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Abstract
Purpose Polycystic ovary syndrome (PCOS) is one of the most common endocrine and metabolic disorders, posing a
serious threat to the health of women. Herein, we aimed to explore new biomarkers and potential therapeutic targets for
PCOS by employing integrated bioinformatics tools.
Methods Three gene expression profile datasets (GSE138518, GSE155489, GSE106724) were obtained from the Gene
Expression Omnibus database and the differentially expressed genes in PCOS and normal groups with an adjusted p-
value < 0.05 and a |log fold change (FC) | > 1.2 were first identified using the DESeq package. The weighted correlation
network analysis (WGCNA) R package was used to identify clusters of highly correlated genes or modules associated with
PCOS. Protein-protein interaction (PPI) network analysis and visualization of genes in the key module were performed using
the STRINGdb database and the NetworkX package (edge > 5), respectively. The genes overlapping among the key module
genes and PCOS-associated genes were further analyzed. Ligand molecules with strong binding energy <−10 kJ/mol to
GNB3 were screened in the drug library using MTiOpenScreen. AutoDock, ChimeraX, and BIOVIA Discovery Studio
Visualizer were further used to elucidate the mechanism of ligand interaction with GNB3. Finally, the relationship between
GNB3 and PCOS was verified using experimental models in vivo and in vitro.
Results Of the 11 modules identified by WGCNA, the black module had the highest correlation with PCOS (correla-
tion= 0.96, P= 0.00016). The PPI network of 351 related genes revealed that VCL, GNB3, MYH11, LMNA, MLLT4, EZH2,
PAK3, and CHRM1 have important roles in PCOS. The hub gene GNB3 was identified by taking the intersection of PCOS-
related gene sets. MTiOpenScreen revealed that five compounds interacted with GNB3. Of these five, compound 1 had the
strongest binding ability and can bind amino acids in the WD40 motif of GNB3, which in turn affects the function of the G
protein-coupled receptor β subunit. GNB3 was also significantly downregulated in PCOS models.
Conclusion We identified the hub gene GNB3 as the most important regulatory gene in PCOS. We suggest that compound 1
can target the WD40 motif of GNB3 to affect related functions and must be considered as a lead compound for drug
development. This study will provide new insights into the development of PCOS-related drugs.
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Abbreviations
PCOS Polycystic ovary syndrome
GCs Granulosa cells
DEGs Differentially expressed genes

BMI Body mass index
WGCNA Weighted gene co-expression network analysis
GEO Gene Expression Omnibus
GO Gene ontology
KEGG Kyoto Encyclopedia of Genes and Genomes
PPI Protein–Protein Interaction.

Introduction

Polycystic ovary syndrome (PCOS) is one of the most
common endocrine and metabolic disorders, characterized
by polycystic ovaries, hyperandrogenemia, hypermenor-
rhea, hyperinsulinemia, chronic anovulation, and metabolic
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disorders [1–3]. PCOS has a complex pathophysiology that
affects approximately 6–10% of women of reproductive
age, and also leads to an increased risk of diabetes and
cardiovascular disease, posing a serious health risk to
women [4, 5].

PCOS often presents in familial clusters, suggesting that
genetic factors play an important role in PCOS [6].
Although great efforts have been made in genome-wide
association studies for decades, only a few genetic variants
have been identified in different populations, which account
for nearly 10% of the heritability of PCOS, and the mole-
cular genetic mechanism of PCOS is still unclear [7, 8]. As
a component of the ovary, granulosa cells (GCs) surround
the oocyte and have a role in maintaining the intracellular
environment. Dysfunction of GCs may lead to abnormal
follicle development [9].

Unlike previous methods of analyzing differentially
expressed genes (DEGs) between samples, weighted gene
co-expression network analysis (WGCNA) focuses on
correlations between genes, which can reduce bias and
subject judgment [10, 11]. The advantage of WGCNA is
that it can quickly filter out the set of genes associated with
a specific phenotype from massive data and identify hub
genes that play an important role in transcriptional regula-
tion [12].

This study aimed to screen novel biomarkers in GCs
associated with PCOS using WGCNA-based screening. We
first screened for PCOS-associated core genes in the RNA-
seq datasets. Furthermore, we used molecular docking to
identify small molecule compounds that may act on the hub
gene. Finally, we checked the levels of the hub gene
expression in the PCOS models in vitro and in vivo. Our
study highlights the importance of key genes in the etiology
of PCOS and provides a basis for subsequent small mole-
cule drug development.

Materials and methods

Data collection

GCs provide nutrients and growth regulators for oocyte
development and play an important role in PCOS devel-
opment. We obtained the GSE138518, GSE155489, and
GSE106724 gene expression datasets from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/) for studies of GCs in PCOS with 10
controls (control group) and 14 PCOS patients (case group).
The NCBI database (https://www.ncbi.nlm.nih.gov/gene)
and OMIM database (https://omim.org) were used to screen
PCOS disease genes [13, 14]. Ethical approval was obtained
to report on the patients involved, as all databases used in
this study are public databases.

The three datasets contained PCCS patients with similar
features. The patients included in the GSE138518 dataset
were diagnosed with PCOS by clinicians by at least two of
the three Rotterdam criteria. The control group included
fertile or infertile women with tubal blockages and with
normal menstrual cycles, no polycystic ovary morphology, or
other chronic diseases. All participants were non-related Han
people aged between 20 and 35 years [15]. The patients
included in the GSE155489 dataset were diagnosed with
PCOS based on the Rotterdam criteria. The control group
had regular menstrual cycles, normal sonographic appearance
of ovaries, and no diabetes or clinical signs of PCOS. The
study subjects included the control group with body mass
index (BMI) between 17.70 and 23.50 and PCOS patients
with BMI between 19.00 and 28.10 [16]. The average age of
the PCOS patients and controls was 32.40 ± 1.29 and
35.60 ± 2.23, respectively. The patients included in the
GSE106724 dataset were diagnosed by clinicians based on
the Rotterdam criteria. All controls were women with regular
menstrual cycles and sex hormone levels within normal
ranges. All patients were aged younger than 35 years. For
each patient, ovarian morphology was assessed by ultrasound
to exclude structural abnormalities [17].

Screening of DEGs

Data from the GEO database were used for determining
gene expression levels based on the number of reads [18].
The read counts were normalized using the DESeq package
for differential expression analysis. Genes were considered
statistically significant at p-value < 0.05 and a |log fold
change (FC)| > 1.2. DEGs were visualized using the pheat-
map package and EnhancedVolcano package in R.

Functional enrichment analysis

Gene ontology (GO) analysis was used to identify the
possible molecular function of and visualize the potential
biological significance of the large list of genes [19]. Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
(http://www.genome.ad.jp/kegg/) was used to analyze the
potential functions of the identified DEGs [20]. Enrichment
analysis was conducted using the DisGeNET (https://www.
disgenet.org/) [21] database and clusterProfiler package.
KEGG enrichment analysis was conducted using the
TCGAbiolinker API package. The biological process terms
with a p-value < 0.05 were considered statistically
significant.

WGCNA analysis for the identification of hub genes

Analysis of differentially expressed mRNAs was performed
using the R software based on the criteria of |Fold Change|
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>1.2 and error detection rate (FDR) < 0.05 [22]. WGCNA is
a systems biology method for describing correlation pat-
terns between genes across multiple samples [11, 12].
Differentially expressed mRNAs were screened for deter-
mining the modules most relevant to PCOS using the
WGCNA package. The correlation matrix (Sij) was con-
verted to an adjacency matrix (Aij) based on soft threshold
β that can approximate the scale-free distribution (R2 > 0.8).
This transformation allowed us to build networks with
higher biological signals, which is the focus of the WGCNA
approach. A topological overlap matrix was used for the
visualization of a simplified network diagram for module
identification. The hierarchical clustering tree formed by
average linkage hierarchical clustering was also used in the
determination of modules. To identify the key modules
closely related to PCOS, module eigengene, gene sig-
nificance, module membership, and other parameters were
calculated using different settings in the WGCNA model.
The genes in the key modules with high correlation and
signification were further analyzed using disease enrich-
ment and KEGG enrichment analysis to explore the biolo-
gical functions of the genes in the key modules. Genes from
the enriched pathway were crossed over with genes in the
PCOS-related modules to determine hub genes for further
analysis.

Construction of protein-protein interaction (PPI)
network

A PPI network was generated using the STRING database
(https://string-db.org), limiting the category to “Homo
sapiens” [23]. The degree of node > 3 was selected for the
PPI network., and the networkx package in python 3 was
used to visualize the PPI network.

Molecular docking

The number of edges in a PPI network represents the
interactions of a protein, therefore, by counting the edges,
we identified GNB3 as the protein most associated with
PCOS. A library of compounds was screened for identifying
the target compounds of GNB3. MTiOpenScreen (http://
bioserv.rpbs.univ-paris-diderot.fr/services/MTiOpenScreen/)
enables researchers to apply virtual screening using different
chemical libraries on traditional or more challenging protein
targets such as protein-protein interactions [24]. Autodock is
a widely used molecular docking software that allows con-
formational changes in small molecules to bind free energy
as a basis for evaluating docking results [25]. BIOVIA
Discovery Studio Visualizer is a feature-rich molecular
modeling application for viewing, sharing, and analyzing
protein and small molecule data [26]. ChimeraX
(https://www.cgl.ucsf.edu/chimerax/) is a molecular

visualization tool that allows hydrogen bonding analysis,
atomic contacts, and sequence presentation [27]. AutoDock,
ChimeraX, and BIOVIA Discovery Studio Visualizer were
used to elucidate the mechanism of ligand interaction with
GNB3. The binding strength between GNB3 and com-
pounds was evaluated based on binding energy and hydro-
gen bonding analysis [28].

Cell Culture and development of PCOS cell model

KGN cells, a steroidogenic human granulosa cell-like tumor
cell line was purchased from iCell Bioscience Inc (China)
and identified by short tandem repeat profiling. Cells were
maintained in Dulbecco’s modified Eagle medium F-12
supplemented with 10% fetal bovine serum and penicillin/
streptomycin (100 units/ml) at 37 °C and 5% CO2. Cells
were stimulated with DHEA (Macklin, China) for 48 h to
simulate the PCOS model in vitro.

Construction of PCOS mouse model

A PCOS mouse model was established in 23-day-old
C57BL/6 female mice by daily subcutaneous injection of
60 mg/kg DHEA (Macklin, China) for 21 days [29]. All
animal procedures were conducted under the approval of
the Animal Care and Use Committee of Southwest Medical
University. On the last day of injection, the mice were
executed by cervical dislocation and ovarian tissues were
collected and set aside.

Western blot analysis

Fresh cells were lysed with RIPA lysis buffer. Protein was
separated by SDS-PAGE and transferred onto PVDF
membranes. The membranes were incubated in primary
antibodies against GNB3 (PU201127,1:3000) and β-actin
(66009-1-Ig,1:10000). HRP-conjugated antibodies against
mouse or rabbit (1:10000, Proteintech Group, Inc.) were
used as the secondary antibodies. Immunoblot imaging was
performed using the BIO-RAD ChemiDoc™ XRS+
Molecular Imager. The western blot was normalized to
β-actin.

RNA extraction and RT-qPCR analysis

Total RNA was isolated using TRIzol reagent (Invitrogen).
RNA was synthesized into cDNA using the HiScript II 1st
Strand cDNA Synthesis Kit (Vazyme). Taq Pro Universal
SYBR qPCR Master Mix (Vazyme) was used to perform
quantitative PCR (qPCR). QuantStudio™ Design & Ana-
lysis Software was used to analyze the samples. Gene
expression was normalized to that of ACTB. The following
primers were used:
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β-actin(H):
5′-CATGTACGTTGCTATCCAGGC-3′ (Forward)
5′-CTCCTTAATGTCACGCACGAT-3′ (Reverse)
β-actin(M):
5′-GGCTGTATTCCCCTCCATCG-3′ (Forward)
5′-CCAGTTGGTAACAATGCCATGT-3′ (Reverse)
GNB3(H):
5′-CGGACGTTAAGGGGACACC-3′ (Forward)
5′-CGAGGCACTTACCAGCAGC-3′ (Reverse)
GNB3(M):
5′-AAGAAGCAGATTGCTGATGCC-3′ (Forward)
5′-GTCCCCTTAATGTCCTCCGTG-3′ (Reverse)

Statistical analyses

All data are expressed as mean ± SEM. Statistical analysis
was performed using the GraphPad Prism 8 software.

Differences between two independent groups were calcu-
lated using Unpaired Student’s t-test and one-way ANOVA
with Tukey’s multiple-comparisons test. P-values < 0.05
were considered statistically significant and are denoted as
follows: * < 0.05, ** < 0.01, and *** < 0.001.

Results

Annotation of DEGs in GCs of PCOS patients and
KEGG pathway analysis

As shown in Fig. 1, the GSE138518, GSE155489, and
GSE106724 datasets contained 2043 (1419 mRNA and 624
ncRNA), 5257 (3843 mRNA and 1414ncRNA) and 16,537
(6369 mRNA and 10,168 ncRNA) DEGs. Of the 5257 DEGs
in GSE155489, 2751 were up-regulated and 2506 were
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Fig. 1 The GEO database for differentially expressed genes of GCs in
PCOS. Differential expression genes of GSE138518, GSE155489,
GSE106724 was shown in the heatmap (up panel) and Volcano plot
(down panel). The red cell was the upregulation gene and the green

was the downregulation gene in the heatmap, the expression sig-
nification was shown as log10 p values in the y axis and the fold
change was shown in the x-axis in the Volcano plot
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down-regulated (Fig. 1). Of the 16,537 DEGs in GSE106724,
2673 were up-regulated and 13,864 were down-regulated (Fig.
1). Next, we performed DisGeNET and KEGG analyses of the
DEGs in each dataset and found that functionally, DEGs were
mainly enriched in acute infectious diseases, increased serum
lactate, and increased serum lactate (Fig. 2A–C). Pathway
analysis revealed that DEGs were mainly enriched in the
synthesis, secretion, and action of the growth hormone and the
metabolism of fructose and mannose (Fig. 2A–C). These data
corroborate the fact that PCOS is a hormone-regulated meta-
bolic disease closely related to inflammation.

Construction of WGCNA modules using PCOS gene
sets

Due to the scale-free indexes of the GSE106724 and
GSE138518 datasets have a non-scale-free network dis-
tribution, we choose the GSE155489 dataset for WGCNA
analysis. After excluding the missing and abnormal values,

4731 mRNAs were further analyzed. For WGCNA analysis,
the soft threshold power was selected as 11 to ensure a
scale-free network distribution (scale-free index R2 > 0.9;
connectivity= 1) (Fig. 3A). At this point, the network
conforms to the power-law distribution, which is closer to
the real biological state. The gene dendrogram and corre-
sponding module colors are shown in Fig. 3B. A total of 12
modules were identified by the Dynamic Tree Cut algorithm
(Fig. 3B), and 596, 595, 566, 559, 555, 552, 524, 504, and
282 DEGs were enriched in the blue, black, yellow,
magenta, red, purple, turquoise, pink, brown, green and
green module, respectively. The phenotypic gene set heat
map, revealing the correlation between module genes and
PCOS, yielded the highest correlations for the black and
pink modules (Fig. 3C). The correlation value and p-value
of the regression curve in the module membership vs. gene
significance curve (r= 0.96, P < 0.01) also suggested that
genes in the black modules may be correlated with PCOS
(Fig. 3D). We extracted the 421 relevant genes and DEGs
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expression profiles from the black module for further ana-
lysis. We found that the module gene set was significantly
and positively correlated with the development of PCOS,
and should be further investigated (Fig. 3E).

Screening for hub genes in PCOS

The STRINGdb database was used to identify key genes
using the NetworkX package in python for PPI analysis and
visualization of genes in the black module. There were 38
nodes in the PPI network representing protein interactions
(Fig. 4A). Genes overlapping in the black module and those
related to PCOS in previous reports are shown in Fig. 4B,
and 24 related genes were identified (Fig. 4C). GNB3 with a
high degree (nodes) in the network was identified to be
associated with PCOS. Previous reports have shown that

GNB3 overexpression is associated with obesity and
metabolic syndrome, and insulin resistance and high adip-
osity and metabolic syndrome are known features of PCOS
[30]. Considering the functional diversity (number of edges)
in the PPI network, we hypothesize that GNB3 may be an
important regulatory gene in PCOS (Fig. 4A, C). We also
performed enrichment analysis of the genes associated with
the black module as well as those that play a role in PCOS.
We found that genes associated with the black module were
significantly associated with the TNFR1 signaling pathway
(Fig. 4D), while PCOS-related genes as determined by
genecards and the Catalog of Human Genes and Genetic
Disorders database (OMIM) were mainly significantly
associated with the inflammatory and metabolic disorder
pathway (Fig. 4E). The above results suggest that GNB3
may be an important inflammatory regulator in PCOS.

Black module genes PCOS genes

397
(15.5%)

1891
(83.5%)

24
(1.1%)

Hubgene in the PCOS
ACHE ECT2 LPIN1
ADRA1D FADD MAPK8IP1
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AVPR1A GNRH1 PEA15
AZGP1 HIVEP1 SLC39A5
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0.0 0.5 1.0 1.5 2.0 2.5

TNFR1 Signaling (n=4)

0.0 0.2 0.4 0.6 0.8 1.0

−log10(FDR)

0.0 1.0 Pathways enrichment in the PCOS related genes

−log10(FDR)
0 10 20 30 40

G−Protein Coupled Receptor Signaling (n=82)

Aryl Hydrocarbon Receptor Signaling (n=59)

FXR/RXR Activation (n=47)

IL−6 Signaling (n=56)

Factors Promoting Cardiogenesis in Vertebrates (n=49)

Role of NANOG in Mammalian Embryonic Stem Cell Pluripotency (n=55)

IL−12 Signaling and Production in Macrophages (n=60)

Human Embryonic Stem Cell Pluripotency (n=63)

TGF−_ Signaling (n=51)

PPAR_/RXR_ Activation (n=72)

NF−_B Signaling (n=71)

Pancreatic Adenocarcinoma Signaling (n=59)

Colorectal Cancer Metastasis Signaling (n=88)

Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis (n=102)

Acute Phase Response Signaling (n=79)

Hepatic Fibrosis / Hepatic Stellate Cell Activation (n=72)

Molecular Mechanisms of Cancer (n=113)

Glucocorticoid Receptor Signaling (n=103)

LXR/RXR Activation (n=72)

Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis (n=97)

A

D E

B C

Fig. 4 Screening of core hub gene in PCOS. A The hub genes were
identified from the black module gene dataset by PPI. B The Venn
diagram of PCOS disease gene dataset and black module gene dataset.
C Hub-genes in PCOS were shown. GNB3 marked in red is the core
hub gene with PCOS. D The gene enrichment analysis of the black

module gene dataset. E The gene enrichment analysis of the PCOS
disease gene which is annotation in the OMMI database and Gene-
cards database. The biology process terms with a p-value < 0.05 were
considered statistically significant

Fig. 3 Identification of PCOS-related modules by WGCNA. A The
impact of soft-threshold power on the scale-free topology fit index
curve was shown in the left panel; the right panel displays the impact
of soft-threshold power on the mean connectivity. B Gene clustering
tree (dendrogram) obtained by hierarchical clustering of adjacency-
based dissimilarity. C The module-phenotype relationships. Each row
corresponds to a module eigengene, column to the phenotype (Normal
or PCOS). The correlation and p-value were also shown in the cells;

red for positive correlation and blue for negative correlation. D The
Module membership vs. gene significance curve indicated the black
module gene is the most correlation with the PCOS. E Black module
gene dataset shown that the 421 genes in the module, which were
relation with the PCOS. Threhold of FilterGenes was identified by abs
(GS1) > 0.9 and abs (datKME$MM.black) > 0.9. Analysis was per-
formed using R software based on the criteria of | Fold Change | >1.2
and error detection rate (FDR) < 0.05
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Screening of small molecule compounds targeting
GNB3

GNB3 forms the β3 subunit of G proteins and has a major
regulatory role in the function of G protein-coupled recep-
tors [29, 30]. We constructed the 3D structure of GNB3
using alphafold. Then, the possible binding pockets of
GNB3 were evaluated by Ghecom (http://biosig.unimelb.
edu.au/). We chose the top-ranked pocket locations and
obtained the center of the pockets as −3.09, 3.976, and
−2.765 points (x, y, z). We screened the molecules binding
GNB3 using MTiOpenScreen and selected five compounds
with binding energy <10 kJ/mol according to the change of
ligand binding energy (Fig. 5 and Table 1).

Conformational analysis of GNB3 and its ligand

Analysis of the 3D structure of GNB3 suggested that it has a
β-helical WD40 superprotein structure with seven blades
(Fig. 6A). Autodock analysis in the PyRx software was
used to determine the structure of the complex formed
between compound 1 and GNB3 [31]. Visualization
revealed that compound 1 was bound to the central region
of the WD40 motif superstructure of GNB3 through
hydrogen bonding, hydrophobic bonding, and electrophilic
interaction (Fig. 6B). In particular, compound 1 interacts
with LEU190, VAL276, and SER316 of GNB3 via
hydrogen bonding and with ALA60, ARG150, LEU190,
CYS233, and CYS317 of GNB3 via hydrophobic and
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oxazol-5-yl)-N-(2-phenylethyl) benzenesulfonamide, (4) 2-[2-(3,4-
dimethoxyanilino)-1,3-thiazol-4-yl]benzo[f] chromen-3-one, (5) N-(1-
benzothiophen-2-yl)-4-[(2-chloro-6-fluorophenyl)methyl]piperazine-
1-carboxamide

Table 1 The feature and the
binding energy of ligands that
binding with GNB3

Compound (SMILES) Model ID Energy LogP MW

COc1ccc(NC(=O)c2cc3c(ccn(Cc4ccco4)c3=O)nc2C)cc1 1 −10.4 2.28 389.404

COC(=O)c1ccc(Cn2nc(ccc2=O)-c2ccccc2)cc1 2 −10.3 2.79 320.3419

Cc1cc(on1)-c1ccc(C)c(c1)S(=O)(=O)NCCc1ccccc1 3 −10.2 3.72 356.4387

COc1ccc(Nc2nc(cs2)-c2cc3c(ccc4ccccc34)oc2=O)cc1OC 4 −10.1 5.68 430.4757

Fc1cccc(Cl)c1CN1CCN(CC1)C(=O)Nc1cc2ccccc2s1 5 −10 4.5 403.9008
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electrophilic interactions (Fig. 6C, D). These results suggest
that compound 1 may serve as a lead compound for tar-
geting GNB3 drugs and has important potential in the
development of new drugs for PCOS.

GNB3 is significantly downregulated in PCOS

To verify whether GNB3 is a hub gene in PCOS, we
established PCOS models in vivo and in vitro. To reduce
heterogeneity, we collected mouse ovaries for follow-up
testing in a combined sample of the control and PCOS
groups. The results showed that GNB3 mRNA levels were
significantly reduced in the PCOS mouse model (Fig. 7A).
The expression of GNB3 in KGN cells was also decreased
after DHEA treatment (Fig. 7B). Consistent with RNA
levels, the protein levels of GNB3 were significantly

reduced in the PCOS model (Fig. 7C, D). These results
suggest that GNB3 is significantly associated with and may
be valuable in the study of PCOS.

Discussion

WD40 can assemble into different complexes by interacting
with multiple proteins, DNA, or RNA. These complexes
regulate a variety of important biological functions in living
organisms, including DNA damage repair, DNA replica-
tion, histone methylation site recognition, phosphorylation
site recognition, ubiquitinated substrate recognition,
assembly of apoptotic vesicles, vesicle formation, cell sig-
naling, and nucleolar pore formation [31–33]. Moreover,
many mutated sites on the WD40 domain proteins have
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Sheets and strands. B The conformation of GNB3-ligand complex was

shown with the H-bond (green dash lines) and atom distance (the
number). GNB3 was shown in the post docking analysis visualized by
Discovery Studio Visualizer in both 3D (C) and 2D (D) models
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been shown to be associated with several human diseases
[34, 35].

GNB3 encodes the G protein β3 subunit. In vivo, the
specific interactions of the Gβ subunit with the Gα and Gγ
subunits have not yet been clarified [30, 36]. Mutations in
GNB3 (C825T) have been shown to be located in exon 10
of GNB3, and although they do not change the amino acid
sequence, the T allele is associated with variable splicing in
exon 9, which can affect various diseases such as hyper-
tension and obesity [37, 38]. Therefore, GNB3 may be
closely related to metabolic diseases. PCOS is one of the
most common endocrine and metabolic disorders with a
complex pathophysiology and poses a serious threat to the

health of women [39, 40]. The pathogenesis of PCOS
remains largely unknown; follicles in patients with PCOS
are arrested during the small sinus follicular phase and are
not recruited to develop into mature follicles, thus stopping
ovulation [9]. GCs in the follicles provide nutrients and
growth regulators for oocyte development, which is essen-
tial for follicle development and ovulation [9]. Therefore,
the analysis of GCs is important in PCOS research. GNB3
is associated with obesity and metabolic syndrome, and the
essence of PCOS is metabolic abnormalities. Therefore, the
selective targeting of drugs to GNB3 may be valuable in the
treatment of PCOS. In our study, we found that compound 1
interacts with GNB3 mainly through hydrogen bonds and
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hydrophobic bonds, which may affect its binding to Gα and
Gγ. It has been shown that Aβ42 is an FPR2 receptor
agonist, and analysis of the structural complexes of FPR2
and G proteins revealed that the Gβ subunit (GNB1) has
direct interactions with Gα as well as Gγ [41]. GNB3 and
GNB1 belong to the Gβ family with similar amino acid
sequences and may have close structural functions. There-
fore, we speculate that compound 1 may function as an
agonist of GNB3, but this needs further validation.

WGCNA is used to analyze the association between
genes and cluster them into modules that depict the complex
relationships in the network of gene regulation [12].
NcRNAs play an important role in PCOS development.
Therefore, analysis of the correlation between these mod-
ules and sample phenotypes can reveal the molecular
characteristics of specific phenotypes, which is more
advantageous than the DEGs method [42]. In this study, the
WGCNA method was used to screen the gene modules
significantly associated with PCOS and functional enrich-
ment analysis of the genes in these modules was then
conducted. The hub gene GNB3 was mined to PCOS in
association with the disease gene set, and molecular dock-
ing was used to screen for compounds binding GNB3. We
also assessed the expression of GNB3 in PCOS models. We
found that GNB3 was significantly downregulated in the
PCOS models, suggesting that GNB3 may be a potential
target in PCOS. Our study is limited in that we only
determined the differential phenotypic expression of GNB3
in PCOS, and its functional role needs further validation.

Nevertheless, we used integrated bioinformatics tools to
screen for GNB3, the core hub gene of PCOS, and uncover
the most promising target compound, providing important
clues in the development of new drugs for PCOS.

Conclusions

Based on public databases and multiple computer algo-
rithms, we identified GNB3 as a core hub gene in PCOS,
and suggest that it may be an important regulator of
inflammation in PCOS. Analysis using MTiOpenScreen
revealed five compounds from the drug library that inter-
acted with GNB3 and finally selected compound 1 with the
strongest ability to bind GNB3. Compound 1 was found to
bind amino acids in the WD40 motif of GNB3 forming the
β-subunit, which in turn affects the function of the G
protein-coupled receptor. Meanwhile, the in vivo and
in vitro analysis confirmed that GNB3 was significantly
downregulated in PCOS models. Therefore, we postulate
that GNB3 is associated with PCOS and its ligands must be
considered for the development of drugs for PCOS. This
study will provide new insights into the development of
PCOS-related drugs.
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