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Abstract
Purpose Maternal nicotine exposure negatively impacts offspring’s health and metabolism, leading to obesity and insulin
resistance. Here we investigated the pancreatic islet function, glycemic homeostasis, and insulin signaling in adult rat
offspring that were nicotine-exposed during breastfeeding.
Methods For this, lactating Wistar rat dams were divided into two groups: Nicotine (implanted with osmotic minipumps
containing 6 mg/Kg, NIC) and Control (saline, CON). Solutions were released from postnatal (PN) day 2–16. At PN110 and
PN170, 10 offspring per litter/sex/group were submitted to the oral glucose tolerance test (OGTT). PN180 offspring were
killed and glycemia, insulinemia, adiponectinemia, pancreas morphology as well as pancreatic islet protein expression
(related to insulin secretion) and skeletal muscle (related to insulin action) were evaluated. Males and females were
compared to their respective controls.
Results Adult NIC offspring of both sexes showed glucose intolerance in the OGTT. Despite normoglycemia, NIC males
showed hyperinsulinemia while females, although normoinsulinemic, had hyperglycemia. Both sexes showed increased IRI,
reduced adiponectin/visceral fat mass ratio and higher ectopic deposition of lipids in the pancreatic tissue adipocytes. In
pancreatic islets, NIC males showed lower PDX-1 expression while females had higher PDX-1 and GLUT2 expressions plus
lower α2 adrenergic receptor. In the muscle, NIC offspring of both sexes showed reduction of GLUT4 expression; NIC
males also had lower insulin receptor and pAKT expressions.
Conclusions Thus, glycemic homeostasis and peripheral insulin signaling in adult offspring of both sexes are affected by
nicotine exposure through the milk, increasing the risk for type 2 diabetes development.
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Introduction

Type 2 diabetes mellitus is considered a pandemic, mainly
caused by insulin resistance (IR), which is closely asso-
ciated with obesity [1]. However, in recent years, experi-
mental and epidemiological evidence have shown that the
growing incidence of type 2 diabetes and the obesity pan-
demic may also be due to insults during critical early life
periods [2]. In the 1980s, Barker raised the “thrifty phe-
notype hypothesis” to explain the relationship between the
fetal environment and the diseases found in adulthood [3].
This concept is now known as “Developmental Origins of
Health and Disease” (DOHaD), which postulates that spe-
cific environmental insults during a critical period of early
life can induce developmental plasticity by programming
the individual for disease development [4].
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The period of breastfeeding is considered a window of
susceptibility to metabolic programming, because organs
involved in the maintenance of glycemic homeostasis, such
as the brain, liver and pancreatic islets continue to differ-
entiate during this period. These organs have been shown to
be vulnerable during this period since programming insults
can have negative, long-lasting and sometimes late-
emerging effects on glycemic homeostasis [5].

Smoking exposure during critical periods of develop-
ment is related to metabolic programming. It is well known
that cigarette smoke contains several compounds that can be
harmful to the developing individual. Studies show that
smoking during pregnancy is dangerous for both mother
and fetus [6]. Although it has been shown that many
pregnant women quit smoking, some studies show that most
women who quit smoking during gestation resume it during
breastfeeding, erroneously believing that smoking during
this period is no longer harmful to the baby. Unfortunately,
babies are not only exposed to second-hand smoke but also
to those components of tobacco smoke that will be present
in the mother’s milk, nicotine included [7].

Nicotine is a psychoactive substance and is the main agent
leading to tobacco dependence [8]. Nicotine is considered an
endocrine disruptor, interfering with the action of hormones
[9]. To mimic the late-emerging effects of maternal smoking
during early life, our research group has developed a pro-
gramming model to investigate the effects of early, involun-
tary exposure to nicotine via breast milk on the offspring. In
this experimental model, lactating rats are exposed to nicotine
through implantation of osmotic minipumps that release a
controlled amount of nicotine (equivalent to a heavy smoker)
into the bloodstream [10]. In this model, lactating rats show a
large amount of cotinine, the main metabolite of nicotine, in
serum and milk, confirming the efficacy of the model [11].
Male animals programmed by exposure to nicotine during
lactation are overweight and have increased visceral fat
accumulation, hyperleptinemia, central leptin resistance, and
hepatic steatosis at adulthood [12, 13]. However, the female
offspring show no alteration of body mass (BM), adiposity,
and leptinemia [14, 15]. Regarding glycemic homeostasis,
male offspring are normoglycemic and hyperinsulinemic,
suggesting IR. They also have lower plasma adiponectin/
adipose tissue ratio [13]. It is worth mentioning that the
aforementioned results were not studied in females.

The present study aimed to investigate the mechanisms
involved in the IR that has been previously observed in the
male offspring of this programming model [12], and to
investigate, for the first time, the glycemic homeostasis of
the female offspring. Our hypothesis is that animals early-
exposed to nicotine will develop pancreatic dysfunction and
alterations in proteins involved with peripheral insulin sig-
naling in the muscle, which is responsible for 70–80%
uptake of postprandial glucose.

Materials and methods

The Institutional Ethical Committee for the Use of
Laboratory Animals of the Biology Institute of the State
University of Rio de Janeiro approved all experimental
procedures (CEUA/038/2018). Experimental procedures
were conducted in accordance with the National Institutes
of Health Guide for the Care and Use of Laboratory
Animals.

Experimental model of maternal exposure to
nicotine

Three-month-old virgin female Wistar rats were caged
with male rats at a 3:1 ratio for 2 weeks. After the
detection of pregnancy, dams were allocated in individual
cages with free access to water and standard chow for
rodents. At birth, litters were adjusted to six pups, three
males and three females, to maximize lactation perfor-
mance. According to the manufacturer’s recommendation,
in order to ensure proper operation of the osmotic mini-
pumps (continuous and homogeneous release of solu-
tions), they were filled with the solution of interest and
immersed in saline solution for 24 h prior to implantation.
Thus, implantation of osmotic minipumps was performed
at postnatal (PN) day 2. Lactating dams were randomly
assigned to one of two groups: Nicotine group (NIC): 10
dams were lightly anaesthetized with thiopental (30 mg/
Kg; Thiopentax, Itapira, SP, Brazil), a 3 × 6 cm area on the
back was shaved and an incision was performed to allow
for the subcutaneous insertion of the osmotic minipumps
(Alzet, 2ML2, California, USA). Minipumps were pre-
pared with nicotine free-base diluted in a saline solution
(NaCl 0.9%) to deliver a dose rate of 6 mg/Kg of nicotine
per day during 2 weeks [10]. This protocol produces
plasma nicotine concentrations similar to those found in
typical smokers [16]. Control group (CON): 10 dams
were implanted, using the procedures indicated above,
with osmotic minipumps containing only NaCl 0.9%.

After weaning (PN21), NIC and CON pups received free
access to water and standard rodent chow. The offspring’s
BM was monitored every 4 days until PN180, when animals
were euthanized: After a 12 h-fasting period, animals were
anesthetized with thiopental (Thiopentax, 30 mg/Kg) and
blood was collected by cardiac puncture in tubes with
heparin. Blood samples were centrifuged (1500 g for 20 min
at 4 °C) to obtain plasma, which was kept at −20 °C.
Afterwards, the retroperitoneal, gonadal and mesenteric
white adipose tissues were collected, weighted and the sum
of these tissues was used as the visceral fat mass (VFM)
variable. The pancreas and soleus skeletal muscle were
quickly removed to be used in the specific techniques
described below.
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Glycemic homeostasis

The oral glucose tolerance test (OGTT) was performed at
PN110 and PN170. A blood sample was collected, after a
12 h-fasting period, for the determination of basal glycemia
(time 0) using a glucometer (ONETOUCH ULTRA®,
Johnson & Johnson, São Paulo, Brazil). Glucose solution
(50%) was injected in sterile saline via an oral probe at 2 g/
Kg BM and glycemia was measured after 15, 30, 60 and
120min. Fasting glycaemia was analyzed at PN180 in blood
samples obtained from the tail vein using reagent strips that
were read in a glucometer. Plasma insulin and adiponectin
concentrations were measured by Elisa Kit (Millipore Cor-
poration, MA, USA) according to the manufacturer’s
instructions. Plasma adiponectin was normalized by total
VFM [17]. Insulin sensitivity was assessed using the insulin
resistance index (IRI), which was calculated as follow:
fasting glucose (mg/mL) × fasting insulin (mUI/mL).

Pancreas morphology

Due to the lack of standardized nomenclature in the litera-
ture, the term pancreatic steatosis was used in the current
study to describe all types of accumulation of fat in the
pancreas, as suggested by Smits & Van Geenen [18].

The pancreases of seven animals per litter/sex/group
were removed, weighed and quickly fixed in 4% paraf-
ormaldehyde for 24 h. Then, the entire tissue was incorpo-
rated into Paraplast® Plus (Sigma-Aldrich Chemicals,
St Louis, MO, USA) and prepared for light microscopy.
Consecutive 5 μm serial sections were obtained and the
slides were stained with hematoxylin-eosin. Ten images/
animal/group were captured randomly (magnification ×20,
Leica Microsystems CTR6000, Wetzlar, Germany) and
quantification of pancreatic steatosis was performed by
stereology. Pancreatic fat (interlobular, intralobular and
perilobular) was quantified by volume density (Vv) using a
point test system superimposed on the tissue image (36
points), calculated as: Vv= PP/PT, where PP represents the
number of points that reach the fat cells and PT is the total
number of test points.

Western blotting

The pancreatic islets were isolated using the collagenase
method [19]. The islets were collected using a stereo-
microscope and approximately 300 islets were stored
in a −80 °C freezer until the Western blot analysis was
carried out.

For protein expression analysis, samples of isolated islets
of six animals per litter/sex/group were resuspended and
lysed by sonication (two times, 10 s pulses, Sonic Dis-
membrator Model 100, Thermo Fisher Scientific) in T-

PER™ Tissue Protein Extraction Reagent (78510, Sigma St.
Louis, MO, USA) buffer. The cocktail of protease inhibitors
(complete EDTA-free, Roche Applied Science, Mannheim,
Germany) was added and samples were centrifuged at
15,294 g for 5 min at 4 °C (Eppendorf 5417R Refrigerated
Centrifuge). The skeletal muscle of 6–7 animals per litter/
sex/group were homogenized in RIPA buffer, (20 mM TRIS
HCl, 10 mM NaF, 1% NP40, 150 mM NaCl, 5 mM EDTA,
0.1% SDS) containing a protease inhibitor cocktail and
centrifuged twice at 15,294 g for 15 min at 4 °C. The total
protein content was determined using a BCA Protein Assay
Kit (Thermo Scientific, IL, USA) and cell lysates were
treated with Laemmli sample buffer (50 mM Tris-HCl, pH
6.8, 1% SDS, 5% 2-mercaptoethanol, 10% glycerol,
0.001% bromophenol blue).

Total protein extracts were separated by gel electro-
phoresis (SDS-PAGE, 8.5–12%) at 150 V/60 A. The
proteins were then transferred from the gel to a nitro-
cellulose membrane (Hybond ECL; Amersham Pharmacia
Biotech, NJ, USA) by the Trans-Blot® Turbo™ Transfer
System (Bio-Rad®, Hercules, CA, USA) at 2.5 A/15 V/
45 min. Membranes were blocked with 5% BSA in
Tween-TBS buffer (containing 20 mM Tris-HCl, pH 7.5;
500 mM NaCl and 0.1% Tween-20) for 1 h with con-
tinuous shaking. Then, membranes were incubated with
different primary antibodies (described in Table 1) over-
night at 4 °C. Then, membranes were washed 3 times with
Tween-TBS, followed by 1 h incubation with the appro-
priate secondary antibody at room temperature. After this
period, membranes were incubated with streptavidin-
horseradish peroxidase conjugated HRP (RPN1231V, GE
Healthcare Life Sciences, USA) when necessary. After
another series of washes, targeted proteins were detected
by enhanced chemiluminescence (Clarity™ and Clarity
Max™ Western ECL Blotting Substrates, cat 170-5061,
Bio-Rad, California, USA). Images were scanned and
bands were quantified by densitometry, using Image J
1.34 s software (Wayne Rasband, National Institute of
Health, MA, USA). The glyceraldehyde-3-phosphate
dehydrogenase protein content (GAPDH, 5174, Cell
Signaling, Massachusetts, USA; diluted 1:1000 in TTBS)
and B-actin (Santa Cruz Biotechnology®, CA, USA;
diluted 1:1000 in TTBS) were used for the normalization
of the data.

Statistical analysis

The results are expressed as mean ± SEM. Data were
analyzed using the statistical program GraphPad Prism 6.0
(GraphPad Software, Inc., La Jolla, CA, USA). Unpaired
Student’s t test were used separately when analyzing the
programming effects in males and females. Differences
were considered significant when P < 0.05.
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Results

Somatic parameters of the offspring

At PN180, NIC males showed increased BM and VFM
[15% (P < 0.01) and 33% (P < 0.001), respectively] when
compared to CON group (Table 2), while NIC females did
not have changes in these parameters (Table 2). The abso-
lute and relative mean pancreases masses were similar
between groups (Table 2).

Oral glucose tolerance test (OGTT) and glucose
homeostasis

At PN110, after 30 min of glucose administration, we
observed an increase in glucose in all groups, which was
followed by a gradual reduction, without significant dif-
ferences between them (Fig. 1a, c). The area under curve
(AUC) of the OGTT was unchanged in both NIC males and
NIC females (Fig. 1b, d).

At PN170, NIC males showed increased blood glucose at
60 and 120 min after glucose administration when com-
pared to CON males (P < 0.05 and P < 0.01, respectively,
Fig. 1e). The AUC of OGTT is compatible with the
aforementioned data, showing an 18% increase in NIC
males when compared to the CON group (P < 0.05, Fig. 1f).
NIC females had higher glucose levels at 30, 60 and
120 min after glucose administration (P < 0.05, P < 0.01 and
P < 0.05, respectively, Fig. 1g). Regarding the AUC, NIC
females showed increased glycemia during OGTT com-
pared to the CON ones (11%, P < 0.01, Fig. 1h).

At PN180, NIC males whose mothers were exposed to
nicotine during lactation showed no difference in fasting
glycemia (Fig. 2a), but had higher insulinemia (51% vs
CON, P < 0.05, Fig. 2b) and IRI (66% vs CON, P < 0.01,
Fig. 2c). In addition, these animals showed no differences in
plasma adiponectin (Fig. 2d), although they showed a lower

adiponectin/VFM when compared to CON males (−39%,
P < 0.01, Fig. 2e).

Regarding NIC females at PN180, we observed hyper-
glycemia (12%, P < 0.05, Fig. 2f), normoinsulinemia
(Fig. 2g), higher IRI (80%, P < 0.01, Fig. 2h), hypoadipo-
nectinemia (−24%, P < 0.05, Fig. 2i) and reduced adipo-
nectin/VFM when compared to CON females (−53%, P <
0.01, Fig. 2j).

Pancreas parameters in adult offspring

Concerning the histological analysis of the pancreas
(Fig. 3), NIC males showed increased fat accumulation in
the pancreatic tissue compared to CON males (183%, P <
0.01, Fig. 3b). NIC females also showed increased pan-
creatic steatosis when compared to CON females (438%, P
< 0.001, Fig. 3d).

The expression of proteins related to the insulin secretion
are depicted in Fig. 3. NIC males showed a reduction only
of PDX1 expression when compared to CON males (−20%,
P < 0.05, Fig. 3e). The other proteins were not altered
(Fig. 3e). NIC females had an increase of GLUT2 and
PDX1 expressions (33%, P < 0.05 in both cases, Fig. 3f)
and a reduction of α2 adrenergic receptor in islets (−25%,
P < 0.05, Fig. 3f) in relation to CON females. The expres-
sions of the other proteins were unaltered (Fig. 3f).

Insulin signaling pathway in the skeletal muscle of
adult offspring

The main proteins involved with insulin signaling in ske-
letal muscle are shown in Fig. 4. NIC males showed
reduced expression of IR-beta (−32%, P < 0.05, Fig. 4a),
GLUT4 (−24%, P < 0.05, Fig. 4a) and less degree of
phosphorylation of AKT (pAKT) (−19%, P < 0.05, Fig. 4a)
and in relation to the CON males, although there was no
change in the expression of total AKT (Fig. 4a). The eva-
luation of total pAKT/AKT ratio from NIC animals was not
changed (CON male: 98.9 ± 11.7; NIC male: 81.4 ± 11.6;
CON female: 87.5 ± 8.7; NIC female: 79.7 ± 8.1). In addi-
tion, NIC males did not show changes in the expression of
SNARE proteins (Syntaxin 4, SNAP23 and Munc18c), a
complex involved in GLUT4 transport (Fig. 4a). The ske-
letal muscle of NIC females only showed a reduction of
GLUT4 expression when compared to CON females
(−37%, P < 0.05, Fig. 4b). The other proteins were not
affected in this tissue (Fig. 4b).

Discussion

In the present study we demonstrated that changes in the
glycemic homeostasis previously found [12] in male rats

Table 2 Effects of nicotine exposure during lactation on biometric
parameters of the adult offspring (PN180)

MALE FEMALE

CON NIC CON NIC

Body mass (g) 521 ± 10 597 ± 14*** 290 ± 8 303 ± 7

VFM (100 g/BM) 5.5 ± 0.3 7.3 ± 0.5** 5.4 ± 0.4 6.0 ± 0.5

Pancreas (g) 1.8 ± 0.1 1.6 ± 0.1 1.2 ± 0.1 1.2 ± 0.1

Pancreas (g/
100 g BM)

0.32 ± 0.01 0.32 ± 0.04 0.38 ± 0.02 0.40 ± 0.02

Values represent mean ± SEM of different litters per sex per group
(n= 10). Student’s t tests were used separately for male and female rat
offspring

Groups: CON Control, NIC Nicotine. VMF (visceral fat mass), BM
(body mass)

**P < 0.01; ***P < 0.001
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programmed by early exposure to nicotine during lactation
occur only after PN110, since OGTT, which is considered
an indicative test for IR, was unchanged at that age. At

PN170, animals of both sexes had glucose intolerance and,
at PN180, they showed pancreatic steatosis and IR, char-
acterized by reduced GLUT4 in the skeletal muscle,

Fig. 1 Oral glucose tolerance test (OGTT) at PN110 and PN170.
OGTT (a and e) and area under curve (AUC) of OGTT (b and f) of
male rat offspring. OGTT (c and g) and AUC of OGTT (d and h) of

female rat offspring. Groups: CON: Control, NIC: Nicotine. Values
represent mean ± SEM of different litters per sex per group (n= 10).
Student’s t tests were used for the comparisons. *P < 0.05, **P < 0.01

Fig. 2 Glycemia (a), Insulinemia (b), IRI (c), Serum adiponectin (d)
and Serum adiponectin/visceral fat mass (e) of male rat offspring at
PN180. Glycemia (f), Insulinemia (g), IRI (h), Serum adiponectin (i)
and Serum adiponectin /visceral fat mass (j) of female rat offspring at

PN180. Groups: CON: Control, NIC: Nicotine. Values represent mean
± SEM of different litters per sex per group (n= 10). Student’s t tests
were used for the comparisons. *P < 0.05, **P < 0.01
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increased IRI and reduced adiponectin/VFM ratio. Specifi-
cally, males also had hyperinsulinemia, reduced expression
of PDX1 in the pancreatic islets and decreased expression
of the insulin receptor and less degree of phosphorylation of
AKT in muscle, while females had hyperglycemia, hypoa-
diponectinemia, increased expression of GLUT2 and PDX1
and reduced α2-adrenergic receptor in the islets.

IR associated with progressive beta cell dysfunction is
characteristic of the development of type 2 diabetes [18].
Unlike hepatic steatosis, pancreatic steatosis is histologi-
cally characterized by infiltration, increased number of
adipocytes in this tissue [20, 21] and increased intracellular
lipids [22]. Here, males and females exposed to nicotine
during breastfeeding showed increased lipids accumulation
in fat cells in the pancreas. Although controversial, the
effect of ectopic fat associated with IR and pancreatic beta
cell dysfunction has been investigated in clinical and
experimental studies [21, 23]. Pancreatic steatosis may
potentiate the metabolic syndrome, resulting in hypergly-
cemia, reduction of insulin secretion [24], loss of mass and

function of pancreatic beta cells [25]. The pancreatic infil-
trated fat cells also could be associated with the increased
oxidative stress and proinflammatory cytokines production
resulting in localized inflammation and fibrosis, impairing
the architecture [26, 27] and causing inflammation in the
pancreatic islets [28], apoptosis of pancreatic beta cells
[26, 27] and pancreatic dysfunction [21–23].

In humans, a positive association between increased lipid
infiltration in the pancreas and IR has been reported, sug-
gesting that pancreatic fat enhances this condition [22–32].
In a cohort of 8097 individuals, Wang et al. [30] demon-
strated that there was increased risk of developing diabetes
in patients with pancreatic fat accumulation. Also, it has
been reported that individuals newly diagnosed with type 2
diabetes have significantly higher amounts of pancreatic fat
when compared to healthy patients [31]. After analysis of
pancreatic fat content in men with and without type 2 dia-
betes, Tushuizen et al. [32] demonstrated that the average
pancreatic fat content in diabetic patients was 20% higher
than in nondiabetic patients. In addition, the pancreatic fat

Fig. 3 Pancreas parameters adult offspring. Representative photo-
micrographs of pancreatic tissue (a and c) of adult rat offspring show
lipid accumulation with H&E staining (scale bar: 50 µm - magnifica-
tion ×10). Groups: CON: Control, NIC: Nicotine. NIC groups have a
large adipocyte infiltration (asterisk). The arrows indicate lipid dro-
plets that are found in the exocrine pancreas of CON animals. Per-
centage of steatosis in male (b) and female (d) offspring. We used
different litters per sex per group (n= 7). Protein expression involved

in insulin secretion (PDX1, GLUT2, GCK, AdRα2, AdRβ2,
mAChM3, mAChM4) and in the exocytosis of insulin granules (Sin-
taxin 1A, SNAP25, Munc18a, Synaptotagmin VII) by beta cells in
male (e) and female (f) offspring with their respective representative
bands. GAPDH or B-actin contents were used as internal controls for
protein normalization. Values represent mean ± SEM of different lit-
ters per sex per group (n= 6). Student’s t tests were used for the
comparisons. *P < 0.05, **P < 0.01, *** P < 0.001
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observed in these patients was associated with the pan-
creatic beta cell dysfunction [31, 32]. It appears that may
occur a combined destructive effect between increased free
fatty acids (FAs) and pancreatic beta cell function, asso-
ciated with increased lipotoxicity and increased local che-
mokine production, resulting in long-term beta cell injury
and/or death [18, 21, 23]. However, the role of pancreatic
steatosis on beta cell function is not fully understood and
remains contradictory in the literature. Not all human stu-
dies have found a relationship between pancreatic adipocyte
infiltration and pancreatic beta cell function in individuals
with impaired glucose metabolism [33–35]. These contra-
dictory results can be attributed to differences in applied
methodology, number of individuals evaluated, age, and
ethnicity of the population studied.

In addition to local inflammation possibly caused by
adipocyte infiltration, pancreatic beta cells can be affected
by a lipotoxic mechanism, since it seems that the islet cells
have no adipocyte infiltration and only the exocrine pan-
creas show the ectopic fat. It is well described in the lit-
erature that the adipocyte-stored triglycerides are composed
of different FAs, which have positive and negative effects

on insulin secretion and on the survival of beta cells [36].
For example, monounsaturated FAs, are generally asso-
ciated with protective effects, participating in the regulation
of normoglycemia, increased insulin sensitivity, and pre-
vention of apoptosis [37]. However, saturated FAs are
widely associated with lipotoxicity, associated with reduced
beta cell proliferation, insulin gene expression and induc-
tion of cell death [38, 39]. Chronic exposure to FAs results
in disturbances in the regulation of lipid metabolism, which
contribute to decreased function and beta cells, through
lipotoxicity and, consequently, inducing T2DM [37, 40].
Here, we hypothesize that accumulated pancreatic lipids
may act as a source of FAs or other lipid-derived metabo-
lites, which can gradually affect the beta cell function and
insulin secretion through lipotoxic pathways, which seems
to be more pronounced in NIC females. In fact, the per-
centage of adipocytes infiltrating the female pancreas
(+438%) is more pronounced than the percentage of male
steatosis (+183%). Therefore, NIC female is more affected;
its beta cell does not produce enough insulin resulting in
hyperglycemia, while NIC male is able to release more
insulin, perhaps due to less fat in the pancreas, maintaining

Fig. 4 Insulin signaling pathway
in the skeletal muscle of adult
offspring. IR-beta, AKT, pAKT,
GLUT4, Syntaxin 4, SNAP23
and Munc18c protein expression
at PN180 in male (a) and female
(b) rat offspring with their
respective representative bands.
Groups: CON: Control, NIC:
Nicotine. GAPDH content we
used as internal control for
protein normalization. Values
represent mean ± SEM of
different litters per sex per group
(n= 6–7). Student’s t tests were
used for the comparisons. *P <
0.05
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normoglycemia. This hypothesis was also based on avail-
able literature. Some authors suggest a relationship between
pancreatic steatosis and the severity of pancreatitis
[18, 41, 42]. Although we propose that the endocrine dys-
function observed in animals exposed to NIC could in part
be related to mild pancreatitis, lipotoxicity or increased
local chemokine production and the infiltration of immune
cells through a paracrine effect mediated by adipocytes that
are infiltrated in the pancreas, further studies are needed to
clarify this idea. This is a limitation of our study, since we
only evaluated the percentage of adipocytes that were
infiltrated in the pancreatic tissue.

It is worth mentioning that there are few and con-
troversial studies in the literature on exocrine dysfunction
caused by pancreatic steatosis. Three mechanisms have
been described that can cause exocrine pancreatic disorder
in patients with pancreatic steatosis: acinar cell lipotoxicity,
negative paracrine effect mediated by infiltrated adipocytes,
or direct destruction of acinar cells [21, 43]. Therefore,
further research in animal models is needed to assess the
influence of pancreatic steatosis on the exocrine pancreas,
especially using immunostaining techniques.

Epidemiological data demonstrate the negative impacts of
smoking during pregnancy and the increased risk of devel-
oping type 2 diabetes at adulthood [44]. A clinical study
showed that newborns of mothers who reported smoking in
the middle and late gestation had hyperglycemia, reduced
fetal IGF-I concentration with changes in fetal pancreatic
beta cell function [45]. In animals, maternal cigarette smoke
exposure during pregnancy and/or lactation caused glucose
intolerance in the offspring and reduced insulin sensitivity
[46], besides leading to reduction in size and number of
pancreatic islets [47]. In addition to overweight and
increased visceral fat, male offspring whose mothers were
exposed to nicotine concentrations equivalent to women
who smoke moderately during pregnancy and lactation had
glucose intolerance and IR, effects that may be mediated by
reduced pancreatic beta cell mass in early life [47, 48] and
possibly associated with greater susceptibility for the
development of metabolic syndrome in the adult offspring.

In our programming model of nicotine exposure exclu-
sively during lactation, males had normoglycemia, but had
glucose intolerance and increased IRI. Normoglycemia is
possibly being maintained by the hyperinsulinemia. In
humans, most diabetic patients initially have glucose
intolerance, which is considered the intermediate phase in
type 2 diabetes progression [49]. To compensate for IR,
pancreatic beta cells adapt to different situations to improve
function and maintain glycemic homeostasis. In this phase,
structural adaptations occur in the beta cells that lead to
hyperfunction, i.e., increase insulin secretion in response to
hyperglycemia, ensuring glycemic homeostasis, even if
only for a temporary period [50]. A limitation in the present

study was that the area and mass of the pancreatic islets
were not evaluated, parameters that were assessed by
other authors in models of pregnancy+ lactation exposure
[47, 48].

Unlike males, NIC females had hyperglycemia, which
may be due to beta cell failure to produce sufficient amounts
of insulin to maintain normoglycemia. Increased metabolic
insulin demand may lead to reduced pancreatic beta cell
function [50]. Chronic hyperglycemia can lead to pancreatic
beta cell depletion, probably by glucotoxicity of the beta
cell [51], a phase that characterizes a critical metabolic state
that precedes beta cell dysfunction leading to cell death
[50]. This difference observed on the glycemic profile
between adult men and women in these two human studies
[50, 51] may be related to the amount of adipocytes infil-
trated in pancreatic tissue, in which women are most
affected, because they showed higher percentage of adipo-
cytes infiltrated. However, we know that pancreatic stea-
tosis is only one of the factors that contribute to the
development of T2DM. To support this idea, a limitation
of our work was not to have assessed insulin secretion
in vitro, therefore, further studies are needed to support our
hypothesis.

Proper functioning of pancreatic islets depends on a
number of regulators, among them PDX-1, which is con-
sidered one of the most important transcription factors
involved in the regulation, development and maintenance of
pancreatic beta cells, and that controls the expression of the
GLUT2, GCK, and insulin [52]. A change in metabolic
state reduces PDX1 transcription, mediating a cascade of
modifications that culminate in the silencing of this gene
[53]. Here, we demonstrated that early life nicotine expo-
sure reduces PDX1 expression in male pancreatic islets,
although it did not alter GLUT2 and GCK expressions.
Downregulation of PDX1 expression in beta cells may
underlie the pathogenesis of beta cell failure and type 2
diabetes [54]. NIC females showed increased expressions of
PDX1 and GLUT2, mainly due to the hyperglycemia.
However, due a primary impairment in insulin production,
the compensatory increase in GLUT2 was unable to
increase insulin secretion.

Pancreatic islets are innervated by branches of the
autonomic nervous system and sympathetic innervation is
responsible for inhibiting glucose-induced insulin release
[55]. In adult females, nicotine exposure via breast milk also
seems to change the autonomic nervous system that controls
insulin secretion, since these animals show a reduction in α2
adrenergic receptor expression. This reduction could be a
compensatory effect to the lower insulin production.

Adiponectin is a fat tissue hormone that increases insulin
sensitivity, as well as has antioxidant and anti-inflammatory
actions [56]. The concentration of adiponectin in the
umbilical cord of newborns of smoking women and in
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children exposed to cigarette smoke was significantly lower
when compared to children of healthy mothers [57]. The
present study lends support to the idea that a correlation
exists between glucose intolerance, IR and hypoadipo-
nectinemia, since NIC offspring of both sexes had a
reduction in adiponectin/VFM and NIC females had a
reduction in plasma adiponectin.

Especially in the skeletal muscle, IR is considered the
primary defect in the progression of this disease. Glucose
uptake in the muscle is substantially higher than in the
adipose tissue or liver [58]; the former tissue is the pre-
dominant site of postprandial insulin-mediated glucose
uptake through GLUT4 stimulation and translocation to the
plasma membrane. Thus, after a meal, ~80% of the glucose
uptake occurs in the muscle [58, 59]. Insulin signaling in
muscle depends on it binding to its receptor, which activates
a cascade of protein phosphorylation, including insulin
receptor substrate (IRS), phosphatidylinositol 3-kinase, and
a serine/threonine protein kinase (AKT). AKT stimulates
GLUT4 translocation, therefore, participating in insulin-
dependent glucose transport in the muscle and adipose tis-
sue [60]. Thus, the deregulation of critical proteins in the
insulin signaling pathway is related to the pathogenesis of
IR and type 2 diabetes [61]. Specifically, muscle GLUT4
defects contribute to glucose intolerance and IR [58, 59]. In
our model, NIC rats of both sexes showed a reduction in
GLUT4. In addition, NIC males also had decreased muscle
insulin receptor and pAKT. Alteration in the expression of
these proteins may be contributing to IR in animals pro-
grammed by nicotine exposure during lactation.

Most studies investigating the negative effects of nico-
tine only consider pregnancy or pregnancy plus breast-
feeding, i.e., there are few studies that evaluate the effects of
exposure to tobacco smoke exclusively during the early PN
period. As already mentioned, many women resume
smoking during lactation, and here we highlight the dele-
terious effects of early nicotine exposure, causing pancreatic
steatosis, beta-cell dysfunction and IR in the offspring of
both sexes. Maternal smoking during breastfeeding is still a
serious public health problem, as this attitude contributes to
the type 2 diabetes pandemic.

Conclusion

We evidence that smoking during breastfeeding predisposes
the progeny of both sexes to the development of type 2
diabetes at adulthood, since we demonstrated that early,
involuntary nicotine-only exposure via breast milk led to
the development of pancreatic steatosis, glucose intolerance
and IR. In our programming model, it seems that the female
offspring are more prone to develop severe diabetes earlier
in life. However, further studies are needed to understand

how pancreatic steatosis can impair beta cell function by
lipotoxicity, cytotoxicity or both and contributes to type 2
diabetes or whether its presence is only a marker of pan-
creatic beta cell dysfunction. In addition, we need to
understand how the females are more prone to pancreatic
beta cell failure.
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