
Neuroinform (2010) 8:113–134
DOI 10.1007/s12021-010-9069-7

iqr: A Tool for the Construction of Multi-level
Simulations of Brain and Behaviour

Ulysses Bernardet · Paul F. M. J. Verschure

Published online: 26 May 2010
© Springer Science+Business Media, LLC 2010

Abstract The brain is the most complex system we
know of. Despite the wealth of data available in neu-
roscience, our understanding of this system is still very
limited. Here we argue that an essential component in
our arsenal of methods to advance our understanding
of the brain is the construction of artificial brain-like
systems. In this way we can encompass the multi-level
organisation of the brain and its role in the context
of the complete embodied real-world and real-time
perceiving and behaving system. Hence, on the one
hand, we must be able to develop and validate theories
of brains as closing the loop between perception and
action, and on the other hand as interacting with the
real world. Evidence is growing that one of the sources
of the computational power of neuronal systems lies
in the massive and specific connectivity, rather than
the complexity of single elements. To meet these chal-
lenges—multiple levels of organisation, sophisticated
connectivity, and the interaction of neuronal models
with the real-world—we have developed a multi-level
neuronal simulation environment, iqr. This frame-
work deals with these requirements by directly trans-
forming them into the core elements of the simulation

U. Bernardet (B) · P. F. M. J. Verschure
Laboratory of Synthetic Perceptive, Emotive,
and Cognitive Systems (SPECS), Universitat Pompeu Fabra,
Roc Boronat 138, 08018 Barcelona, Spain
e-mail: ulysses.bernardet@upf.edu

P. F. M. J. Verschure
Catalan Institute of Research and Advanced Studies
(ICREA), Barcelona, Spain
e-mail: paul.verschure@upf.edu

environment itself. iqr provides a means to design
complex neuronal models graphically, and to visualise
and analyse their properties on-line. In iqr connectiv-
ity is defined in a flexible, yet compact way, and sim-
ulations run at a high speed, which allows the control
of real-world devices—robots in the broader sense—
in real-time. The architecture of iqr is modular, pro-
viding the possibility to write new neuron, and synapse
types, and custom interfaces to other hardware systems.
The code of iqr is publicly accessible under the GNU
General Public License (GPL). iqr has been in use
since 1996 and has been the core tool for a large number
of studies ranging from detailed models of neuronal
systems like the cerebral cortex, and the cerebellum,
to robot based models of perception, cognition and
action to large-scale real-world systems. In addition,
iqr has been widely used over many years to intro-
duce students to neuronal simulation and neuromor-
phic control. In this paper we outline the conceptual
and methodological background of iqr and its design
philosophy. Thereafter we present iqr’s main features
and computational properties. Finally, we describe a
number of projects using iqr, singling out how iqr is
used for building a “synthetic insect”.

Keywords Neuronal simulation · Multi-level ·
Large-scale · Synthetic epistemology · Bio-robotics

Introduction

The brain is an extraordinarily complex machine. The
workings of this machine can be described at a mul-
titude of levels of abstractions and in various descrip-
tion languages (Fig. 1). These description levels range

114 Neuroinform (2010) 8:113–134

Fig. 1 The levels of
organisation of the brain
range from neuronal
sub-structures to circuits
to brain areas

from the study of the genome and the use of genes in
genomics; the investigation of proteins in proteomics;
the detailed models of neuronal sub-structures like
membranes and synapses in compartmental models; the
networks of simple point neurons; the assignment of
function to brain areas using e.g. brain imaging tech-
niques; the mapping of input to output states as in psy-
chophysics and the abstraction of symbol manipulation.

Level of Abstraction The different levels of abstrac-
tion are not mutually exclusive, but must be combined
into a multi-level description. Focusing on a single
level of abstraction can fall short where only a holistic,
systemic view can adequately explain the system under
investigation. One such example can be found in the
phenomenon of behavioural feedback which indicates
that behaviour itself can induce neuronal organisation
(Verschure et al. 2003).

The Synthetic Approach We argue that an essential
tool in our arsenal of methods to advance our un-
derstanding of the brain is the construction of ar-
tificial brain-like systems. The maxim of the synthetic
approach—“truth and the made are convertible”—
was put forward by the 17th century philosopher
Giambattista Vico (1976). The key argument is that the

structure and the parameters of man-made, synthetic
product are fostering our understanding of the mod-
elled system. Yet Vico’s proposition brings about two
other important aspects. Firstly, it is the process of
building as such that is yielding new insights; in building
we are compelled to explicitly state the target function
of the system (and herein possibly err). Since we build
all elements of the system to fulfil certain functions, we
explicitly assign meaning to all elements and relations
between elements of the system, which implies an un-
derstanding of the role of the elements and their inter-
actions within the system to achieve its goal. Moreover,
construction entails that we make explicit statements
about the abstractions we make. Secondly, man-made
devices are open to unlimited measurement and manip-
ulation. Synthetic systems provide unlimited access to
all internal states of the system, and can be manipulated
at all levels, as well as at the local and global scale.

Large-scale Models If we want to build systems able to
generate a meaningful behaviour in the real world, they
have to be complete in the sense that they must span
from sensory processing to the behavioural output.
Systems compliant with this requirement will inevitably
be of a large-scale, where the overall architecture is of
critical importance.

Neuroinform (2010) 8:113–134 115

Connectivity A human brain consists of about 100 bil-
lion neurons. Neurons, in turn, are vastly outnumbered
by synapses; the estimations of the numbers of synapses
per average neuron ranging from 1,000 to 10,000
(Shepherd 2003). This impressive ratio of number of
neurons vs. number of synapses speaks in favour of
the view that biological neuronal networks draw their
computational power from the large-scale integration
of information in the connectivity between neurons.

Real-world Bio-robotics The usage of robots in cog-
nitive sciences has been heralded at the start of the
20th century by Hull and Tolman. Hull undertook the
construction of the “psychic” machine (Hull 1952; Hull
and Baernstein 1929; Baernstein and Hull 1931; Hull
and Krueger 1931) by applying a framework of physics
to psychology. Tolman, exploring an alternative con-
ceptual route and striving at uniting the methods of
behaviourism with the concepts of Gestalt psychology,
in 1939 proposed the robot “Sowbug” (Tolman 1939).
The shortcoming of many of the above mentioned ap-
proaches is that they are lacking a clear conceptualisa-
tion of the employment of robots in biological sciences.
We see the main gain of using robots in the fact that
the “real world” provides clear constraints at both,
the construction and validation level: The properties
of the elements of the model have to obey the laws of
physics in their construction as well as in the interaction
with the real world. If the agent is to operate in the
real world, the mechanical properties have to take into
account inertia, friction, gravity, energy consumption
etc. Moreover, acquiring information from the environ-
ment will have a limited bandwidth and the data will
most likely be noisy. One of the key properties of bio-
robotics approach is that it circumvents the problem of
the low degree of generalisability of models developed
in simulation only. This problem stems from the limited
input space to the model and the hidden a priori as-
sumptions about the environment in which the system
is to behave.

Enter iqr

To meet the challenges outlined so far—taking into
account multiple levels of abstraction, large-scale mod-
els, complex connectivity, and the interaction of neu-
ronal models with the real-world—we have developed a
multi-level neuronal simulation environment, iqr, that
exactly tries to deal with these open issues.

The dynamics of neuronal systems can be described
best in terms of signal processing and flow. This par-
adigm lends itself for a graphical approach, allowing

to concentrate on the design of the data flow with-
out the need to deal with implementational details,
and to effectively explore the organisation of neuronal
systems. Moreover, a graphical interface yields a low
threshold for the use of the tool and a flat learn-
ing curve. In the domain of test, measurement, and
control applications this approach has been success-
fully pursued for the past 20 years by LabVIEW™
(http://www.ni.com/). iqr implements this paradigm,
allowing the user to perform most of the above men-
tioned steps in working with neuronal simulations using
a graphical interface (Fig. 4).
iqr provides an efficient graphical environment

yielding flexible user interaction to design large-scale
multi-level neuronal systems that are scalable and ex-
tensible. The ability to interface the neuronal simula-
tions with real-world devices—robots in the broader
sense—in real-time is one of the cornerstone features.
As a simulation tool, iqr fits in between high-level,
general purpose simulation tools such as Matlab®
(http://www.mathworks.com/) and highly specific, low-
level, neuronal systems simulators such as NEURON
(Hines and Carnevale 1997). The advantages over a
general purpose tool are on the one hand the pre-
defined building blocks that allow easy and fast creation
of complex systems, and on the other hand the con-
straints that guide the construction of biologically re-
alistic models. The second point is especially important
in education, where the introduction into a biological
“language” is highly desirable. Low-level simulators are
not in the same domain as iqr, as in their heuristic
approach, attention to detail is favoured over size of the
model and speed of the simulation.

The 2006 workshop report of the OECD’s inter-
national neuroinformatics coordinating facility (INCF)
(Djurfeldt and Lansner 2006) lists a number of impor-
tant properties that simulator software should have.
These include: availability of the source code, scal-
ability of the model size, framework to implement
user-defined extensions, support for different operating
systems, facilitation of the exchange of models and
data, a graphical interface, and documentation of the
software.

Today a wide range of neuronal simulators is avail-
able (for a detailed review of major packages see Brette
et al. (2007)). Many of these software packages, how-
ever, do not allow the user to design the system graphi-
cally and have no intrinsic mechanism to control robots
or interface the other I/O devices. For a number of soft-
ware packages, access to the source code is not granted,
though access to the source code of the software is vital
to ensure quality control and reproducibility of results
(Amari et al. 2003). For this reason, we have released

http://www.ni.com/
http://www.mathworks.com/

116 Neuroinform (2010) 8:113–134

the sources of iqr under the GNU General Public
License (GPL).

The current version of iqr is a complete re-
design and reimplementation of the original ver-
sion (Verschure 1997). iqr is implemented in C++
using the Qt widget-set (http://www.trolltech.com/),
and runs on the Linux, Apple’s Mac OS X, and
Microsoft Windows platform. iqr is fully docu-
mented, including tutorials and an introduction on
how to write user-specific extension. The sources
and binaries (RPM and DEB for Linux, installer
for Windows) of iqr can be downloaded from
http://iqr.sourceforge.net/. From this page a bootable
Linux Live system based on the Fedora Project Live
CD (http://fedoraproject.org/wiki/FedoraLiveCD) can
be downloaded. This allows to run iqr without
the need for any installation. Additionally, develop-
mental packages for writing user-defined extensions
(iqr-devel) and a collection of tools (iqr-tools)
are available.

From March 2007 to November 2009 the iqr web
site on sourceforge.net was accessed 115,142 times (Me-
dian 2694), with a total of 3,202 (Median 74) downloads.
iqr has been disseminated through a number of teach-
ing and workshop activities, including the Telluride
Neuromorphic Engineering Workshop 2004, and the
Barcelona Cognition Brain and Technology Summer
School (BCBT) 2008, 2009. Since 2007 iqr is used to
introduce students to methods of neuronal modelling
and system construction in the Interdisciplinary Master
in Cognitive Systems and Interactive Media (CSIM)
at the Universitat Pompeu Fabra, Barcelona, Spain.
Additionally, iqr is used in a number of European
projects such as “Synthetic Forager” (FP7 ICT project

no. 217148), NeuroChem (FP7 ICT project no. 216916),
and ReNaChip (FP7 ICT project no. 216809).

In the subsequent part of the article we will show
how iqr fulfils the aforementioned criteria, describe
the design philosophy behind iqr, demonstrate how
iqr is used to develop multi-level neuro-ethological
models, and give examples of projects where iqr is
used.

Developing Neuronal Systems with iqr

Functional Organisation of an iqr Model

The brain is organised at many different levels: areas,
circuits, neurons (Fig. 1). iqr reflects this hierarchical
organisation in the architecture of its systems. Models
in iqr are organised at three different levels (Fig. 2a):
The top or system level comprises of an arbitrary num-
ber of processes, and connections. Processes, in turn,
consist of an arbitrary number of groups, and provide
the means to structure the model into logical units as
well as to interface it to external devices. A group is an
aggregation of neurons of identical type. Connections
are used to send signals from group to group, and
are made up of synapses of identical type, plus the
definition of the arborisation pattern of the dendrites
and axons (Fig. 2).

To illustrate the structure of iqr systems at the
neuronal level, it is useful to look at a simple system
comprising of two groups with one connection between
them (Fig. 2b). Within iqr groups and connections
are conceived as two different frameworks. Groups
comprise of the somas of neurons, where all inputs

Fig. 2 a The structure of
models in iqr, numbers in
brackets indicate how many
elements are possible at what
level. b The group and
connection framework.
Groups comprise of the
somas of neurons, where all
inputs are integrated. Axon,
synapse, and dendrite are part
of the connection framework

• System [==1]

• Process [>=1]

• Group [>=1]
• Neuron [>=1]

• Module [==0|1]

• Connection [>=0]

• Synapse [>=1]
(a) (b)

http://www.trolltech.com/
http://iqr.sourceforge.net/
http://fedoraproject.org/wiki/FedoraLiveCD

Neuroinform (2010) 8:113–134 117

are integrated using the function of the specific neuron
type, while the connection framework deals with the
axon, synapse, and dendrite of the neurons. A con-
nection includes the definition of the update function
of the synapse, and the definition of the connectivity,
i.e. the spatial layout of axons, dendrites and their
interconnectivity. The synapses support the integration
of all axonal and back-propagating dendritic inputs and
compute the overall output according to their specific
update function. Every synapse has a local “memory”
and thus can adapt parameters of its update function,
e.g. the synaptic strength, based on its individual his-
tory. A single connection between two neurons is an
assembly of axon-synapse-dendrite bundles or nexuses
(Fig. 3). A single nexus can connect several pre-synaptic
neurons to one post-synaptic cell, or feed informa-
tion from one pre-synaptic to multiple post-synaptic
neurons. A nexus can hence comprise several axons,
synapses, and dendrites (Fig. 3).

The distinction between group and connection does
not reflect a biological fact, but represents an abstrac-
tion within iqr that allows an easier approach to
modelling neuronal systems. iqr includes a number
of standard neuron types such as Linear threshold,
Integrate & fire, and Sigmoid neurons (Appendix). The
connectionist nature of theses neuron models reflect
iqr’s design philosophy of favouring large-scale neu-
ronal systems and sophisticated connectivity over de-
tailedness and complexity of single elements.

Plug-in Architecture In an iqr system, a special role is
played by Modules, in that they provide a general pur-

source

target

axon

distance
dendrite

synapse

flow of
information

soma

Fig. 3 Illustration of a two dimensional axon-synapse-dendrite
nexus where nine pre-synaptic neurons form the receptive field
of one post-synaptic cell

pose plug-in architecture to exchange data between the
neuronal simulation and an arbitrary external entity.
An iqr Module is associated with a process (Fig. 2a),
and exchanges information by reading values from,
and writing values into the groups of that process.
All interfaces to hardware are realised as Modules
(Section “Working with Real-world Bio-robots”). One
of the key advantages of the module framework is
that it allows to bridge between models defined at
different levels of description. This can be used to
combine abstract models with neuronally implemented
systems, and to bootstrap the development of a neuro-
ethological system by initially employing algorithmic
components, which are gradually replaced by biologi-
cally plausible components.

Modelling of Additional Levels There exist several
ways to model additional levels of abstraction in iqr.
Firstly, subcellular structures can be modelled as groups
of “neurons” as was done e.g. for dentritic compart-
ments in Verschure and König (1999). Secondly, an
entire simulation application can run inside iqr as a
module, exchanging information with the main system
via the standard module interface. Proof of concept of
this approach is that we are running the simulation ap-
plication wSim (Guanella and Verschure 2006) inside
iqr as a module.

External Processes In large-scale models it is not un-
common that several subsystems are combined into
a larger model, and that certain circuits are used in
multiple models. iqr supports this via the “external
processes” mechanism; processes can be exported to a
separate file, and linked or imported into an existing
system. If a process is linked-in, it remains a separate
file which can be worked with independently of the
system it is integrated in.

Graphical User Interface for Specifying
Neuronal Models

The Main User-interface

To users of any skill level, a graphical interface facil-
itates the overview over complex models, and yields
flexibility in design and exploration of the system. iqr
allows to do the entire design process of a neuronal
model graphically. While the simulation is running, the
user can visualise the internal states and change the
parameters of system elements.

We will now describe briefly, step-by-step, how to
create a model in iqr. The procedure starts by creating

118 Neuroinform (2010) 8:113–134

a new system using the “File” menu or via the main
toolbar (Fig. 4�). New groups are created by clicking
the group symbol in the diagram toolbar (Fig. 4�),
and subsequently clicking in the diagram editing pane
(Fig. 4�) at the desired location for the new group.
Double clicking the group icon (square), or selecting
the “Properties” entry from the right mouse button
pop-up menu, brings up the group properties dialogue
where the geometry and the neuron type of the group
can be specified.

Connections are created by clicking the excitatory,
inhibitory, or modulatory connection symbol (Fig. 4�),
then clicking on one of the yellow squares at the edge
of the source group icon, followed by clicking on one
of the yellow squares of the target group icon. As
for groups, double clicking the connection and the
right pop-up menu gives access to the connection’s
properties, allowing to specify the parameters of the
connection. To define a connection between groups of
different processes, the diagram editing pane (Fig. 4�)

is split, and each process is made current in one of the
sub panes using the tab-bar (Fig. 4�). Hereafter, the
procedure for creating a connection is the same as for a
connection between groups of the same process.

Interfaces of the simulation to a robot are defined
via the properties of a process. These properties can
be accessed either by navigating to the top level dia-
gram pane using the tab-bar, and subsequently double
clicking the process icon, or via the right mouse button
pop–up menu. The properties dialogue serves to choose
the type of interface (Module), to set the parameters of
the module, and to define which groups of the process
receive data from and which send data to the module.
After these steps the simulation is ready to be run.

To make the handling of large systems more conve-
nient and to e.g. allow to merge parts from different
systems, iqr provides full support for cut, copy, paste
of processes and groups with or without their associ-
ated connections, as well as of connections, within or
between instances of iqr.

Fig. 4 The iqr graphical user-interface. The main display of
the system circuit is the diagram editing pane (�). Depending
on the level (system or process), a square represents a process
or a group. Both, process and group icons, can be assigned a
custom colour. Line with arrow heads on the diagram denote
connections. A tab-bar (�) is used to switch between diagram
panes. The diagram toolbar (�) allows to add processes, groups,
and connections to the circuit, and to zoom in and out. The

panner (�) allows to change to the visible section of the pane.
The diagram editing pane can be split into two separate views
vertically or horizontally (�). For direct access to the elements, a
browser (�) provides a tree like view of the model. A filter can
be used () to search for elements directly in the browser. The
main toolbar (�) serves to create a new system, open and save
system files, and to start the simulation

Neuroinform (2010) 8:113–134 119

Fig. 5 a iqr Space plot
displays the state of each cell
in a group (�). Space plots
always plot entire groups, i.e.
each shows only one group.
The value for the selected
state is colour coded, and the
range indicated in the colour
bar (�). b A Time plot
displays the average value of
the states of an entire group
or region of a group against
time. A Time plot can plot
several states, and states from
different groups at once.
Each state is plotted as a
separate trace. A checker
board like panel to the right
of the plotting area shows
which region of a group is
plotted and allows to select
different states (�)

(a)

(b)

Visualising and Analysing System Behaviour

iqr provides various options to visualise states of el-
ements of the model. A Space plot displays the state
of each cell in a group, whereas a Time plot shows the
average value of one or more states of one or more
groups or subregions against time (Fig. 5). To visualise
the static and dynamic properties of connections and
synapses Connection plots are used (Fig. 6). Moreover,
this plot type allows for a visual inspection of the con-

nectivity. Plots in iqr are running in a thread separate
from the main simulation, refreshing at a rate of 20 Hz,
independent of the speed of the simulation. If single
spikes need to be visualised iqr provides the option
to synchronise the plots to the simulation.

Using the button it is possible to zoom into
Space plots and Time plots (Fig. 5�). The scaling can
be set to “expand only”, “auto scale”, or can be defined
manually.

Fig. 6 iqr Connection plot.
The source group (�) is on
the left, the target group (�)
on the right side. The plot can
display static properties of a
connection between two
groups, i.e. the “Distance” or
“Delay”, or the internal states
of synapses (�)

120 Neuroinform (2010) 8:113–134

Fig. 7 Data Sampler. The panels on the right (�) show which
region and which states of a group will be stored, and allow to
change between saving the average of the entire group or the
value of the individual cells. New groups can be added via drag &
drop. The sampling options include setting the sampling rate (�),
the acquisition duration (�), where and how to save the data (�).
The data acquisition can be set to start automatically with the
simulation (�)

Recording Data for Of f-line Analysis

As mentioned previously, one of the strong points of
the synthetic approach is the unlimited access to the
internal states of a system. In iqr the Data Sampler
(Fig. 7) serves as the tool with which the user can
acquire and record internal states of the model. The
Data Sampler provides a wide range of options for
sampling data ranging from recording the states of
single neurons at a high frequency to recording the
average state of entire groups of neurons with a low
sampling frequency. The frequency of sampling can
be set to multiples of the updates of the simulation
or defined in milliseconds, whereas the length of the
period of data acquisition can be set to continuous,
or be limited to a given number of update steps. The
format of the file is comma separated plain text (csv).
The data can be either written always into the same
file at the start of each sampling session, into a new
file with an automatically generated file name, based
on the specified file name, or can be appended to the
end of an existing file. The sampling can be set to start

and stop automatically when the simulation is started
and stopped.

The visualising and data collecting functionalities of
iqr make extensive use of drag & drop. Using the
mouse entire groups can be dragged from the Browser
(Fig. 4�), the panel on the right side of Space plots,
Time plots, and Data Sampler, or regions of groups
from the plotting area of Space plots. By dropping this
selection onto Space plots, Time plots, and Data Sam-
pler, the group or region is added. The arrangement and
the properties of the current set of plots and Data Sam-
pler (Section “Recording Data for Off-line Analysis”)
can be stored to disk for later retrieval.

Manipulating the System

The State Manipulation tool (Fig. 8) serves to change
the activity of the neurons in a group by applying a
pattern of values. This allows the exploration of the
system’s properties by target-orientated manipulations.
These patterns are user-defined, and can be stored
to and loaded from disk. The “Play Back” options
(Fig. 8�) specify how often the patterns in the queue

Fig. 8 State Manipulation tool. A pattern is created by setting

the value in the drawing toolbar (�), selecting the tool, and
drawing the pattern in the drawing area (�). Multiple patterns
can be drawn and added to a queue of patterns (�). The order of
patterns in the queue can be changed, and the entire queue can
be saved to and loaded from a file (�)

Neuroinform (2010) 8:113–134 121

Fig. 9 Definition of the connectivity between two groups. The
connectivity Pattern (a) is of type “mapped”, meaning that
the pairs of points are computed by overlaying and scaling the
smaller group (source group in this case) to the larger one. In the
example, the Arborization (b) is of a rectangular shape with a size

of 2 × 2. The combination, i.e. the application of the Arborization
to the projected points in the target group (projective-field),
yields the actual connectivity: each of the four neurons in the pre-
synaptic group is connected to four neurons in the post-synaptic
group, resulting in a total of 16 synapses

will be applied, whereas the “Interval” option deter-
mines the delay (i.e. number of time steps to wait)
prior to sending the next pattern to the group. The
“StepSize” controls which patterns from the queue will
be applied (1 means every pattern, 2 means only the
first, third, fifth etc.).

The “Send” button applies the patterns to the group,
with the effect being either “Clamp”, where the activity
of the neurons is set to the values of the pattern, “Add”,
where the pattern’s values are added to the activity of
the neuron, or “Multiply” where the pattern is multi-
plied with the activity of the neurons (Fig. 8�).

Connectivity

One of the characteristics of the connectivity found in
nervous systems is its large variety (Shepherd 2003).
A large-scale neuronal systems modelling tool such
as iqr has to provide the means to define and
simulate any arbitrary connectivity scheme in a com-
pact and flexible manner. It must be easy to investi-
gate frequently used schemas, while not barring the
specification of non-standard schemas.

Here we will outline the design philosophy behind
the implementation of connectivity in iqr and will
show how connections between groups of neurons are
defined, changed and studied.

Specifying the Connectivity

Defining the connectivity between two groups in iqr
is a two tier process involving two concepts: Arboriza-
tion and Pattern (Fig. 9). The Pattern (Fig. 9 top left)
defines pairs of points in the lattice of the pre- and
post-synaptic groups. These projected points are 2D
coordinates, and can, but do not have to, correspond
to the position of neurons. The list of location pairs
is referred to as Pattern. iqr provides several ways to
specify the Pattern (see below).

The Arborization (Fig. 9 top right) is applied to
every projected point defined by the Pattern, and hence
specifies the neurons that send and receive signals.
iqr allows the user to define the direction of a

connection which prescribes whether the Arborization
is applied to the points defined in the pre- or the post-
synaptic group. If applied to the efferent-source group,
the effect is a fan-in receptive field (Fig. 10a), while
a fan-out, projective field, results when applying the
Arborization to the afferent-target group (Fig. 10b).

Pattern Types

iqr supports three different kinds of Patterns. First
a Pattern (“For each”) that defines full connectiv-
ity, where each cell of the post-synaptic group re-
ceives inputs from all the cells of the pre-synaptic one.

122 Neuroinform (2010) 8:113–134

Fig. 10 The direction of
Arborizations. Depending on
whether the Arborization is
applied to the pre- or the
post-synaptic group, the
resulting structure is a
receptive field (RF) (a) or a
projective field (PF),
respectively (b)

source target

(a) Receptive filed

source target

(b) Projective field

Second the Pattern can be a mapping, where the posi-
tion of the projected points is determined by the posi-
tion of the cells of the smaller group (fewer neurons),
scaled to the size of the larger group (more neurons).
Note that a projected point needs not to be at a neu-
ron’s position (Fig. 9 top left).

The aforementioned Pattern types are a compact
way for specifying a uniform and repetitive connectivity
between groups. However, this cannot cover all de-
sired connectivity arrangements. To define individual
cell to cell projections, a third Pattern type named
“Tuples” has been included. With this Pattern an ar-
bitrary number of pre-synaptic cells can be associated
with an arbitrary number of post-synaptic cells. In this
case a tuple t is the combination of m source cells with
n target cells: t = {(pre1, . . . , prem), (post1, . . . , postn)}
and the Pattern p itself is the list of tuples: p =
{t1, . . . , tn}.

Arborization Types

In Fig. 11 all available Arborization types, bar the
Arborization where all neurons are selected, are shown.
Where applicable, the cross indicates the projection
point as defined by the Pattern.

Delay and Attenuation Functions

From a morphological point of view, a neuron can
be divided into axonal and dendritic structures, and

the soma. In iqr, the length of the dendrites is a
consequence of the geometry of the layout of the Ar-
borization (Fig. 3). The geometry dependent delays and
attenuations are therefore dealt with in the dendrites.
Axon specific delays and attenuations are implemented
at the level of individual synapses. Back-propagating
signals reaching the synapse are limited to the
dendrites.
iqr uses delay and attenuation functions to compute

the delay and the attenuation for each synapse belong-
ing to an Arborization (Fig. 12). In most functions, the
calculation depends on the size of the Arborization, i.e.
its height and width.

The delay functions iqr provides are of type linear
(1), Gaussian (2), block (3). If the function is ran-
dom, distance is not taken into account, and the delays
are randomly distributed between 0 and max. In the
case of a uniform delay, all synapses have the same
delay.

delay = ((max − min)/distmax) ∗ dist + min (1)

delay = max − e− dist2

2∗σ2 ∗ (max − min) + min (2)

delay =
{

min dist >= width/2
max dist < width/2

(3)

Fig. 11 Arborization types available in iqr. Where applicable, the cross indicates the projection point

Neuroinform (2010) 8:113–134 123

Fig. 12 Example of delay and attenuation functions. (top) The
distance is computed as the eccentricity of the sending cell,
relative to the position of the receiving cell. The values for delay

(bottom left) and attenuation (bottom right) are based on the
distance (as indicated by the x-axis of the function plots)

For the dendritic attenuation (att), the same func-
tions as for the delay are supported. Namely random,
uniform, linear (4), Gaussian (5), and block (6).

att = attmax − ((max − min)/distmax) ∗ dist + min (4)

att = attmax − max − e− dist2

2∗σ2 ∗ (max − min) + min (5)

att = attmax −
{

min dist >= width/2
max dist < width/2

(6)

Compact Representation

The specification language for connectivity presented
here, has major advantages over a more simple
specification, e.g. for each synapse individually. On the
one hand, the definition is independent of the geometry
of the pre- and post synaptic groups (except for Pattern
“Tuples”), allowing to change the group size without
having to redefine the connectivity. On the other hand,
the definition is very compact: A system consisting of
two groups of 10 × 10 neurons each (defined to be a
torus) linked by a connection with a Pattern “For each”,
and a rectangular Arborization of size 7 × 6 will re-
sult in 490,000 synapses. A representation where each
synapse is listed individually results in a system file of

a size in the range of several Megabytes or hundred
thousands lines, whereas an iqr system file has a size
of 4KB or 70 lines.

Working with Real-world Bio-robots

As one of the corner stones of the synthetic approach is
the evaluation of neuro-ethological models in the real-
world, a tool built for the synthetic approach has to
naively support the integration of models with robots.
In iqr this is accomplished via the Module framework,
that provides a wide range of predefined interfaces to
hardware sensors and actuators. These include mod-
ules to control Khepera and e-puck robots (K-Team
S.A., Lausanne, Switzerland), Lego MindStorms™, and
custom-built blimp-based flying robots. Video images
can be fed into the model with modules reading data
from PCI frame-grabbers and USB cameras (Fig. 13).
iqr models are interfaced to external devices by

specifying mappings between the state of groups of
neurons and device-specific variables. For input, the
value of an external sensor (e.g. a video camera) is
mapped onto the state of a group of neurons; for
output, the state of a group is used to set the value
of a control parameter of the effector (e.g. the speed
of a mobile robot). Each process in iqr can have one
module associated with it (Fig. 2a).

Within the module framework, iqr provides a
mechanism to automatically generate graphical dia-

124 Neuroinform (2010) 8:113–134

(a) (b) (c)

Fig. 13 Selection of robots supported by iqr. a Passive wheel, impeller driven “Strider” robot. b Outdoor blimp (Pyk et al. 2006).
c e-puck (K-Team S.A., Lausanne, Switzerland)

logues for parameters defined by a module (Fig. 14),
which enables the user to change module parameters
while the simulation is running without the need to
write a specific GUI, or recompiling the module.

Synchronisation Modules can run synchronised, or in
their own thread, i.e. their update speed is independent
of the update speed of the main simulation. Whereas
synchronised modules are important for the replica-
bility of simulation results, asynchronous modules are
very useful for the control of robots or the acquisition
of data, where a slow hardware device would slow down
the entire simulation.

Performance

To be able to control robots in the real-world, simu-
lations have to run at a sufficiently high speed. If a
real-world system is relying on video processing, the

simulation has to run faster than the video frame rate
of >25Hz (Fig. 15 red line). At this required update
frequency of 25 updates per second, the upper limit of
the number of elements in an iqr system is ∼256,000
neurons, or ∼800,000 synapses combined with ∼5,000
neurons (IntelR PentiumR 4 CPU 3.00GHz, RAM 1GB
Fig. 15). If larger systems are implemented, they will
need to be run on multiple computers.

To achieve a good performance, iqr is implemented
in such a way that the storage of the state of indi-
vidual elements (neurons and synapses) is dissociated
from the respective update functions. Concretely, this
means that in iqr, only one object of a given type
is instantiated per group or connection, as opposed to
creating e.g. as many neuron objects as the size of a
group. This implementation increases performance by
avoiding costly virtual table lookups (Stroustrup 1997).
The individual states are stored in efficient, vector like
structures of type std::valarray (Josuttis 1999).

Fig. 14 For parameters defined within the code of a module (left), iqr automatically generates a graphical dialogue to access the
parameters (right)

Neuroinform (2010) 8:113–134 125

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

number of neurons (log)

cy
cl

es
 p

er
 s

ec
on

d
(lo

g)

25 cycles per second

IntelR PentiumR 4 CPU 3.00GHz, RAM 1GB

IntelR CoreTM2 CPU 1.06GHz, RAM 1GB

10
4

10
5

10
6

10
7

10
8

10
–1

10
0

10
1

10
2

10
3

number of synapses (log)

cy
cl

es
 p

er
 s

ec
on

d
(lo

g)

25 cycles per second

IntelR PentiumR 4 CPU 3.00GHz, RAM 1GB

IntelR CoreTM2 CPU 1.06GHz, RAM 1GB

(a) (b)

Fig. 15 iqr performance. a cycles per second vs. number of neurons, b cycles per second vs. number of synapses. The neuron type
used is “linear threshold”, the synapses were of type “fixed weight”. The red line indicates the 25 cycles per second benchmark

Support for Work-flow of Simulation Experiments

Working with simulations employs a number of generic
steps: Designing the system, running the simulation,
visualising and analysing the behaviour of the model,
perturbing the system, and tuning of parameters. Next
to these steps, the automation of experiments and the
documentation of the model form important parts of
the work-flow. Subsequently we will describe the mech-
anisms iqr provides to support these tasks.

Central Control of Parameters and Access from Mod-
ules: The Harbor When running simulations, users
frequently adjust the parameter of only a limited num-

ber of elements. Using the Harbor, users can collect
system elements such as parameters of neurons and
synapses in a central place (Fig. 16), and change the
parameters directly from the Harbor. A second func-
tion of the Harbor is to expose parameters to an iqr
Module: All parameters collected in the Harbor can
be queried and changed from within a Module. Using
this method, parameter optimisation methods can be
implemented directly inside iqr.

Remote Control of iqr In a number of use-cases,
being able to control a simulation from outside the
simulation software itself is useful. For this purpose,
iqr is listening to incoming message on a user-defined

Fig. 16 Using the Harbor,
users can collect system
elements such as parameters
of neurons and synapses in a
central place. Items are added
to the Harbor by dragging
them from the Browser.
Harbor configurations can be
saved and loaded

126 Neuroinform (2010) 8:113–134

TCP/IP port. This allows to control the simulation and
change parameters of the system. Concretely, this re-
mote control interface supports the following syntax:

cmd:<COMMAND>
[;itemType:<TYPE>;

[itemName:<ITEM NAME>|itemID:
<ITEM NAME>];

paramID:<ID>;value:<VALUE>;]

The supported COMMAND are: start, stop,
quit, param, startsampler, stopsampler.
The param command allows to change the parameter
of elements, and needs as an argument the type of
item (ItemType: PROCESS, GROUP, NEURON,
CONNECTION, SYNAPSE), the name (itemName) or
ID (itemID) of the element, the ID of the parameter
(ParamID), and the value to be set. Items can be

example system

process 1

source 2

source 1

target

Fig. 17 Example of a transform of an iqr system file into a
dot language hierarchical directed graph. The system consists
of three groups and two connections. Red lines with open circle
heads indicate excitatory axon-synapse-dendrite nexus, blue lines
with f illed head inhibitory ones (The scripts necessary to do the
transform are part of iqr-tools package)

addressed either by their name or their ID. In the case
of name, all items with this name are changed. This
feature can be used to change multiple elements at the
same time.

Documentation of the System The documentation of
a system comprises the descriptions of its static and
dynamic properties. To document the structure of
the model, iqr allows to export circuit diagrams in
the svg and png image format or to print them di-
rectly. A second avenue of documenting the system
is based on the Extensible Markup Language (XML)
(http://www.w3.org/XML/) format of the system files
in iqr. XML formatted text can be transformed into
other text formats using the Extensible Stylesheet Lan-
guage Family (XSL). One example of such an ap-
plication is the transformation of a system file into
the dot language for drawing directed graphs as hier-
archies (http://www.graphviz.org/) (Fig. 17). Another
transform is the creation of system descriptions in the
LATEX typesetting system.

Description of Projects Using iqr

iqr has been used successfully in a number of projects.
We will start by describing one on-going project—the
construction of a “synthetic insect”—in more detail.

Building a “Synthetic Insect”

The “synthetic insect” project aims at building a large
scale, biologically plausible model of an insect, rep-
resented by a controlled robot behaving in the real-
world. The system synthesises components derived
from different insect species, due to the fact that not
all required functional components have yet been in-
vestigated in a single insect species. The behavioural
task of the synthetic insect system is to explore the
environment, while searching for the target stimulus,
and to return to the point of departure upon either
finding the target stimulus or when exceeding a given
duration threshold of the exploration phase. The sys-
tem will be tested using the “Strider” robot (Fig. 22a),
an approximation of a flying insect.

As a behavioural model, the synthetic insect system
spans the complete nexus of information processing
from the input stage (Fig. 18, diamond shaped boxes),
to the “cognitive” components (Fig. 18, ellipses), to the
generation of behaviours (Fig. 18, rectangular), to the
output stage (Fig. 18, parallelogram).

The behavioural elements of the synthetic insect
system are organised in a nested hierarchy: The “ex-

http://www.w3.org/XML/
http://www.graphviz.org/

Neuroinform (2010) 8:113–134 127

Fig. 18 Components and the flow of information in the “syn-
thetic insect” system. Light grey boxes demarcate subsystems,
whereas diamond shapes represent the input stage, ellipses in-
dicate “cognitive” components, and rectangular boxes stand for

behaviours leading to the output stage noted in the parallelo-
gram. DRA = dorsal rim area. (Collision avoidance and course
stabilisation subsystems from Bermúdez i Badia et al. (2004) and
Bermúdez i Badia et al. (2007b) respectively)

ploratory behaviour” comprises of the aggregated be-
haviours “random walk”, and “Braitenberg”, which in
turn consist of the atomic actions “go straight”, “orien-
tate”, “move to the centre” and “turn random angle”.
The “return behaviour” contains the atomic actions “go
straight”, and “orientate”. An evasive action is part
of the “course stabilisation and collision” behavioural
subsystem. As an example, action selection on the one
hand covers the effective and efficient management of
the atomic actions within one behavioural subsystem,
i.e. a prioritisation and resolution of conflicts between
the different actions into a coherent overall behaviour.
On the other hand, action selection controls the top-
down switching between the different complex behav-
iours. The interaction between behaviours corresponds
to reflexes, e.g. ensuring that the collision avoidance
reaction has precedence, whereas the top-down control
can be understood as the level of “volition”. Thus, these
subsystems are mutually interdependent and exchange
information. Though they are always active, their out-
put is not always behaviourally relevant.

The synthetic insect system models above outlined
nexus of information processing and nested hierar-
chy of behavioural subsystems and atomic actions. In
the course of the development of the synthetic in-
sect we progressed from algorithmic to neurobiolog-

ically grounded implementations. iqr facilitates this
approach by allowing to implement parts of the model
as algorithms in a Module.

The “Solar Compass” Insects possess an internal com-
pass system that fulfils a function similar to the head
direction cells in mammals. This internal compass
system relies on the polarisation pattern of the sky
(e-vector orientation) and the luminance distribution.
It is therefore referred to as “solar compass”. In our
synthetic insect system the solar compass represents
the largest single subsystem. In the framework of this
subsystem we developed both, hardware realisations of
an e-vector and a luminance distribution sensor suitable
to fit on the Strider robot (see below), and a neuronal
decoding circuit incorporating our present knowledge
on the processing of celestial compass information in
insects. For the decoding circuit, we developed and
employed a number of circuits including the “vector
field decoding” motif (see below) and a mechanism for
interpolating between groups with different numbers of
neurons.

The Path Memory The path memory subsystem where
the distance and the direction travelled by the agent
are stored, emulates the core of the path integration

128 Neuroinform (2010) 8:113–134

system. Here we apply the well established concept
of a population code (Georgopoulos et al. 1986) to
implement the path memory (Bernardet et al. 2008).
In a vector population, each neuron can be understood
as vector −→v with norm ‖v‖ proportional to the firing
rate and an angle α given by the neuron’s preferred
direction. The basic concept of the path memory is
the representation of the distance travelled in different
directions by a population code. Each column in the
“Memory” group represents a vector −→v in a direc-
tion j.

Vector Field Decoding Both, the solar compass and
the path memory, rely on a circuit that can read out
information represented by a population of neurons
(“vector field decoding”). Such canonical neuronal cir-
cuits, implementing a specific function, can be referred
to as motifs (Sporns and Kötter 2004). In iqr, the
“external process” (Section “Functional Organisation
of an iqr Model”) mechanism is well suited for devel-
oping and deploying such motifs.

Subsequently, we will look at the vector field decod-
ing motif in its application to the reading out of the path
memory. The description here is kept very compact,
an extended account can be found in Bernardet et al.
(2008).

The goal of the memory readout is to calculate the
sum vector −→s : −→s = ∑

1≤i≤n
−→v i. For ease of illustration,

we add a group “Memory sum” where each cell receives
input from all cells of one column of the “Memory”
group (Fig. 20). Hence each neuron in the “Memory
sum” has an activity proportional to the number of
active neurons in a column of the “Memory” group, and
represents a vector −→v with norm ‖v‖ proportional to

the firing rate and an angle α corresponding to the angle
of a column of the “Memory” group. This intermediate
step is not a requirement, but helps in constructing the
system.

The solution we employ to approximate −→s is a two
step process. In a first operation, we project the vectors−→v j represented by the neurons in the group “Memory
sum” onto a set of projection neurons −→p j (Fig. 19).

Secondly, we apply a MAX operation in this popula-
tion of projection neurons.

One of the main characteristics of the vector field
decoding motif is the connectivity between the groups
“Memory sum” and “Vector decode” (Fig. 19). In iqr,
the required connectivity is achieved by a specific topol-
ogy of the “Memory sum” group, and one inhibitory
and one excitatory connection to the “Vector decode”
group. The “Memory sum” has a rectangular topology
defined as a vertical cylinder. The inhibitory connec-
tion has the following properties: The Arborization is
defined a rectangular with a window (inner height =
0, inner width = 18, outer height = 1, outer width =
36, direction = RF), whereas the attenuation function
is Gaussian with parameters max = −1.3524, min =
1.2177, sigma = 7.1332. For the excitatory connection
we use the following parameters: A rectangular Ar-
borization (height = 1, width = 18, direction = RF),
and an Gaussian attenuation function (max = 2.7848,
min = −0.0002, sigma = 9.5347). For both connections
we use a Pattern of type “mapped”, a uniform delay
function, and synapses with a fixed weight of 0.028. The
definition of this connectivity is achieved solely through
the standard connection definitions in iqr, without the
need of external tools, and uses 44 lines in the system
description file.

Fig. 19 Illustration of the memory readout mechanism. The
figure shows a single projection neuron, which receives input
from the “Memory sum” group. Excitatory connections are sym-
bolised by red, inhibitory connections by blue arrows. The synap-
tic weights are distributed in a Gaussian fashion, approximating
a cosine distribution. The top panel shows the weight of the
excitatory and inhibitory connections. In the bottom panel the

weight of the connection is represented by the width of the
connection. In total the “Vector decode” group (Fig. 20) consists
of 36 projection neurons. Since a cosine distribution of synaptic
weight is biologically not very plausible, we approximate the co-
sine distribution with a Gaussian function (figure from Bernardet
et al. 2008)

Neuroinform (2010) 8:113–134 129

 ! " #$%

/# $%()*, #$(, #

0 1 2*3#)%

0 1 2*6()

0 1 2* 758)#

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

(a) (b) (c)

Memory Decoded

Memory Sum

Const

Fig. 20 Three different representations of the architecture of the
memory decoding circuit. Excitatory connections are symbolised
by solid red, inhibitory connections by (dashed) blue arrows.

a Abstract view; b Graphical user interface in iqr; c Connectivity
at the level of individual synapses (for clarity of representation
the “Memory” group is omitted)

Implementation and Evaluation

In total, the synthetic insect system is rather large
(Table 1). Inevitably with models of this size, handling
and sheer computational power are becoming key is-
sues. To overcome limitations of computational power,
we spread the synthetic insect system over two data
processors. To this end, the system is split up into four
individual iqr system files, which in turn are exchang-
ing data over the network using TCP/IP (Fig. 21) and
employing iqr’s module framework.

Table 1 Statistics of the elements used in the “synthetic insect”
system

Element type Count

Systems 4
Processes 30
Groups 132
Neurons 48,938
Number of groups with neuron of type

Linear threshold 90
Integrate & fire 12
Linear threshold w. shunting inhibition 14
Sigmoid 7
Random spike 4

Connections 169
Synapses 81,981
Synapse types used in connections

Fixed weight 169
Modules 31

Experiments are performed in an arena of 6 × 4.5m.
A camera mounted on the ceiling, in combination with
a dedicated computer, is used to track the position of
the robot.

The on-line tracking of the robot is fundamental,
not only to quantify the performance of the final set-
up, but even more so, to closely monitor the operation
of the individual components during the development
process. For this purpose, an iqr module is used that
reads the position of the robot over a TCP/IP network
connection from a tracking system that in turn runs on
the same or a different computer. Thus, the position
information of the robot can be saved in the same
data file as all the other parameters on the internal
states of the model. The communication with the ro-
bot is handled by one of the data processors used for
the simulation of the system, whereas the video signal
from the wireless camera is fed into both computers
(Fig. 22b).

Preliminary Results On the behavioural level, the goal
of the path integration system is as follows: The robot
leaves the start location, explores the environment,
thereby searching for a target stimulus, and returns to
the point of departure upon either finding the target
or when exceeding a duration threshold set for the
exploration phase. Figure 23a shows a trajectory of the
robot and its different behavioural modes in the ex-
perimental arena. The observation of the robot moving

130 Neuroinform (2010) 8:113–134

OFPI-Network-Implementation

computer:zacking

NiceCSCA-NET.iqr

computer:ggbiii

Return-NET.iqrExploration_RW-NET.iqr

OFPI-total-NET.iqr

Action Selection Memory Decoding POL DecodingOdometry

Robot I/O

CS MM

0

CS MM

biased go straight

1356

1356

CA MM

1

CA MM

collision
avoidance reflex

1356

1356

optic flow

2

Optic flow

optic flow

1356

1356

saccadic supp

1

CSCA status

3

Return MM

0

Return MM

1355

1355

Return GS

1

Return GS

go straight

1355

1355

Return Status

2
Memory vector Heading

Exploration MM

0

Exploration MM

1357

1357

Exploration GS

1

Exploration GS

go straight

1357

1357

Target found

2

Target found

target found

1357

1357

Exploration Status

3

saccadic supp

saccadic
suppression

1353

1353

Motor Map

0

Memory vector

gated

1354

1354
1

Heading

gated

1354

1354

Fig. 21 Distribution of the “synthetic insect” system over four
iqr instances and two computers, and the exchange of informa-
tion between the systems. Note that in this view, only the connec-

tions between systems that run on different computers, and some
core connections are depicted. Gray boxes denote computers,
white rectangles systems, and black rectangles processes

straight when orienting towards the target (Fig. 23a),
might seem contradictory at first. The explanation is
that orienting corresponds to turning on the spot, which
is not captured by the tracking system. The histogram
of the angular difference between the memory vector
and vector pointing to the start location (Fig. 23b)
showed that the direction information stored in the
path memory is by and large accurate (mean = 30.94°).

Summary

In this section we described the “synthetic insect”
project as an illustration of developing neuronal sys-
tems with iqr. Comprising 132 groups of neurons,
organised into 30 processes (Table 1), this system can
be considered large-scale. iqr supports this size of
systems through its organisation of the model, and

(a) (b)

Fig. 22 Experimental setup for the “synthetic insect” system.
a “Strider” robot developed for the “synthetic insect” project.
The robot, being equipped with three passive wheels, and pro-
pelled by two ducted fans, offers an abstraction of a flying robot
in terms of inertia and manoeuvrability. The major advantage
over a blimp based robot is the Strider’s small footprint and
its ease of deployment. b The Strider robot exchanges control

commands and sensors readings via a Bluetooth® link with
simulation computer 1. The images from the camera mounted on
the Strider are transmitted to a video receiver, and fed into both
simulation computers. The tracking computer receives images
from a camera mounted to the ceiling, and sends the coordinates
of the robot via network to both simulation computers

Neuroinform (2010) 8:113–134 131

start

end

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Exploration center/RW
Expl. approach target
Expl. orient to target
Return behavior

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

400

450

(a) (b)

Fig. 23 Example of the behaviour of the strider robot in the ex-
perimental arena. a Trajectory of the robot exploring the arena,
finding the target stimulus (a bright orange patch on the wall),
and returning to the start location. The colour of the trajectory

denotes different behavioural modes. b Histogram of the angular
difference between the vector to the start location stored in the
path memory and the actual vector

supports the user by allowing to work with processes
that are linked into the system (“external processes”).
An example of working at different levels of abstraction
is the initial implementation of parts of the model in
an algorithmic fashion, which was later substituted by
neuronal network implementations. The description of
the “vector field decoding” motif should highlight the
importance of specific connectivity. The definition of
this connectivity was achieved entirely through iqr’s
native graphical user interface. In accordance with the
bio-robotics approach, the system presented here is
tested on a real-world robot, controlled in real-time via
iqr. Regarding the “synthetic insect” system itself, it
should be mentioned, that, despite being possibly one
of the most inclusive models of insects built so far, the
system is not yet complete. We did, for example, not
tackle the issue of transferring path integration infor-
mation from the short-term to the long-term path mem-
ory. Yet, only a long-term storage of paths will allow on
the one hand to communicate the direction to a food
source, as bees do in their waggle dance, and on the
other hand to choose from a number of stored paths.

Further Projects

Other project where iqr was used include:
The Distributed Adaptive Control (DAC) series of

models (Verschure et al. 2003) were built using iqr. In
these models of learning and memory, a mobile robot
formed associations about colour patterns during the

exploration of an arena. The memories stored allowed
the robot to reliably navigate to target locations.
iqr is used for models of classical conditioning,

including models of learning in the auditory cortex
(Sánchez-Montañés et al. 2000) and the cerebellum
(Hofstoetter et al. 2002; Herreros et al. 2008)

The project “Ada: the intelligent space” for the Swiss
National Exposition (Expo02) was developed to be-
have as an artificial creature, interacting with visitors in
an intuitive manner, and reflecting our present under-
standing of neurobiological systems (Eng et al. 2003).
The Ada project used iqr as its basis for the large scale
integration of multiple sensors and effectors.

The “eXperience Induction Machine” (XIM) lo-
cated in Barcelona is one of the most sophisticated
mixed-reality environments available today and a fur-
ther development of the Ada space (Bernardet et al.
2007). A system such as the XIM needs an “operat-
ing” system for the integration of sensory information,
behaviour regulation, and effector control. iqr is used
for this for a number of reasons. Firstly, because of
the interest in deploying and testing neurobiologically
grounded models of perception, cognition and behav-
iour. Secondly, because the dataflow oriented paradigm
of iqr fits well with the task of real-time integration
of sensory information and effector control. Thirdly,
because of the ease of integration of new hardware, and
the overall flexibility iqr offers.

Intelligent sensor/motor allocation (ISMA) is gain-
ing in importance in many areas of robotics and

132 Neuroinform (2010) 8:113–134

autonomous systems. ISMA allows an autonomous en-
tity to allocate its resources for solving the currently
most critical task depending on the entity’s current
state, its sensory input and its acquired knowledge of
the world. Using iqr (Mathews et al. 2008) imple-
mented and tested an architecture called A-BID. This
architecture is guided by a neural network implementa-
tion of a selective attention mechanism used to build a
probabilistic world model.

The autonomous real-world music composition sys-
tem RoBoser (Manzolli and Verschure 2005) is an in-
tegration of CurvaSom, an algorithmic computer-based
composition system, with iqr and the DAC model of
learning and memory.
iqr was used to develop and deploy models of

chemotaxis (Bermúdez i Badia et al. 2007a), collision
avoidance (Bermúdez i Badia et al. 2004) and course
stabilisation (Bermúdez i Badia et al. 2007b) based
on flying insects, in particular the moth. This work is
complemented by a model for the neuronal substrate
of Path integration memory in arthropods (Bernardet
et al. 2008).

In the NEUROChem project (www.neurochem-
project.org) iqr is used as the main integration plat-
form for different models of olfactory processing in
vertebrates and invertebrates. iqr was chosen for this
purpose because the module framework allows to eas-
ily integrate models of different levels of description,
developed in various languages.

Conclusion

In this article, we presented iqr, a simulation environ-
ment for large-scale neuronal systems. With iqr, such
systems can be developed and simulated graphically
without the need to write code. iqr was developed to
meet the challenges we are faced with when trying to
understanding neuronal systems, specifically by means
of the synthetic approach, i.e. the construction of ar-
tificial brain-like systems. The challenge of taking into
account multiple levels of abstraction, is met by the
Module framework which allows to combine models of
different levels of abstraction. The system structure of
iqr models allows to build large-scale models, while
the compact and flexible definition of the connectivity
between groups of neurons aids in the specification of
complex connectivity. Real-world bio-robotics is on the
one hand supported by the high performance of the
neuronal models, making them suitable for real-time
control, and on the other hand through a number of
interfaces to robots and sensors that come with iqr.

The plug-in architecture of iqr allows to easily support
custom hardware. To exemplify the use of iqr, we
elaborate one example, the development of the large-
scale, neuro-ethological “synthetic insect” system. iqr
is still under active development, and the source code of
iqr is freely accessible under the GNU General Public
License. Some of the possible improvements include a
scripting interface to automate all aspects of an experi-
ment, new mechanisms to visualise the overall state of a
system, and interoperability with other simulators such
as NEST (Gewaltig and Diesmann 2007).

Information Sharing Statement

The software presented in this paper is released un-
der the GNU General Public License (GPL). Source
and binary packages are available for download from
http://sourceforge.net/projects/iqr/.

Acknowledgements The authors are grateful to Mark
Blanchard, Reto Wyss and Miguel Lechón for their contributions
to the development of iqr. Important contributions to the
neuronal architecture of “synthetic insect” system come from
Sergi Bermúdez i Badia. The electronics used in this project
was designed and build by Pawel Pyk. The development of iqr
was supported by the Synthetic Forager (FP7-ICT-217148-SF)
project.

Appendix: Predefined Neuron Types in iqr

Linear Threshold Neuron Graded potential neurons
are modelled using linear threshold cells. The mem-
brane potential of a linear threshold cell i at time t + 1,
vi(t + 1), is given by

vi(t + 1) = VmPrsivi(t)

+ExcGaini

m∑
j=1

wija j(t − δij)

−InhGaini

n∑
k=1

wikak(t − δik) (7)

where VmPrsi ∈ {0, 1} is the persistence of the mem-
brane potential, ExcGaini and InhGaini are the gains
of the excitatory and inhibitory inputs respectively, m
is the number of excitatory inputs, n is the number of
inhibitory inputs, wij and wik are the strengths of the
synaptic connections between cells i and j and i and k
respectively, a j and ak are the output activities of cells j
and k respectively, and δij ≥ 0 and δik ≥ 0 are the delays
of the projection from cell j to i and k to i respectively
(Table 2).

http://sourceforge.net/projects/iqr/

Neuroinform (2010) 8:113–134 133

The output activity of cell i at time t + 1, ai(t + 1), is
given by

ai(t + 1)

=
{
vi(t+1) with probability Prob for vi(t+1)≥ThSet
0 otherwise

(8)

where ThSet is the membrane potential threshold, and
Prob is the probability of activity.

Integrate & Fire Neuron Spiking cells are modelled
with an integrate-and-fire cell model. The membrane
potential is calculated using Eq. 7. The output activity
of an integrate-and-fire cell at time t + 1, ai(t + 1) is
given by

ai(t + 1)

=
⎧⎨
⎩

SpikeAmpl with probability Prob for vi(t+1)

≥ ThSet
0 otherwise

(9)

where SpikeAmpl is the height of the output spikes,
ThSet is the membrane potential threshold, and Prob
is the spike probability.

After cell i produces a spike, the membrane potential
is hyperpolarized such that

v
′
i(t + 1) = vi(t + 1) − VmReset (10)

where v
′
i(t + 1) is the membrane potential after hy-

perpolarization and VmReset is the amplitude of the
hyperpolarization.

Sigmoid Neuron The iqr sigmoid cell type is based
on the perceptron cell model often used in neural
networks. The membrane potential of a sigmoid cell i
at time t + 1, vi(t + 1), is given by Eq. 7. The output
activity, ai(t + 1) is given by

ai(t + 1) = 0.5 ∗ (1 + tanh(2 ∗ Slope

∗(vi(t + 1) − ThSet))) (11)

where Slope is the slope and ThSet is the midpoint of
the sigmoid function respectively.

Random Spike Neuron A random spike cell releases
a spike per timestep with a user-defined spike prob-
ability. The time series of the output spikes forms a
Poisson process. Unlike the other cell types, it receives
no input and has no membrane potential. The output of
a random spike cell i at time t + 1, ai(t + 1), is given by

ai(t + 1) =
{

SpikeAmpl with probability Prob
0 otherwise

(12)

Table 2 Overview over the
parameters of the standard
iqr neuron types

Random spike
Probability (Prob) Probability of a spike occurring during a single time step
Spike amplitude (SpikeAmpl) Amplitude of each spike

Parameters common to linear threshold, integrate & fire, and sigmoid neurons
Excitatory gain (ExcGain) Gain of excitatory inputs. The inputs are summed before

being multiplied by this gain.
Inhibitory gain (InhGain) Gain of inhibitory inputs. The inputs are summed before

being multiplied by this gain.
Membrane persistence (VmPrs) Proportion of the membrane potential remaining after

one time step if no input arrives
Clip potential (Clip) Limits the membrane potential to values between

VmMaxand VmMin
Minimum potential (VmMin) Minimum value of the membrane potential
Maximum potential (VmMax) Maximum value of the membrane potential

Linear threshold
Probability (Prob) Probability of output occurring during a single time step
Threshold potential (ThSet) Membrane potential threshold for output activity

Integrate & fire
Probability (Prob) Probability of output occurring during a single time step
Threshold potential (ThSet) Membrane potential threshold for output of a spike
Spike amplitude (SpikeAmpl) Amplitude of output spikes
Membrane potential reset (VmReset) Membrane potential reduction after a spike

Sigmoid
Midpoint Midpoint of the sigmoid
Slope (Slope) Slope of the sigmoid

134 Neuroinform (2010) 8:113–134

References

Amari, S., Beltrame, F., Bjaalie, J. G., Dalkara, T., Schutter,
E. D., Egan, G. F., et al. (2003). Neuroscience data and tool
sharing: A legal and policy framework for neuroinformatics.
Neuroinformatics Journal, 1, 149–166.

Bermúdez i Badia, S., Bernardet, U., Guanella, A., Pyk, P.,
KnÃijsel, P., & Verschure, P. (2007a). A biologically based
chemo-sensing uav for humanitarian demining. International
Journal of Advanced Robotic Systems, 4(2), 187–198.

Bermúdez i Badia, S., Pyk, P., & Verschure, P. (2007b). A
fly-locust based neuronal control system applied to an un-
manned aerial vehicle: The invertebrate neuronal principles
for course stabilization, altitude control and collision avoid-
ance. International Journal of Robotics Research, 26(7), 759–
772. doi:10.1177/0278364907080253.

Bermúdez i Badia, S., & Verschure, P. F. M. J. (2004). A colli-
sion avoidance model based on the lobula giant movement
detector neuron of the locust. In J. V. Campenhout (Ed.),
Proceedings of the international joint conference on neural
networks (IJCNN’04), Budapest, Hungary (p. 1757).

Baernstein, H., & Hull, C. (1931). A mechanical model of the
conditioned reflex. Journal of General Psychology, 5, 99–
106.

Bernardet, U., Bermúdez i Badia, S., & Verschure, P. (2007). The
experience induction machine and its role in the research on
presence. In The 10th international workshop on presence,
25–27 October.

Bernardet, U., Bermúdez i Badia, S., & Verschure, P. (2008).
A model for the neuronal substrate of dead reckon-
ing and memory in arthropods: A comparative computa-
tional and behavioral study. Theory in Biosciences, 127(2).
doi:10.1007/s12064-008-0038-8.

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D.,
Bower, J. M., et al. (2007). Simulation of networks of spik-
ing neurons: A review of tools and strategies. Journal of
Computational Neuroscience, 23(3), 349–398.

Djurfeldt, M., & Lansner, A. (2007). Incf workshop report on
large-scale modeling.

Eng, K., Klein, D., Bäbler, A., Bernardet, U., Blanchard, M.,
Costa, M., et al. (2003). Design for a brain revisited: The neu-
romorphic design and functionality of the interactive space
‘Ada’. Reviews in the Neurosciences, 14, 145–180.

Georgopoulos, A., Schwartz, A., & Kettner, R. (1986). Neu-
ronal population coding of movement direction. Science,
233, 1416–1419.

Gewaltig, M. O., & Diesmann, M. (2007). Nest (neural simulation
tool). Scholarpedia, 2(4), 1430.

Guanella, A., & Verschure, P. (2006). Artificial neural
networks—ICANN 2006. chap. A Model of Grid Cells
Based on a Path Integration Mechanism. Springer, Berlin,
Heidelberg. doi:10.1007/11840817_77.

Herreros, I., Zimmerli, L., & Verschure, P. F. M. J. (2008). A
biologically based model of the two-phase conditioning: The
amygdala, auditory cortex and cerebellum. In: Proceedings
computational and systems neuroscience 2008.

Hines, M., & Carnevale, N. (1997). The NEURON simulation
environment. Neural Computation, 9, 1179–1209.

Hofstoetter, C., Mintz, M., & Verschure, P. F. M. J. (2002).
The cerebellum in action: A simulation and robotics study.
European Journal of Neuroscience, 16, 1361–1376.

Hull, C. (1952). A behavior system: An introduction to behavior
theory concerning the individual organism. New Haven: Yale
University Press.

Hull, C., & Baernstein, H. (1929). A mechanical parallel to the
conditioned relex. Science, 70(1801), 14–15.

Hull, C., & Krueger, R. (1931). An electro-chemical parallel to
the conditioned reflex. Journal of General Psychology, 5,
262–269.

Josuttis, N. M. (1999). The C++ standard library: A tutorial and
reference (1st ed.). Reading, MA: Addison-Wesley.

Manzolli, J., & Verschure, P. F. M. J. (2005). Roboser: A real-
world composition system. Computer Music Journal, 29(3),
55–74. doi:10.1162/0148926054798133.

Mathews, Z., Bermúdez i Badia, S., & Verschure, P. (2008).
Intelligent motor decision: From selective attention to
a bayesian world model. In Intelligent systems, 2008. IS
’08. 4th international IEEE conference (Vol. 1, pp. 4–8).
doi:10.1109/IS.2008.4670418.

Pyk, P., Bermúdez i Badia, S., Bernardet, U., Knüsel, P.,
Carlsson, M., Gu, J., et al. (2006). An artificial moth: Chemi-
cal source localization using a robot based neuronal model of
moth optomotor anemotactic search. Autonomous Robotics,
2(3), 197–213.

Sánchez-Montañés, M. A., Verschure, P. F. M. J., & König, P.
(2000). Local and global gating of synaptic plasticity. Neural
Computation, 12, 519–529.

Shepherd, G. M. (2003). The synaptic organization of the brain.
Oxford University Press

Sporns, O., & Kötter, R. (2004). Motifs in brain networks. PLoS
Biol, 2(11), e369. doi:10.1371/journal.pbio.0020369.

Stroustrup, B. (1997). The C++ programming language (3rd ed.).
Reading, MA: Addison-Wesley.

Tolman, E. (1939). Prediction of vicarious trial and error by
maens of the schematic sowbug. Psychological Review, 46,
318–336.

Verschure, P. F. M. J. (1997). Xmorph: A software tool for the
synthesis and analysis of neural systems. Technical report,
Institute of Neuroinformatics.

Verschure, P. F. M. J., & König, P. (1999). On the role of biophys-
ical properties of cortical neurons in binding and segmenta-
tion of visual scenes. Neural Computation, 11(5), 1113–1138.
doi:10.1162/089976699300016377.

Verschure, P. F. M. J., Voegtlin, T., & Douglas, R. J. (2003).
Environmentally mediated synergy between perception and
behaviour in mobile robots. Nature, 425, 620–624.

Vico, G. (1711). De antiquissima Italorum sapientia ex linguae
originibus eruenda librir tres; On the Most Ancient Wisom
of the Italians Unearthed form the Origins of the Latin Lan-
guage, including the Disputation with “The Giornale de Let-
terati D’Italia” [1711], translated by L. M. Palmer. (Ithaca:
Cornell University Press, 1976). Cornell Paperbacks.

http://dx.doi.org/10.1177/0278364907080253
http://dx.doi.org/10.1007/s12064-008-0038-8
http://dx.doi.org/10.1007/11840817_77
http://dx.doi.org/10.1162/0148926054798133
http://dx.doi.org/10.1109/IS.2008.4670418
http://dx.doi.org/10.1371/journal.pbio.0020369
http://dx.doi.org/10.1162/089976699300016377

	iqr: A Tool for the Construction of Multi-level Simulations of Brain and Behaviour
	Abstract
	Introduction
	Enter iqr

	Developing Neuronal Systems with iqr
	Functional Organisation of an iqr Model
	Graphical User Interface for Specifying Neuronal Models
	The Main User-interface
	Visualising and Analysing System Behaviour
	Recording Data for Off-line Analysis
	Manipulating the System

	Connectivity
	Specifying the Connectivity
	Pattern Types
	Arborization Types
	Delay and Attenuation Functions
	Compact Representation

	Working with Real-world Bio-robots
	Performance

	Support for Work-flow of Simulation Experiments

	Description of Projects Using iqr
	Building a ``Synthetic Insect''
	Implementation and Evaluation
	Summary

	Further Projects

	Conclusion
	Information Sharing Statement
	Appendix: Predefined Neuron Types in iqr
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

