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Abstarct

Aims We aimed to assess the dose—response relationship between triglyceride—glucose (TyG) index and the incidence of
type 2 diabetes mellitus (T2DM).

Methods We performed a comprehensive systematic literature search using PubMed, Scopus, and Embase for records
published from inception until 9 February 2021. The effect estimates were reported as relative risks (RRs).

Results 270,229 subjects from 14 studies were included in this systematic review and meta-analysis. The pooled incidence
of T2DM was 9%. Meta-regression analysis indicates that baseline age (coefficient: 0.67, p = 0.026), drinking (coefficient:
0.03, p =0.035), and HDL (coefficient: —0.89, p = 0.035) affected the incidence of T2DM in future. High TyG index was
associated with increased incidence of T2DM in pooled unadjusted (RR 4.68 [3.01, 7.29], p < 0.001; P 96.6%) and adjusted
model (adjusted RR 3.54 [2.75, 4.54], p <0.001; I*: 83.7%). Dose—response meta-analysis for the adjusted RR showed that
the linear association analysis was not significant per 0.1 increase in TyG index (RR 1.01 [0.99, 1.03], p = 0.223). There is a
non-linear trend (p <0.001) for the association between TyG index and incidence of T2DM. The dose-response curve

became increasingly steeper at TyG index above 8.6.

Conclusions TyG index was associated with the incidence of T2DM in a non-linear fashion.

Keywords Cohort - Diabetes * Insulin resistance - Triglyceride—glucose index - Metabolic

Introduction

Type 2 diabetes mellitus (T2DM) is a major cause of car-
diovascular disease and mortality, present in ~9.3% of the
population [1]. Early identification and intervention of
individuals at high risk for T2DM are important to reduce
mortality and morbidity posed by diabetes-related compli-
cations. Patients with T2DM tend to have a higher weight,
body mass index (BMI), waist circumference, systolic and
diastolic blood pressure, fasting glucose, triglycerides, low-
density lipoprotein (LDL), and high-density lipoprotein
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(HDL) cholesterol [2, 3]. However, which of these para-
meters are valuable for predicting future T2DM is uncertain.

Insulin resistance (IR) plays a pivotal role in the devel-
opment of T2DM. Homeostasis model assessment esti-
mated insulin resistance (HOMA-IR) has been shown to be
an independent predictor for incident T2DM [4].
Euglycemic-hyperinsulinemic clamp (clamp-IR) remained
the gold standard approach in identifying IR [5], however,
its use is far too impractical. triglyceride—glucose (TyG)
index, an accurate surrogate marker of IR [6], is a product
of fasting glyceride and glucose, usually checked in
apparently healthy individuals [7]. Thus, routine TyG index
measurement is practical, feasible, and -cost-effective.
Recent studies have shown the potential use of TyG index
to predict the development of T2DM [8]. However, the
dose-response relationship between TyG index and T2DM
remains unclear. In this systematic review and
dose-response meta-analysis, we aimed to assess the
dose-response relationship between TyG index and inci-
dence of T2DM. The population is subjects from cohorts
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without T2DM who have TyG index measured at baseline
and followed-up for the incidence of T2DM.

Materials and methods

This systematic review and meta-analysis follow the Meta-
analysis of Observational Studies in Epidemiology and
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) reporting guidelines.

Eligibility criteria

Studies that fulfilled all of these criteria were included: (1)
prospective or retrospective cohorts reporting healthy sub-
jects and (2) assessing the association between TyG index
and the incidence of T2DM with at least three quantitative
classifications. There were no language restrictions applied.
Studies that fulfilled one of the following criteria were
excluded: (1) pre-prints, (2) abstract-only publication, (3)
review articles, and (4) editorial/letters/commentaries.

Search strategy and study selection

We performed a comprehensive systematic literature search
using PubMed, Scopus, and Embase with keywords
((triglyceride—glucose index OR TyG) AND (diabetes)) for
records published from the inception up until 9 February 2021.
Hand searching from reference lists was also performed.
Duplicates were removed from the initial record, and then two
independent authors (qualification: medical doctors with
extensive experience performing systematic reviews) screened
the title/abstracts. The full-text of potential articles was then
assessed using the inclusion and exclusion criteria. Authors
were contacted for additional data whenever possible.

Data extraction

Two independent authors performed data extraction from
the included studies for the first author, study design, year
of publication, age, gender, hypertension, dyslipidemia,
family history of T2DM, BMI, lipid profile, smoking,
drinking, and the outcome of interest.

The exposure was TyG index was determined by the for-
mula: In (fasting TG [mg/dL] x fasting glucose [mg/dL]) [7].

The outcome of interest was the incidence of T2DM.
T2DM was defined as fasting glucose >126 mg/dL or
>HbAlc 6.5%. The effect estimates were reported as rela-
tive risks (RRs). RR was defined as either odds ratios
(ORs), risk ratios, or hazard ratios (HRs).

Risk of bias assessment was performed independently by
two authors using the Newcastle-Ottawa Scale (NOS).
Arising discrepancies were resolved by discussion.

Statistical analysis

Comparison between the highest versus lowest TyG cate-
gories in terms of incidence of T2DM was performed using
DerSimonian-Laird random-effects meta-analysis regardless
of heterogeneity, and the effects estimate was reported as
RR. P value was considered significant if below 0.05.
Assessment of interstudy heterogeneity was based on the I
statistics and Cochran Q test; in which, P of >50% or
p value < 0.10 indicates significant heterogeneity. A two-
stage random-effects dose-response meta-analysis was
performed using the generalized least-squares regression
trend estimation method based on logRRs across TyG index
intervals in studies reporting at least three quantitative
classifications. Potential for non-linear relationship based on
RRs of each quantitative TyG index was evaluated using the
restricted cubic splines with seven-knots model. A Wald-
type test was performed to assess non-linearity by testing
the regression coefficient of the second spline. Funnel-plot
and Egger’s test were performed to assess the risk of pub-
lication bias and small-study effects. Non-parametric trim-
and-fill analysis using Linear O estimator was performed.
STATA 16.0 (StataCorp LLC, TX, USA) was used to
perform meta-analysis. Restricted-maximum likelihood
random-effects meta-regression was performed using the
potential effect modifiers for (1) incidence of diabetes and
(2) association between TyG index and incidence of T2DM.
Subgroup analysis for prospective and retrospective studies
was performed. Diagnostic test meta-analysis was per-
formed for the TyG index cut-off value between 8.7 and 8.9
(rounding to one decimal place) to generate the sensitivity,
specificity, positive likelihood ratio (PLR), negative like-
lihood ratio (NLR), and area under the curve (AUC).

Results
Baseline characteristics

270,229 subjects from 14 studies were included in this
systematic review and meta-analysis [2, 3, 9-20] (Fig. 1).
The baseline characteristics of the included studies and the
risk of bias assessment can be found in Table 1 and Table 2.
The pooled incidence of T2DM was 9% [7-10%]. Meta-
regression analysis indicates that baseline age (coefficient:
0.67, p=0.026), drinking (coefficient: 0.03, p =0.035),
HDL (coefficient: Ftable —0.89, p =0.035), and length of
follow-up (coefficient: 0.16, p = 0.010) affect the incidence
of T2DM in future, but not male gender (p = 0.896), BMI
(p =0.058), smoking (p =0.872), and LDL (p =0.213).
Family history of T2DM and hypertension were not inclu-
ded because less than ten studies were reporting these
variables.
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Fig. 1 PRISMA flowchart

Triglyceride-glucose index and incidence of type 2
diabetes mellitus (unadjusted model)

High TyG index was associated with increased incidence of
T2DM in pooled unadjusted model (RR 4.68 [3.01, 7.29], p
<0.001; F: 96.6%, p<0.001) (Fig. 2). Subgroup analyses
provide detailed effect estimate for prospective cohorts (RR
3.62 [2.83, 4.62], p<0.001; I*: 84.2%, p<0.001) and ret-
rospective (RR 7.49 [2.71, 20.66], p < 0.001; % 95.4%, p<
0.001).

Triglyceride-glucose index and incidence of type 2
diabetes mellitus (adjusted model)

In the pooled adjusted model, high TyG was also associated
with increased incidence of T2DM (adjusted RR 3.54 [2.75,
4.54], p<0.001; I 83.7%, p<0.001) (Fig. 3). Subgroup
analyses provide detailed effect estimate for prospective
cohorts (adjusted RR 3.21 [2.53, 4.07], p<0.001; &
73.8%, p<0.001) and retrospective (adjusted RR 4.29
[2.83, 6.48], p<0.001; I*: 70.8%, p = 0.008).

Dose-response meta-analysis

Dose-response meta-analysis for the adjusted RR showed
that the linear association analysis was not significant per
0.1 increase in TyG index (adjusted RR 1.01 [0.99, 1.03],
p =0.223). There is a non-linear trend (p <0.001) for the
association between TyG index and incidence of T2DM
(Fig. 4a). The dose-response curve became increasingly
steeper at TyG index above 8.6. Using TyG 7.2 as reference
value, the RR for TyG of 7.9, 8, 8.3, 8.6, 9, and 9.5 were

@ Springer

(adjusted RR 1.05 [1.00, 1.10]), (adjusted RR 1.06 [1.00,
1.12]), (adjusted RR 1.10 [1.02, 1.18]), (adjusted RR 1.19
[1.08, 1.31]), (adjusted RR 1.51 [1.33, 1.71]), and (adjusted
RR 2.62 [2.17, 3.17)).

Dose-response meta-analysis for the adjusted RR of
prospective cohorts showed that the linear association
analysis was not significant per 0.1 increase in TyG index
(adjusted RR 1.01 [0.99, 1.03], p = 0.327). The curve was
non-linear (p <0.001) (Fig. 4b).

Publication bias

The funnel plots of unadjusted (Fig. 5a) and adjusted (Fig. 5b)
models were asymmetrical. The pooled unadjusted
(p=0.200) and adjusted models (p =0.411) were not sta-
tistically significant for small-study effects. Non-parametric
trim-and-fill analysis showed that by the imputation of 5 stu-
dies (Linear LO) in the left side of the plot, the RRs were 2.60
[2.01, 3.36] (Fig. 5c) and 2.93 [2.25, 3.83] (Fig. 5d), for the
unadjusted and adjusted models, respectively.

Meta-regression analysis

Meta-regression analysis indicates that the association
between TyG index and incidence of T2DM was affected
by baseline age (coefficient: —0.05, p =0.015), but not
male gender (p =0.183), BMI (p = 0.490), smoking (p =
0.572), drinking (p =0.366), HDL (p =0.112), LDL (p =
0.446), and length of follow-up (p =0.288). The family
history of T2DM and hypertension was not included
because fewer than ten studies reported these variables.

Diagnostic test meta-analysis

Diagnostic test meta-analysis indicates that the TyG index
with cut-off points between 8.7 and 8.9 has a 54% sensi-
tivity, 71% specificity, PLR of 1.9, NLR of 0.64, and AUC
of 0.66 [0.62—0.70] for incident T2DM (Fig. 6).

Discussion

This meta-analysis showed that a high TyG index was
associated with the incidence of T2DM in both unadjusted
and adjusted models. The dose-response relationship
between TyG index and the incidence of T2DM was non-
linear. A TyG index cut-off point between 8.7 to 8.9 has a
54% sensitivity and 71% specificity for predicting
incident T2DM.

The pooled analysis of both unadjusted and adjusted
effect estimates has high heterogeneity. We can observe that
the inconsistency in the pooled effect estimate persists even
after subgroup analyses. Meta-regression analysis was
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performed twice, first for exploring factors associated with
S g the incidence of T2DM and second for the exploration of
2 §§3  fo < << < <§ < < the heterogeneity of pooled unadjusted estimate. In the first
Q25 | Z e Z2Z2ZZ2ZZZ~Z2Z28Z22Z7Z meta-regression analysis, higher baseline age, drinking, and
) aeacsSso o D lengthier follow-up were associated with the incidence of
E" sisgadasg I8 888 T2DM while higher HDL was protective. A cohort of 5.1
= § ; g g ; E § z § 5 z g E g million people in South Korea found that low HDL was an
i - T T - independent predictor of the incidence of T2DM in a
?ﬁ E888ghasnEay S50 stepwise manner [21]. This study reflects the findings of the
% STTTSTEDTID 2R Framingham study regarding the relationship between low
2 AR O AR ;i: g 9 HDL levels and incidence of T2DM [22]. Evidence sug-
s gests that glucose metabolism is directly and indirectly
s affected by HDL [21]. HDL reduces lipid accumulation in
% Y Leme—C_ a® oo the pgncreatic. cell's, 'attenuatirllg. inflammation and apoptqsis
a Zz&Z253IELz¥e 2 associated with lipid deposition [23, 24]. Controversies
g _%:; surround the alcohol consumption and incidence of T2DM,
E % Atherosclerosis Risk in Communities study showed that
é «Z<TeITS o228 22 %‘ drinking was inversely associated with the incidence of
f @z adadasnd aF o = T2DM [25]. Finnish Twin Cohort Study indicates that
o = moderate drinking may reduce T2DM risk, while high
1S g alcohol consumption increases the incidence of T2DM [26].
:;g : A Korean cohort indicates a J-shaped association between
§§ $28% S 2322sa2 ga=a i alcohol drinking and incidence of T2DM.
& % Explora}tlion (()lf Itlleter}(l)g;neitg folr the unadjusted effeii:t
= o estimate showed that higher baseline age attenuates the
é E effect of TyG index on the incidence of T2DM. In the first
% o = - _ g analysis, we observe that age increases the risk of T2DM,
= TR A 52| g one of the possible explanations is that as age increases,
€ LR85 amT % —nw vownd 5 TyG index became less influential for determining the risk
Fé" S e TR Y Y T 99 E °f, of T2DM. Thus, varying mean age among the included
= gggbsgzaana a2d|s studies contributes to heterogeneity in the pooled effect
= aaaaa e o E estimate. However, meta-regression analysis for the unad-
% % e e e e — o — — o % justed outcome has several caveats. First, the highest cate-
g cediond¥Ycsey 283 2 gory versus the lowest categories has different TyG index,
i © : " : S o : % « ; g although the numbers are usually close to each other.
g Salfxddiasad 82| The RR was lower in the prospective subgroup than the
> +H H H H H H O H H H O+ H H H - . . .
\gﬂ gaAS=Ac2es5%972 224|% rf?trospeFtlve sybg.roup; one f)f the main reasons is .the
g | < EREInCYeRAN R - higher risk of bias in retrospective cohorts. Baseline medical
g ° o o & o S R g data in retrospective studies were collected through medical
—g § SYEsE § § E =xd =8 ; records or history taking, this may not represent the actual
E S8 g 5 % baseline characteristics. Meanwhile, in prospective studies,
& - T E S S g g "‘; data were uniformly collected at the start of the study. In the
2|5 = £ - E<€EE g 5 g€ E£:2E2|=2 pooled adjusted analysis, we observe significant small-study
3 |3 FCEEE2088488 56T 2 effects and asymmetry in the funnel plot, subsequent non-
é % o o j parametric trim-and-fill analysis indicates that the effect
5|e EEEZEREREERE ERE % estimate was lower with the imputation of new studies on
§ E © é* the left side of the plot. Thus, even in the presence of studies
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TyG Index and Diabetes
Unadjusted RR Weight

Study with 95% CI (%)
Prospective Cohort

Chen C 2020 E N 220[ 1.79, 269] 7.14
Janghorbani M 2015 —.— 359[ 2.26, 569] 6.72
Lee J 2018 (Male) E 3 2.37[ 1.96, 287] 7.15
Lee J 2018 (Female) R 278[ 228, 3.38] 7.15
Lee S 2014 —— 427[ 3.10, 588] 6.99
Navarro-Gonzalez D 2016 —— 8.31[ 543, 12.71] 6.80
Park B 2020 - 387[ 3.04, 491] 7.0
Wang B 2018 —.— 268[ 174, 4.12] 6.78
Wang Z 2021 — 510[ 2.46, 10.55] 6.06
Zhang M 2017 — . 6.76[ 3.80, 12.05] 645
Heterogeneity: 7° = 0.12, I = 84.22%, H* = 6.34 - 362 2.83, 4.62]

Test of 6, = 0 Q(9) = 57.04, p = 0.00

Retrospective Cohort

Chamroonkiadtikun P 2019 —— 236[ 151, 367] 6.76
Lee D 2016 — 1250 4.54, 34.43] 526
Li X 2020 M 19.94[16.65 2389 7.16
Liu E 2020 —m— 748 3.88, 14.45] 6.25
Low $ 2018 —a— 548[ 281, 10.71] 6.22
Heterogeneity: ©° = 1.24, I = 95.42%, H* = 21.85 —_— 7.49[ 2.71, 20.66]

Test of 6, = 6;: Q(4) = 87.40, p = 0.00

Overall . 468[ 3.01, 7.29]

Heterogeneity: ©° = 0.70, I = 96.56%, H = 29.10
Test of 6, = 6; Q(14) = 407.47, p = 0.00

Test of group differences: Q,(1) = 1.86, p = 0.17

Random-effects DerSimonian-Laird model

Fig. 2 Triglyceride-glucose index and incidence of type 2 diabetes
mellitus (unadjusted model)

TyG Index and Diabetes

Adjusted RR Weight
Study with 95% CI (%)

Prospective Cohort
Chen C 2020 -

1.73[1.38, 2.16] 8.61

Janghorbani M 2015 —a— 288[1.63, 5.10] 6.25
Lee J 2018 (Male) . 2.79[2.16, 3.60] 844
Lee J 2018 (Female) —— 2.85[2.22, 3.66] 847
Lee $2014 —— 4.09[2.70, 6.21] 7.37
Navarro-Gonzalez D 2016 —a— 559[3.51, 8.91] 7.01
Park B 2020 - 348[256, 4.73] 8.13
Wang B 2018 —a— 3.54[2.08, 6.03] 6.53
Wang Z 2021 - m 336[152, 741 482
Zhang M 2017 ——8———  5.30[221, 1271] 436
Heterogeneity: 7° = 0.10, I* = 73.82%, H* = 3.82 - 3.21[253, 4.07)

Test of 6, = 6;: Q(9) = 34.38, p = 0.00

Retrospective Cohort
Chamroonkiadtikun P 2019

—— 3.38[2.38, 4.80] 7.83

Lee D 2016 —————®—————565[191, 16.72] 3.39
Li X 2020 e 6.26[5.15, 7.60] 8.76
Liu E 2020 —a— 2.33[1.09, 4.97] 502
Low S 2018 —a— 4.68[2.19, 10.01] 5.01
Heterogeneity: t° = 0.13, I = 70.79%, H’ = 3.42 — 4.29[2.83, 6.48]
Test of 6, = 6; Q(4) = 13.69, p = 0.01
Overall - 3.54[2.75, 4.54]
Heterogeneity: t° = 0.18, I = 83.71%, H* = 6.14
Test of 6, = 6;: Q(14) = 85.92, p = 0.00
Test of group differences: Q,(1) = 1.42, p = 0.23

2 4 8 16

Random-effects DerSimonian-Laird model

Fig. 3 Triglyceride-glucose index and incidence of type 2 diabetes
mellitus (adjusted model)

uptake. This condition is also associated with obesity and
metabolic syndrome, characterized by central, visceral, and
ectopic fat accumulation [27]. The storage of TG in non-
adipose tissues, such as skeletal muscle, liver, pancreas, and
heart, causes dysfunction at the cellular level and disruption
of organ function [28]. Excess lipids may accumulate
intercellularly and interfere with organ function through the
paracrine effects of the released adipokines, whereas
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Fig. 4 Dose-response meta-analysis between triglyceride-glucose
index and incidence of type 2 diabetes mellitus with restricted cubic
splines. Adjusted relative risk [solid line] with 95% confidence interval
(95% CI) [long dashed lines] for the association of the triglyceride-
glucose index and type 2 diabetes mellitus. Full model (a) and pro-
spective cohorts (b)

intracellular lipid deposition is associated with reduced
insulin sensitivity. Adipocyte dysfunction enhanced lipo-
lysis, and free fatty acid (FFA) oxidation impairment results
in a continuous oversupply of FFA and consequently lipid
accumulation intracellularly [27, 29]. The FFA metabolites,
including ceramides, diacylglycerol, and long-chain acyl-
CoA, have deleterious effects on the cell and cause defects
in insulin signaling [30].

Adipocytes and adipose tissue play a pivotal role in
glucose and lipid metabolism. During IR, adipose, muscle,
liver, and other tissues contribute to hyperglycemia and
hyperlipidemia, which are toxic to the pancreatic f§ cells.
High TG concentrations reduce glucokinase activity and
glucose-stimulated insulin secretion in pancreatic islets, and
high glucose levels cause islet cell destruction due to con-
tinuous oxidative stress [31]. Intramuscular TG deposition
leads to translocation of glucose transporter type 4 (GLUT-
4) to the cell membrane, which eventually reduces glucose
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uptake by skeletal muscle. Hepatic TG accumulation causes
a decrease in insulin-stimulated hepatic glucose uptake and
reduces insulin-suppressed hepatic glucose production, in
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the same way as it does in skeletal muscle [27, 32]. In the
heart, elevated FFA supply and diminished oxidation result
in lipid intermediates which disrupt insulin signaling, and
therefore GLUT-4 involved glucose uptake. The ectopic fat
significantly contributed to the development of IR and
consequently T2DM and other metabolic conditions
[27, 28].

Among the traditional risk factors, serum levels of fasting
TG and glucose could justify the risk of developing IR and
T2DM. These metabolic components are frequently found to
be elevated and are associated with several chronic diseases.
In this systematic review and meta-analysis, we found that
the TyG index was significantly associated with an increased
incidence of T2DM. TyG index is a low-cost, feasible, and
applicable biomarker in daily practice. This parameter is
much simpler and more affordable than other IR evaluation
methods, including clamp-IR, HOMA-IR, quantitative
insulin sensitivity check index, continuous infusion of glu-
cose with model assessment fasting plasma insulin, glucose-
to-insulin ratio, and oral glucose tolerance test [5, 33-35]. In
multiple studies, including those with American, European,
and Asian populations, a higher TyG index was significantly
associated with IR, even though ectopic fat deposition is
affected by ethnicity [2, 3, 31, 36-39].

Clinical Implications

Triglyceride and glucose are often measured in a medical
check-up, whether in an apparently healthy population or
patients with comorbidities. This means that IR can be
screened without additional cost and applied in developed
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and developing countries. The association between the TyG
index and T2DM was non-linear, indicating that in patients
with high TyG index, an intensive lifestyle change becomes
increasingly important. Although the effectiveness of life-
style and pharmacological intervention in people with a
high TyG index is yet to be defined, it is advisable to do so
as diet control and exercise are encouraged in patients with
prediabetes. Since T2DM may be asymptomatic, the TyG
index may help anticipate incident T2DM by increasing the
frequency of blood glucose check-ups, facilitating early
detection and prevention of complications. The cut-off point
between 8.7 and 8.9 might be useful in classifying people at
risk of developing incident T2DM, however, the non-
linearity of the association should also be considered. At the
public health level, measuring TyG index does not add costs
and may effectively curb the incidence of T2DM or its
associated complications.

Limitations

The studies were mainly from Asia, there are no studies
from North America, South America, Africa, and Australia.
There was only one study from European continent. In
addition, the samples from Chinese studies potentially
overlap due to DATADRYAD database use. Several studies
were retrospective and are prone to bias. Several studies
inadequately reported several important variables such as
family history of T2DM. Several included studies have a
high percentage of missing data or dropouts, which may
potentially cause bias. The studies have different follow-up
lengths, which may contribute to inconsistency, although it
is not demonstrated in the regression analysis. Finally,
whether any of the subjects took lipid-lowering drugs or
anti-diabetic medications was not sufficiently addressed.

Conclusion

TyG index was associated with the incidence of T2DM in a
non-linear fashion. In addition, the association was sig-
nificantly affected by age.
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