables, ã and b̃, generated as
linear combinations of the components in A and B:

A = [a1(t), . . . , am(t)]T

B = [b1(t), . . . , bn(t)]T , t = 1, .., N

ã = wa1 a1 + . . . + wam am = wT
a A

b̃ = wb1 b1 + . . . + wbm bm = wT
b B (7)

CCA computes the coefficients wa and wb that
maximize the correlation between ã and b̃. These
coefficients are the regression weights and ã and b̃ are
denoted as canonical variates. The resulting correlation
coefficient is the canonical correlation coefficient.

It can be shown that finding these regression weights
correspond to solving an eigen value problem.

By inserting Eq. 7 into the definition of the correla-
tion coefficient (6), and assuming the means of A and
B zero, we obtain:

ρ = wT
a Cabwb√

(wT
a Caawa)(wT

b Cbbwb)

(8)

with Caa and Cbb the variance matrices from respec-
tively A and B and Cab the covariance matrix from
A and B. ρ is a function of wa and wb. In order to
maximise the correlation coefficients , we impose the
partial derivatives with respect to wa and wb to be zero.
This results in following system:

C−1
aa CabC−1

bb Cbawai = ρ2wai

C−1
bb CbaC−1

aa Cabwbi = ρ2wbi (9)

http://www.neurology-kuleuven.be/index.php?id=210
http://www.neurology-kuleuven.be/index.php?id=210
http://www.neurology-kuleuven.be/index.php?id=210
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This system is an eigenvalue decomposition. The ma-
trices C−1

aa CabC−1
bb Cba and C−1

bb CbaC−1
aa Cab have the same

eigenvalues. The vectors wa and wb we are looking
for, are the eigenvectors corresponding to the highest
eigenvalue. This eigenvalue is the square of the maxi-
mal correlation between the canonical variates.
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