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Abstract The shape of neuronal cells strongly resem-
bles botanical trees or roots of plants. To analyze and
compare these complex three-dimensional structures it
is important to develop suitable methods. We review
the so called tree-edit-distance known from theoreti-
cal computer science and use this distance to define
dissimilarity measures for neuronal cells. This measure
intrinsically respects the tree-shape. It compares only
those parts of two dendritic trees that have similar po-
sition in the whole tree. Therefore it can be interpreted
as a generalization of methods using vector valued
measures. Moreover, we show that our new measure,
together with cluster analysis, is a suitable method for
analyzing three-dimensional shape of hippocampal and
cortical cells.

Keywords Tree-edit-distance · Dissimilarity measure ·
Cluster analysis · Neuromorphometry

Introduction

Branching structures are frequently observed in nature.
Compared to their volume, the surface of such struc-
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tures is relatively big. This allows for a large inter-
face to the environment and increases the possibility
of interaction. Prominent examples are the lung and
blood vessels or the neuronal cells, which will be the
main topic of this document. The branching structure of
neuronal cells is determined partly by inherent genetic
factors, such as place of origin, and partly by mod-
ifications resulting from environmental factors, such
as interaction with surrounding cells. Although there
are no two neurons with the same morphology, there
exist characteristic branching patterns. In studies con-
cerning morphological classification, function-structure
relationship or morphological correlates of diseases
problems arise, where the branching pattern has to
be described precisely to detect significant differences,
which distinguish different cell types (Hillmann 1979;
da Costa et al. 2002). As a next step, algorithms for
the generation of realistic cells can be developed on the
basis of these cell descriptions. These algorithms gen-
erate arbitrarily many non-identical neurons (Ascoli
and Krichmar 2000; Eberhard et al. 2006) and enable
scientists to make simulations with a high number of
cells or to study the impact of even minute changes in
morphology on the function-form relationship (Schäfer
et al. 2003).

In order to get a complete description which captures
characteristic shape variability, well-defined morpho-
logical measures are needed. Following Uylings and
van Pelt (2002) these measures can be divided into two
classes: The first sort of measures describe a feature of
the whole tree, like the number of branching points. A
second sort of measures describe features of a part of
the tree, like the number of branching points subject to
the distance from the soma or degree of the branching
point. This principle can be further extended in defining
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the partitioning of the tree not only by one but by two
or more variables. Schäfer et al. (2003) for example
defines the two-dimensional branching density as the
number of branching points subject to the distance to
the soma and to the terminal tips. The popular Scholl
analysis (Scholl 1953) can also be viewed in this frame-
work. In this measure the orientation of the tree is
taken into account, by counting the number of inter-
sections with equidistant consecutive spheres centered
at the soma.

It is obvious that unimaginably many topological and
metrical measures can be defined in this way (Rocchi
et al. 2007). Due to the high complexity of neuronal
systems it is desirable to isolate a few measures which
capture the whole variability. An analysis of the cor-
relation of different measures and the definition of
generation algorithms on subsets of all measures can
point out redundant measures.

If, on the other hand, we are just interested in de-
tecting significant dissimilarities between different cell
species, it is quite a challenging work to limit the search
on a promising subset of all measures. But since, in most
cases, even with modern microscopy and computer-
based reconstruction methods, less cells than measures
are available, this task is important to establish a con-
clusion at all. The values of these measures give then
a representation of each neuron in an abstract feature
space. In the case of single-valued measures this is just
the vector space R

n, if n is the number of measures.
The dissimilarities between two cells is then given by
a distance metric, e.g. Euclidean metric, of the vector
space. If one can now detect different agglomerations
of feature representations, called clusters, one can con-
clude, that the shape of the associated neurons is more
similar to neurons of the same cluster than to neurons
of another cluster. While for one-dimensional and two-
dimensional feature spaces these agglomerations can
be detected visually, this is a non-trivial problem for
higher dimensions. The various methods for detecting
such clusters are subsumed under the term of cluster
analysis. If we incorporate measures that describe prop-
erties of different parts of the dendritic tree, the feature
space is a more abstract vector space. But the concept
of dissimilarity between different cells can be extended
using norm functions to define dissimilarity between
these components of the feature space.

Another approach to detect groups of cells with
characteristic shape avoids the definition of explicit
measures and determines directly a kind of distance or
dissimilarity between neurons. This approach defines
an abstract distance metric d on the set of all neurons.
We then say that two neurons cell1 and cell2 are similar
if their distance d(cell1, cell2) is small. One recently

presented adaption of this approach uses the so called
Hausdorff distance metric, a metric on abstract sets.
Mizrahi et al. (2000) represent the three-dimensional
shape of a neuron as discrete points, called dendritic
clouds, and define the distance between two cells by the
Hausdorff distance.

A disadvantage of the representations of neurons
that have been described so far is that they strongly
abstract from the real tree-like shape. The represen-
tation in the feature space resembles the tree shape
only with regard to more or less sophisticated mea-
sures like the tree-asymmetry (Uylings and van Pelt
2002) or the measures based on Scholl analysis and
its variations. The representation as dendritic clouds
completely neglects the difference between connected
and disconnected parts of the dendritic tree.

In this paper we introduce a new method to quantify
morphological variability that incorporates the tree-
like shape automatically. This method is based on a
distance between unordered labeled tree-graphs, called
tree-edit-distance, which is known from theoretical
computer science (Wagner and Fischer 1974; Zhang
1996). While many other classification methods re-
ported so far have been formulated and evaluated on
two-dimensional projections of cell shape our method is
for the full three-dimensional morphology and applied
directly to it. By taking into account the full three-
dimensional shape of the neuron, our novel approach,
satisfies the condition of a mathematical distance, un-
like other methods based on 2d projections. This prop-
erty is basic to reliably separate different cells without
the arbitrariness of additional projections.

Methods

Representation of neurons as labeled trees The pro-
posed measure is based on the representation of neu-
rons as node labeled trees. If we consider the dendritic
entities between two branching points as units, called
sections, the topological organization of these sections
is determined by the tree shape and can be presented as
a graph. A graph G = (V, E) is a set V of vertices and a
set of edges E beginning and ending in a vertex. More
precisely, this graph is even a rooted tree in the sense of
graph theory with a root vertex representing the soma.
As the child vertices do not have any special order
imposed by the dendritic tree, this tree representation
is an unordered tree. We can now assign to each vertex
one or more attributes or labels, which describe the
geometry of the underlying section. Finally we con-
clude, that every neuron can be represented as a node
labeled unordered tree. Figure 1 illustrates these ideas.
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Fig. 1 CA1 pyramidal cell (n412) from Duke-Southampton
archive, a clipping and the schematic picture of the represen-
tation as a labeled tree. The dendritic entities between two
branching points or between a branching point and a terminal
tip, called sections, are represented as a vertex t[ik], where ik

is the index of an arbitrary numeration. The geometric prop-
erties of these sections are encoded as labels label(t[ik]) =
(length, surface, volume,...)T of the vertices. The triangles are
placeholders for binary trees. The contour of the whole cell
representation is sketched by dotted triangles and lines

Extracting such a representation from experimental
data is obviously a non-trivial task and a challenging
research area in digital image processing. Although
there are a few reconstruction programs available, e.g.
NEURA,1 there is a demand in improving important
steps such as filtering (Broser et al. 2004), segmentation
or skeletonization (da Costa 2000; Lam et al. 1992).

Tree-edit-distance Wagner and Fischer (1974) pro-
posed in the seventies a distance function between
strings, which is the minimal cost of a sequence
of edit-operations, atomic operation which modify a
string slightly by deleting, inserting or substituting
characters. This was a generalization of the ideas of
Levenshtein (1966) and Hamming (1950). The al-
gorithm for computing this distance function is the
starting-point for many problems that can be modeled
as strings. One famous example is DNA-sequencing
in molecular biology. Later on the idea of finding
minimum cost sequences was transferred to trees (Tai
1979; Selkow 1977). But while there exist algorithms for
computing the edit-distance between ordered labeled
trees, Zhang et al. (1992) and Kilpelläinen and Mannila
(1991) proved that the computation of this distance
is a NP-complete problem in the case of unordered
trees. That means that it is quite improbable to find
an algorithm with polynomial running time solving
this optimization problem. Nevertheless, there exists a

1http://neura.org

slightly modified definition of the edit-distance, called
constrained tree-edit-distance, which was proposed by
Zhang (1996). This distance can be computed in poly-
nomial time. In what follows, we present the principal
ideas concerning the edit-distance between trees.

Adapting the edit-operations on strings substitution,
deletion and insertion operations on trees can now be
defined. The substitution operation changes the label
of a vertex, the insertion operation adds a vertex to the
tree and the deletion operation makes the father of a
vertex v become the father of the children of v and
removes v. Figure 2 illustrates these transformations.
Introducing a symbol λ for denoting the label of the
empty vertex the notation label1 −→ label2 (short: s =
(label1, label2)) can be used consistently for the edit-
operations, e.g. (λ, label) and (label, λ) for insertion
and deletion operation. Then we examine sequences
S = (si)1≤i≤n of those atomic edit-operations that trans-
form one labeled tree T1 into a tree T2. By assigning
a weight γ (s) to each operation si, the weight γ (S) of
each of these sequences S is just defined as the sum of
its elements γ (S) = ∑n

i=1 γ (si). The distance between
the trees T1 and T2 is the minimal weight of a feasible
sequence. Wagner and Fischer (1974) have proven that
in the case of strings this distance is indeed a metric dis-
tance, that means it satisfies non-negativity, identity of
indiscernibles, symmetry and the triangle inequality, if
the weight γ of the edit-operations is a metric distance
on the space of the labels joined with {λ}. This assertion
and the proof can be carried over directly to the case of
trees.

http://neura.org


182 Neuroinform (2009) 7:179–190

Fig. 2 Example of a
sequence of edit-operations.
If the local weight function γ ,
is the discrete metric, e.g.
γ (a, b) = 1 if a �= b and 0
else, the weight of this
sequence is 3. Obviously we
can replace the first two
operations with (b , λ) and get
a sequence of weight 2

As already mentioned, it is unlikely to find a
polynomial-time algorithm for computing the edit-
distance between unordered trees. In order to clarify
the modification of Zhang (1996), yielding the com-
putable constrained tree-edit-distance, the concept of
matching between trees is important. Equivalent to
Fischer’s and Wagner’s (1974) trace between strings
this matching is a kind of structure preserving bijective
mapping from some vertices of the first tree to vertices
of the second one. A trace on two strings preserves
the positions of letters. A matching between trees,
preserves the partial order imposed by the predecessor-
successor-relationship of the vertices. The link be-
tween the two concepts, sequence of edit-operations
and matching, is the fact that given two trees T1 and
T2 and a matching there exists always a sequence of
edit-operations which transforms T1 into T2. On the
other hand every sequence induces a matching. The
weight of a matching is defined by the weight of its
associated sequence of edit-operations. Therefore, the
distance between two trees can either be defined as
the minimum weight of a feasible sequence or, equiv-
alently, as the minimum weight of a matching between
the vertices. Vertices touched by that mapping are
weighted as substitutions, all others are weighted as
insertion or deletion operations (Fig. 3). It is possible to
show that in the case of strings the problem of finding
the minimum weight of a feasible sequence is equiva-
lent to a shortest path problem on a grid-like, edge-
weighted graph, called edit graph, and can therefore
be solved by dynamic programming. To obtain a com-
putable distance function for unordered trees Zhang
(1996) extended the principle of structure preserving
mappings and imposed another constraint to charac-
terize valid mappings, called constrained matching. The
intuitive idea behind this additional constraint is, that
different subtrees of one tree should be mapped on
different subtrees of the second one. This can be for-
malized by introducing the term least common ancestor
lca(node1, node2). If we consider the two paths from the

vertices node1 and node2 to the root vertex of the tree
the lca(node1, node2) is the first vertex that is included
in both paths. In Fig. 3, for example, lca(t2[2], t2[4]) is
the vertex t2[1]. We can now reformulate the definition
of Zhang’s (1996) constrained mapping:

Definition 1 (Constrained matching) Given two la-
beled unordered trees T1 and T2 with vertices
V1 = {t1[1], . . . t1[n1]} and V2 = {t2[1], . . . t2[n2]}, a con-
strained matching M is a set of ordered pairs of vertex
indices:

M ⊂ {1, . . . n1} × {1, . . . n2} (1)

such that, for (i1, i2), ( j1, j2) and (k1, k2) ∈ M:

• i1 = j1 ⇔ i2 = j2;
• t1[i1] is predecessor of t1[ j1] ⇔ t2[i2] is predecessor

of t2[ j2];
• lca(t1[i1], t1[ j1]) is predecessor of t1[k1] ⇔ lca(t2[i2],

t2[ j2]) is predecessor of t2[k2].

Fig. 3 Example of a matching M between the trees T1 and
T2. Formally a matching M is a set of pairs of vertex indices:
M = {(1, 1), (2, 3), (4, 4)}. The set M ∪ {(3, 2)} is not a matching,
because t1[2] is predecessor of t1[3] which is not true for the
image vertices t2[3] and t2[2]. M corresponds to the edit sequence
((c, λ), (b , f ), (λ, c)). Using the discrete metric as local weight
function γ the weight of this matching is 3
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Given a weight function on edit-operations the weight
γ (M) of a matching M is defined as:

γ (M) =
∑

(i, j)∈M

γ (t1[i], t2[ j]) +
∑

(·, j)/∈M

γ (λ, t2[ j])

+
∑

(i,·)/∈M

γ (t1[i], λ) (2)

The last requirement in this definition is Zhang’s ex-
tension and formalizes the idea that separate subtrees
of the first tree should be mapped on different subtrees
in the second tree (see Fig. 4). The constrained tree-
edit-distance between two trees, then, is the minimum
weight of a constrained matching which is indeed a met-
ric distance function on the set of all labeled unordered
trees.

Theorem 1 (Constrained tree-edit-distance) Given two
labeled unordered trees T1 and T2, the constrained tree-
edit-distance

dedit(T1, T2) = min{M|M constrained matching}γ (M) (3)

is a metric on the set of all labeled unordered trees.

Zhang (1996) proves this theorem and gives a recur-
sive formulation for the computation of this algorithm
which leads to a dynamic program that computes the
distance between two trees in polynomial time. For
each pair of vertices t1[i] and t2[ j] a MinCostMax-
Matching problem must be solved to determine first the
distance between the two forests F1[i] and F2[ j], where

Fig. 4 Example for matching M = {(3, 2), (4, 3), (5, 4)} which is
not a constrained matching. Different subtrees of T1 marked
with dotted boxes are mapped on just one subtree of T2. More
precisely the observation that lca(t2[2], t2[3]) is the predecessor
of t2[4] but lca(t1[3], t1[4]) is not that of t1[5] shows that Zhang’s
constraint is violated

the forests are the sets of trees rooted at children of t1[i]
and t2[ j]:
D(F1[i], F2[ j])

= min

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

D(�, F2[ j]) + min
1≤t≤n j

{D(F1[i], F2[ jt])
− D(�, F2[ jt])},

D(F1[i], �)+ min
1≤s≤ni

{D(F1[is], F2[ j])
− D(F1[is], �)},

min
Mlim(i, j)

�(Mlim) MinCostMaxMatching.

(4)

To determine the minimal cost of a constraint match-
ing between forests we need to know the cost of match-
ings of substructures. The matching then either assigns
subtrees of the first forest to subtrees of the second
(MinCostMaxMatching in line 3), or it assigns one
forest, say F1(i), to a subforest F2( jt) of the second
one. The cost is then the sum of the matching cost
D(F1[i], F2[ jt]) and the cost of deleting F2[ j] expect
for its subforest F2[ jt]. These cases are covered by the
first and second line in Eq. 4, where � is placeholder
for the empty forest. Knowing D(F1(i), F2( j)) we can
determine the distance between the trees T1[i] and
T2[ j] rooted at t1[i] and t2[ j]:
D(T1[i], T2[ j])

= min

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D(�, T2[ j])+ min
1≤t≤n j

{D(T1[i], T2[ jt])
− D(�, T2[ jt])},

D(T1[i], �)+ min
1≤s≤ni

{D(T1[is], T2[ j])
− D(T1[is], �)},

D(F1[i], F2[ j]) + γ (i, j).

(5)

Here a constraint matching is either a matching be-
tween the forests and the assignment of the roots (3rd
line in Eq. 5), or the assignment of one tree to a subtree
of the second one (1st and 2nd lines in Eq. 5). Hence the
distance between trees T1(i) and T2( j) is the minimal
cost of all these cases. If the number of direct children
is bounded the complexity of the whole algorithm is
O(|T1||T2|), where |Tk| is the number of vertices in Tk.
We refer to Zhang (1996) for further details on the
complexity and the algorithm.

Cluster analysis Given a set of neurons P = {cell1, . . .

cell2} and using the constrained tree-edit-distance for
the tree representation or another arbitrary distance
function, the dissimilarity between these cells can be
summarized in a distance matrix (Dij)1≤i, j,n, where the
element Dij is the distance between celli and cell j. Due
to the properties of a metric distance, D is symmetric
and Dii = 0. With the concepts of multidimensional
scaling (Härdle and Simar 2003) these distances can
be viewed as the Euclidean distances between vector
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representations in a high dimensional vector space R
n.

There exist a huge number of methods to explore the
distribution of data represented as vectors or described
by dissimilarity measures. While some methods use
training sets to build class predictors others estimate
a distribution of classes solely on the available data.
Statistical discriminant analysis is a proxy for the for-
mer (Lachlan 1992), hierarchical cluster analysis for the
latter. We will focus here on cluster analysis, since class
prediction without a priori knowledge of classes is still
a demanding problem. The aim of cluster methods is
the identification of groups or clusters which embrace
similar and separate dissimilar objects. Agglomerative
hierarchical cluster algorithms arrange the elements
hierarchically in merging iteratively more and more
elements. In our analysis, we use the agglomerative
hierarchical approach of Ward (1963), which yielded
good results in a similar setting (da Costa and Velte
1999). The second method applied there, k-means, is
not applicable for distance matrices. Other clustering
approaches could include model and density based clus-
tering methods (Fraley and Raftery 2002).

Local weight functions As already mentioned geomet-
rical properties of each section are coded as labels
of the representing vertex. These labels could include
length, volume or surface properties of the section, the
path from the section to the soma or the tree rooted at
that section. From a statistical point of view a standard-
ization of labels would be desirable. But if we standard-
ize just each pair of cells, the triangle inequality could
be violated, while the standardization of the whole set
would lead to high computational efforts if we add just
one more cell. As local weight function γ the metric
induced by a l p − norm was chosen.

Definition 2 (Local weight function) Given node la-
beled trees T1, T2, . . . , with node labels label ∈ R

l ∪
{λ}, p ∈ N

+ we define the local weight function γ p for
two labels label1 and label2 as follows:

γ p(label1, label2)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(∑l
k=1 |label1k|p

)1/p
i f label2 = λ;

(∑l
k=1 |label2k|p

)1/p
i f label1 = λ;

(∑l
k=1 |label1k − label2k|p

)1/p
else.

(6)

For l = 1 the weight functions γp are identical for
all p.

Local and non-local labels In the case of constant
labels, e.g. all vertices v have the label labeltop1(v) := 1,

the choice of γ p leads to a distance that counts the
minimal number of vertices that must be deleted and
inserted in a tree T1 to obtain tree T2. This is the direct
extension of Levenshtein (1966) definition of distance
between strings. Ferraro and Godin (2000) has shown
empirically that the value of this distance is strongly
correlated with the difference in number of vertices.
Denoting by |Ti| the number of vertices of tree Ti and
by |Di| ≤ |Ti| the number of vertices that are deleted
from tree Ti, we can state the following two equations
for the edit-distance dtop1

edit using only labeltop1
:

dtop1

edit (T1, T2)
Def. 2= |D1| + |D2|, (7)

|T1| − |D1| = |T2| − |D2|. (8)

Combining these two equations this gives:

dtop1
edit (T1, T2) = 2|D2| + |T1| − |T2|. (9)

We assume without loss of generality that |T1| ≥ |T2|
and get a lower and an upper bound for this distance

0 ≤ |T1| − |T2| ≤ dtop1

edit (T1, T2) ≤ |T1| + |T2| (10)

which is consistent with Ferraros observation.
As it is much easier to examine the topological

structure of neurons than to examine exact geometri-
cal properties like the radius, we define another label
which considers just the topology of a tree Ti:

labeltop2
(v) := 1

|Ti| , v vertex of tree Ti. (11)

Using this label, we model the fact that vertices in small
trees are more important than vertices in bigger trees.
The deletion of a vertex in a small tree is more likely
to destroy the structure than a deletion in a bigger tree.
Recalling that the number of substitutions is equal to
|T1| − |D1|, we can rewrite the value of the constrained
tree-edit-distance dtop2

edit using only labeltop2
as follows

(|T1| > |T2|):

dtop2
edit (T1, T2)

Def. 2= (|T1| − |D1|)
(

1

|T2| − 1

|T1|
)

+ |D1|
|T1| + |D2|

|T2| , (12)

= |T1|−|D1|+|D2|
|T2| + 2|D1|−|T1|

|T1| (13)

Equ. 8= 2
|D1|
|T1| . (14)

We can see that the value of this distance is deter-
mined by the minimal number of vertices that must be
deleted from the bigger tree relative to the number of
its vertices. The substitutions and the deletions from the
smaller tree influence this value just implicitly.
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Along the lines of this second topological label, we
define geometrical labels which can be interpreted as
normalized. This is done by dividing the value of a
geometrical property of a section by the summed values
of the whole tree, e.g.

labelLsec(v) = length(v)
∑

v∈T length(v)
= length(v)

length(T)
. (15)

In Table 1 we summarize 22 different labels. Besides
the two topological labels, we use length, volume and
surface properties in both local and non-local settings.
A pure local setting is e.g. labellsec(v) = length(v) which
is the length of the underlying section v of the den-
drite. labellsoma(v) and labelltree(v) in contrast encode the
length of the dendrite between the soma and section v

and the total length of that part of the dendritic tree
rooted at section v. With this we take into account
the global position of section v within the tree. The

Table 1 Local and non-local labels

k Abbreviation Labelk(t[i])
Topology 1 top1 1

2 top2
1

|T|
Length 3 lsec Length of t[i]

4 lsoma Length from t[i] to soma
5 ltree Length of T[i]
6 Lsec

length of t[i]
length of T

7 Lsoma
length from t[i] to soma

length of T

8 Ltree
length of T[i]
length of T

Volume 9 vsec Volume of t[i]
10 vsoma Volume from t[i] to soma
11 vtree Volume of T[i]
12 Vsec

volume of t[i]
volume of T

13 Vsoma
volume from t[i] to soma

volume of T

14 Vtree
volume of T[i]
volume of T

Surface 15 ssec Surface of t[i]
16 ssoma Surface from t[i] to soma
17 stree Surface of T[i]
18 Ssec

surface of t[i]
surface of T

19 Ssoma
surface from t[i] to soma

surface of T

20 Stree
surface of T[i]
surface of T

21 vSsec
volume of t[i]
surface of T

Angle 22 asec Angle between children of t[i]
T[i] is that subtree of T that is rooted at vertex t[i].

definition of labels depending on global properties is
justified by the constrained matching view point. An-
other label that should emphasise the spatial orienta-
tion is labelasec(v). This label is the angle between the
subsequent sections of v.

Apart from these topological and geometrical labels,
it is possible to attach labels describing channel distrib-
utions or other electrophysiological properties.

Results

To test whether the constrained edit distance is an
adequate method to capture neuronal morphology we
implemented Zhang’s algorithm for computing the con-
strained tree-edit-distance in C++. Our program needs
two or more cells encoded in the hoc-format (Hines
and Carneval 2002) as input and calculates the distance
between each pair of cells. By choosing the labels
that are incorporated during the computation we can
model various ideas of similarity of neuronal shape.
The output is a simple text file containing the distance
matrix. The text file, in turn can be used as an input file
for various tools which compute for a given distance
matrix a partitioning of cells. In our studies we used
cluster tools of the statistic package R Development
Core Team (2008).

We first evaluated the constrained tree-edit-distance
on hippocampal neurons published in the Duke-
Southampton archive (Cannon et al. 1999). This archive
contains several CA1 pyramidal cells, CA3 pyrami-
dal cells, dentate granule cells and interneurons. For

Table 2 Overview over the employed morphologies

Source Cell type Number

Neurons from CA1 pyramidal cells 54 (52)
Duke-Southampton CA3 pyramidal cells 17 (16)
archive http://neuron. Dentate granular cells 36 (35)
duke.edu/cells/ Interneurons 13

Analysis of CA1 pyramidal cells 24 (22)
Cannon et al. (1999) CA3 pyramidal cells 17 (16)

Dentate granular cells 19 (18)
Interneurons 13

Synthetic neurons, L2/3 pyramidal cells 50
generated with NeuGen L5a paramidal cells 50
http://neugen.uni-hd.de L5b pyramidal 50

L4 stellate cells 50
L4 star pyramidal cells 50

The data from Duke-Southampton archive is distributed in
swc-format. During the conversion to hoc format with cvapp
(http://compneuro.org/CDROM/nmorph/download.html) some
errors occurred. The bracketed numbers are the amount of cor-
rectly converted cells. Problems occurred with data sets l10.swc,
n411.swc, n418.swc and n511.swc

http://neuron.duke.edu/cells/
http://neuron.duke.edu/cells/
http://neugen.uni-hd.de
http://compneuro.org/CDROM/nmorph/download.html
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the subsequent analysis we removed the axons and
pooled basal and apical dendrites together. Cannon
et al. (1999) used some of these cells to analyze the
distribution of 32 parameters. They concluded that
pyramidal cells, dentate granule cells and interneurons
form groups which differ significantly in some of these
parameters. Another source for morphologies is the
cell generation tool NeuGen (Eberhard et al. 2006).
This tool generates from distributions of several para-
meters non-identical neurons of morphological classes
of the cortex. In Table 2 we summarize the employed
data.

Partitioning error First we concentrate on the discrim-
ination between two different cell classes, say class A
and B, for which a and b representative cells are avail-
able in the hoc-format. As already mentioned we use
cluster analysis to show that the constrained tree-edit-
distance discriminates between different cell classes.
We calculate the distance of every pair of two cells
and obtain the distance matrix D. Then the clustering
methods generate a clustering C1, C2 ⊂ A ∪ B, C1 ∩
C2 = ∅ of the cells based on their pairwise distances.
The absolute error �abs of a partitioning is the number
of wrongly clustered cells:

�abs =min{|A∩C1|+|B∩C2|, |A∩C2|+|B∩C1|}. (16)

Table 3 Clustering for distances based on single-valued labels

Label |A ∩ C1| |B ∩ C2| |A ∩ C2| |B ∩ C1| �

top1 67 48 1 0 0.02
top2 67 48 1 0 0.02
lsec 67 48 1 0 0.02
lsoma 68 48 0 0 0.00
ltree 66 48 2 0 0.03
Lsec 67 48 1 0 0.02
Lsoma 66 47 2 1 0.05
Ltree 25 0 43 48 0.43
vsec 53 0 15 48 0.91
vsoma 61 0 7 48 0.94
vtree 53 0 15 48 0.91
Vsec 67 47 1 1 0.03
Vsoma 60 48 8 0 0.14
Vtree 20 0 48 48 0.35
ssec 68 48 0 0 0.00
ssoma 53 0 15 48 0.91
stree 50 0 18 48 0.86
Ssec 68 48 0 0 0.00
Ssoma 68 47 0 1 0.02
Stree 21 0 47 48 0.36
vSsec 24 0 44 48 0.41
asec 67 48 1 0 0.02

Set A are 68 pyramidal cells. Set B consists of 48 interneurons
and dentate granular cells.

As �abs ≤ |A|+|B|
2 we define the relative error � as

following:

� = 2�abs

|A| + |B| . (17)

Note that a relative partitioning error � = er means
that er

2 (|A| + |B|) cells were assigned to the wrong
cluster.

Pyramidal and non-pyramidal hippocampal cells Table 3
summarizes the comparison of pyramidal cells and
non-pyramidal cells from hippocampus. As expected
the error for the predicted clustering depends on the
choice of the labels. We observe that the corresponding
labels vsec, vsoma, vtree, ssoma and stree do not capture
the characteristic dissimilarities and we will exclude
them in subsequent discussion. Furthermore, we can
say that distances which describe length and surface
properties lead to better result than those describing
volume properties and for normalized labels the er-
ror is smaller. Nevertheless we can conclude that the
constrained tree-edit-distance reflects the dissimilarity
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Fig. 5 Pairwise clustering of 4 different hippocampal cell groups.
The gray scale of each square shows the range of the particular
partitioning error
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Fig. 6 CA1 and CA3 pyramidal cells can be discriminated quite
well using the label Vtree for the calculation of the constrained
tree-edit-distance. Only one cell is in the wrong class

between pyramidal and non-pyramidal cells, as for
some labels the partitioning error is very small or even
zero. An interesting result is the good prediction prop-
erty of both topological labels top1 and top2, where our
improved label top2 is slightly better.

Hippocampal cell groupings As a next step we want
to examine if the constrained tree-edit-distance repro-
duces the classical hippocampal cell groupings as CA1
pyramidal cells, CA3 pyramidal cells, interneurons and
dentate granule cells. We are restricting our data, fol-
lowing the work of Cannon et al. (1999), to cells that
have been reconstructed with comparable experimental
background. In Fig. 5 we illustrate the ranges of the par-
titioning error if we compare each pair of cell groups.
If we just want to discriminate between pyramidal and
non-pyramidal classes good results are obtained with
labels top2, lsoma, Ssec and Ssoma. The distance using
label top1 fails to discriminate between CA1 pyramidal
and dentate granule cells and between CA1 pyramidal
cells and interneurons. The most interesting observa-
tion in this figure is probably the fact that some labels
lead to a distance that can differentiate quite well be-
tween CA1 and CA3 pyramidal cells. This extends the
result of Cannon et al. (1999) and supports Scorcioni’s
(2004) observation that CA1 and CA3 pyramidals dif-
fer morphologically. In the case of label Vtree this is
shown in a more detailed way in Fig. 6.

The only unsatisfactory aspect here seems to be the
poor result for the classification of interneurons and
dentate granule cells. A closer look on the absolute

3(38)

0(35)

0(40)

0(29)

3(34) 4(31)

A
B

C
D

A B C D

C: 13 interneuron

A: 22 CA1 pyramidal

B: 16 CA3 pyramidal

D: 18 dentate granule

Fig. 7 Number of misclassified cells using the constrained tree-
edit-distance for label Vsec. The number in brackets is the total
sum of cells. For interneurons and dentate granule cells the rela-
tive error is � = 0.26, slightly larger than the chosen threshold

number of misclassified cells, e.g. label Vsec in Fig. 7,
shows that for some labels the number is small and
the relative error is just slightly larger than the chosen
threshold of 0.2. One could try to combine several
labels and distance matrices to improve this result.
A systematic discussion of such derived dissimilarity
measures goes beyond the scope of this work.
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Fig. 8 Pairwise clustering of 5 different cortical cell groups. The
gray scale of each square shows the range of the particular
partitioning error
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Fig. 9 The edit-distance
using label Ssec seems to
discriminate quite well
between different cortical
cell groups
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Synthetic cortical cells Due to the statistical compo-
nents of our and most other approaches analyzing neu-
ronal morphology we need a huge amount of data to
generalize observations. We therefore tested the con-
strained tree-edit-distance on a set of synthetic cells of 5
different cortical cell groups. Using the generation tool
NeuGen (Eberhard et al. 2006), we are able to generate
arbitrary many non-identical L2/3 pyramidal cells, L4
stellate cells, L4 star pyramidal cells, L5a pyramidal
cells and L5b pyramidal cells. This algorithm, based
on a set of descriptive and iterative rules, generates
dendritic morphology in stochastically sampling para-
meters from experimental distributions.

In Fig. 8 we summarize the discriminative power
for every edit-distance and for each pair of corti-
cal cell groups. Here again we can conclude that
the edit-distance and the cluster method can stress
characteristic differences in the morphological shape
of neurons. While so far the presented results were
restricted to the discrimination between two classes,
it is also possible to calculate the distances between
cells from three or more classes and compare the
outcome of a cluster analysis with the known cell
groupings. In Fig. 9 this is illustrated for the edit-
distance using label Ssec. All cells of each cell group
are integrated to one cluster. An ongoing interpre-
tation might observe that L5b pyramidal cells to-
gether with L2/3 pyramidal cells and L5a pyramidal
cells together with L4 stellate cells form two general
groups.

Discussion

In this work we reviewed the constrained tree-edit-
distance introduced by Zhang (1996) and showed how
this distance measure can be used to obtain a dissimilar-
ity measure for dendritic arborization. The comparison

of several hippocampal and cortical cell classes has
shown that the constrained tree-edit-distance together
with cluster analysis can indeed discriminate different
classes.

The disadvantage of single-valued measures like the
number of branching points or the total length is the
loss of characteristics by the averaging process. Vector
valued measures like the Scholl (1953) analysis try to
overcome this problem by defining different regions
and reducing the comparison of different cells to the
comparison of similar regions. We think that it is
quite an artificial step to decide a priori which parts
of two cells represent regions, that are in some sense
equivalent. In cases where the examined cells are well-
studied, knowledge about characteristic differences will
lead to good measures. But in the general case we
are interested in measures which stress characteristic
dissimilarities, which are yet unknown. So we need to
observe a huge amount of measures, measures which
are both general and complete. Completeness is an
outstanding problem which could be investigated by
generation algorithms (Ascoli and Krichmar 2000) and
correlation analysis.

The constrained tree-edit-distance intrinsically fol-
lows the principle of comparing only equivalent parts
of the dentritic tree. Unlike other measures, the equiv-
alent parts are determined dynamically during the com-
putation of the distance value. Equivalent parts are
those sections which are touched by the constrained
matching with minimum costs. With the definition of
this constrained matching it is clear that these sections
have topological equivalent positions in the dentritic
arborization. On the other hand the constrained tree-
edit-distance can be regarded as the weight of a
sequence of some simple transformation operations
which simulate a kind of evolutionary process. This in-
terpretation shows again that the constrained tree-edit-
distance automatically takes into account the tree-like
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shape. We gain this methodical superiority by the use
of digital reconstructed data. But these reconstructions
are just an approximation to the real morphologies and
functional relevance should be interpreted carefully. It
is important to single out artifacts due to preprocessing
steps. But this does not disqualify the tree-edit distance,
since any morphological measure is based on derived
data.

The use of non-local labels such as the distance to
the soma or the tree size above a section takes into
account the spatial distribution of neuronal shape. The
results show that the edit-distances based on such labels
can discriminate quite well between shapes of differ-
ent three-dimensional distribution. There are other re-
cently reported methodologies including the excluded
volume (da Costa et al. 2005), the Minkowski func-
tionals (Barbosa et al. 2004) or the percolation critical
density (da Costa and Manoel 2003), that put special
emphasis on the spatial distribution. They have been
found to be effective means for expressing differ-
ent aspects of spatial distribution in the case of two-
dimensional representation of cells. It seems to be
obvious that this generalizes to three-dimensional rep-
resentations. If this is indeed the case it would be
interesting to study the correlation of these measures
with the constrained tree-edit-distance. A further topic
would be the combination of e.g. percolation and tree-
edit-distance. The time consuming percolation mea-
sures could be evaluated for just a few cells and the
results may then be applied for all cells that are close
in the sense of some tree-edit-distance. The recently
released data base NeuroMorpho.Org2 (Ascoli et al.
2007) is a source of data for such intensive studies.

We used the distance matrices and cluster analysis to
predict classes and compared these with a priori known
partitioning. Provided we have enough data the next
step is then the search for certain new subclasses. In
this we just have to examine the hierarchy produced
by the cluster methods. Alternatively we could use the
constrained tree-edit-distance to determine whether
some new cell is closer to one or the other known class
of cells. This amounts in calculating the distance to
each cell and checking for some minimal distance. A
further application is the validation of virtual neurons
(Eberhard et al. 2006) which was already sketched here.
It should be even possible to use the constrained tree-
edit-distance to tune the parameters of generation algo-
rithms by an iterative procedure. Given an initial choice
of parameters for a given class, we generate artificial
cells, calculate their distances to a set of real cells and

2http://neuromorpho.org

check whether a slight change in the parameters could
decrease the distances. The new parameter values are
then the initial choice for the next iteration.

By the definition of labels and the local weight func-
tion γ it is possible to model various ideas of similarity.
Apart from the metrical labels examined in this work,
it is for example possible to use channel distributions
as labels. We showed that even topological versions of
the constrained tree-edit-distance yielded considerable
results. Furthermore we extended Cannons (Cannon
et al. 1999) results and showed that CA1 and CA3 pyra-
midal cells can be discriminated by their morphological
shape.

The limited number of cells is the weakest part in this
and most other classification approaches. We hope that
further research can benefit from increasing willingness
to share reconstruction data (Ascoli 2007; Liu and
Ascoli 2007).

Information Sharing Statement

Specific requests regarding the implementation of the
constrained tree-edit-distance and the cluster analysis
should be addressed to the corresponding author. We
will make our implementation available on request.
The code, however, was not written for a general public.
Using it will need some proficiency in dealing with
advanced and experimental computer codes.
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