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Abstract
Purpose Fatty acid binding protein 4 (FABP4) has been demonstrated to be secreted from adipocytes in an unconventional
pathway associated with lipolysis. Circulating FABP4 is elevated in metabolic disorders and has been shown to affect
various peripheral cells such as pancreatic β-cells, hepatocytes and macrophages, but its effects on adipocytes remains
unclear. The aim of this study was to investigate the effects of exogenous FABP4 (eFABP4) on adipocyte differentiation and
function.
Methods 3T3-L1 pre-adipocytes or mature adipocytes were treated with recombinant FABP4 in the absence or presence of
FABP4 inhibitor I-9/p38 MAPK inhibitor SB203580; Meanwhile male C57BL/6J mice were subcutaneously injected twice
a day with recombinant FABP4 (0.35 mg/kg) with or without I-9 (50 mg/kg) for 2 weeks. The effects of eFABP4 on
differentiation, lipolysis and inflammation were determined by triglyceride measurement or lipolysis assay, western blotting,
or RT-qPCR analysis.
Results eFABP4 treatment significantly reduced intracellular triglyceride content and decreased expression of adipogenic
markers peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer binding protein alpha (C/EBPα),
intracellular FABP4, and adiponectin in 3T3-L1 cells. Besides, eFABP4 promoted lipolysis and inflammation in differ-
entiated 3T3-L1 adipocytes as well as in adipose tissue of eFABP4-treated C57BL/6J mice, with elevated gene expression of
monocyte chemoattractant protein (MCP)-1, tumor necrosis factor (TNF)-α, and elevated protein expression of adipose
triglyceride lipase (ATGL), phosphorylation of hormone-sensitive lipase (HSL) (Ser-660), p38, and nuclear factor-kappa B
(NF-κB). The pro-inflammatory and pro-lipolytic effects of eFABP4 could be reversed by SB203580/I-9.
Conclusions These findings indicate that eFABP4 interferes with adipocyte differentiation, induces p38/HSL mediated
lipolysis and p38/NF-κB mediated inflammation in adipocytes in vitro and in vivo.
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Introduction

As a major site for energy storage and lipid metabolism,
adipose tissue plays an indispensable role in the home-
ostasis of body system [1, 2]. Dysfunction of adipocytes
has wide-ranging effects, contributing to a variety of

metabolic disorders including obesity and diabetes [3].
Adipocytes maintain lipid homeostasis by regulating adi-
pogenesis and lipolysis [4], while impaired adipogenesis
and increased free fatty acids (FFAs) by excess lipolysis
subsequently result in ectopic lipid accumulation and
lipotoxicity, a mechanism known in the development of
type 2 diabetes [5, 6]. Adipocytes also act as endocrine
cells responsible for expression and secretion of multiple
adipokines, such as adiponectin, FABP4, monocyte che-
moattractant protein (MCP)-1, interleukin (IL)-6, and
tumor necrosis factor (TNF)-α [7, 8]. The profile of
secreted adipokines becomes altered in pathological status
including chronic low-grade inflammation, another key
factor involved in the initiation and development of
metabolic diseases [9, 10]. p38 MAPK has been reported
to be involved in lipid metabolism and also participate in
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regulating adipocyte inflammation with subsequently
activation of NF-κB [11–13].

FABP4 is a 14.6 kDa protein highly expressed in adipo-
cytes and also readily expressed in other cell types such as
macrophages and endothelial cells, serving as a lipid cha-
perone that regulates transport, metabolism, and storage of
lipids [14, 15]. FABP4 deficient mice are protected against
insulin resistance and type 2 diabetes in the context of
dietary or genetic obesity [16]. Decreased lipolysis is
detected in adipocytes from FABP4 deficient mice, probably
attributing to a direct interaction of FABP4 with hormone-
sensitive lipase (HSL) [16–18]. FABP4-null pre-adipocytes
exhibit a potently enhanced peroxisome proliferator-
activated receptor gamma (PPARγ) expression and adipo-
genesis compared with wild-type cells [19]. Targeting
FABP4 provides therapeutic possibilities with great potential
for treating various metabolic disorders [20]. FABP4 is not
only a cytoplasmic protein but also can be secreted from
adipocytes in association with lipolysis via a nonclassical
secretion pathway [21–23]. Serum FABP4 levels are mark-
edly elevated in metabolic disorders such as obesity [24],
insulin resistance [25], type 2 diabetes [26], atherosclerosis
[27], and cardiovascular events [28]. Thus, it can be used for
the clinical diagnosis of obesity-related metabolic diseases
and cardiovascular diseases [26, 29]. Despite the robust
associations, the mechanisms underlying how FABP4 con-
tributes to disease pathogenesis remains enigmatic. Circu-
lating FABP4 has been shown to act as a bioactive molecule
that regulates the function of numerous cells or tissues, such
as potentiating glucose-stimulated insulin secretion in pan-
creatic β cells [30], enhancing hepatic glucose production
in vitro and in vivo [31], aggravating the endoplasmic reti-
culum stress in HepG2 cells [32], attenuating the insulin
signaling pathway in C2C12 myotubes [33], inducing acute
calcium-dependent myocardial contraction disorder and
myocardial neutral lipid accumulation [34, 35], inhibiting
the activation of endothelial nitric oxide synthase and
impairing the insulin-dependent nitric oxide pathway in
vascular endothelial cells [36, 37], and inducing the
expression of inflammatory genes in combination with pal-
mitic acid in macrophages [36]. However, the effects of
eFABP4 on adipocytes remain unclear so far. Herein, we
aimed to explore the potential effects of eFABP4 on adi-
pocyte differentiation and function, and further investigated
the possible signaling pathway involved.

Materials and methods

Reagents

Thiazolyl blue tetrazolium bromide (MTT), bovine insulin,
dexamethasone, and 3-isobutyl-1-methylxanthine were

obtained from Sigma-Aldrich. SB203580 was purchased
from Selleck. FABP4 inhibitor I-9 was discovered by our
laboratory and synthesized as previously described [38]. Oil
red O was purchased from AMRESCO. Regents for cell
culture were purchased from Thermo Fisher Scientific.
Primary antibodies were obtained from Cell Signaling
Technology. Secondary antibodies were obtained from
Jackson Laboratory. Primers were synthesized by Shanghai
Generay Biotech Co., Ltd. and the sequences were listed in
Table 1.

Purification of recombinant FABP4

Recombinant mouse FABP4 with a 6 × His tag was pro-
duced in E. coli using the pET28a vector and isolated by
nickel-affinity chromatography as previously reported [39],
and further purified with gel filtration chromatography
(Superdex-200, GE Healthcare).

Cell culture

Mouse 3T3-L1 pre-adipocytes (CL-173) were purchased
from American Type Culture Collection and maintained in
DMEM containing 10% fetal bovine serum at 37 °C with
5% CO2. The cells were differentiated into adipocytes as
previously described [40].

Oil red O staining, TG measurement, and Lipolysis
assay

Recombinant FABP4 with or without FABP4 inhibitor I-9
were added at the beginning of 3T3-L1 differentiation
induction and incubated in the medium throughout the
differentiation period (day 0–6). At day 6, oil red O staining

Table 1 Primer sequences

Gene name Primer sequence

GAPDH Forward: TGCACCACCAACTGCTTAGC

Reverse: GGATGCAGGGATGATGTTCT

TNF-α Forward: ATGGGAAGGGAATGAATCCACC

Reverse: GTCCACATCCTGTAGGGCGTCT

MCP-1 Forward: CCACTCACCTGCTGCTACTCAT

Reverse: TGGTGATCCTCTTGTAGCTCTCC

IL-6 Forward: TCTGAAGGACTCTGGCTTTG

Reverse: GATGGATGCTACCAAACTGGA

adiponectin Forward: CAACCAACAGAATCATTATG

Reverse: GGTAAGAGAAGTAGTAGAGT

PPARγ Forward: CAGGCTTCCACTATGGAGTTC

Reverse: GGCAGTTAAGATCACACCTATCA

FABP4 Forward: GCGTAAATGGGGATTTGGTC

Reverse: CTCCTGTCGTCTGCGGTGATT
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or intracellular TG measurement were conducted respec-
tively as previously reported [40]. Differentiated 3T3-L1
cells were pre-incubated with or without I-9/SB203580 for
2 h followed by recombinant FABP4 treatment for 48 h.
Then the cells were assayed for lipolysis as previously
described [40].

Animal treatment

Six-week-old male C57BL/6J mice were purchased from
Shanghai SLAC Laboratory Animal Co., Ltd. and housed in
a 12 h light-dark cycle with regular chow diet and free
access to water. After adaptively fed for 1 week, mice were
randomly divided into 3 groups (n= 10), subcutaneously
injected twice a day with recombinant FABP4 (0.35 mg/kg,
diluted in saline) with or without FABP4 inhibitor I-9
(50 mg/kg) by intragastric administration for 2 weeks.
Vehicle group mice received an identical amount of 0.5%
carboxymethyl cellulose and saline. On the 15th day, mice
were sacrificed and epididymal adipose tissue was imme-
diately removed, and frozen in liquid nitrogen.

All animal experiments were permitted by the Institu-
tional Animal Care and Use Committee of Shanghai Insti-
tute of Materia Medica (accreditation number: 2018–10-
WHY-16).

Immunoblot and gene expression analysis

Total protein or RNA were extracted from cells or epidi-
dymal adipose tissue and quantified by western blotting or
real-time (RT)-PCR (RT-qPCR) as previously described
[40].

Statistical analysis

Data were analyzed with GraphPad Prism software and
expressed as mean ± SEM of at least 3 independent
experiments. Statistical analysis of different groups was
performed by a two-tailed, unpaired Student’s t test or one-
way analysis of variance followed by a post hoc Tukey's
test to make pairwise comparisons. A 95% confidence
intervals was calculated and a value of p < 0.05 was con-
sidered significant.

Results

eFABP4 interferes with adipocyte differentiation

First, MTT assay revealed that eFABP4 had no significant
effect on the viability of 3T3-L1 pre-adipocytes up to
8000 ng/mL (Data not shown). To investigate the effect of
eFABP4 on adipocyte differentiation, intracellular

triglyceride measurement and oil red O staining were per-
formed. The results revealed that eFABP4 dose-
dependently decreased the intracellular triglyceride content
and lipid-droplet formation of adipocytes compared with the
control group (Fig. 1a, b). These findings suggested that
eFABP4 exhibited an anti-adipogenic phenotype in the
process of adipocyte differentiation.

To gain a better understanding of the molecular
mechanisms underlying the anti-adipogenic effect of
eFABP4, the expression levels of master adipogenic tran-
scription factors PPARγ, CCAAT/enhancer binding protein
alpha (C/EBPα), as well as PPARγ gene products FABP4
and adiponectin were analyzed. As shown in Fig. 1c, d,
eFABP4 significantly decreased the protein expression of
PPARγ, C/EBPα, FABP4, and adiponectin in a dose-
dependent manner. Following RT-qPCR results showed
that eFABP4 also decreased PPARγ, FABP4, and adipo-
nectin expression on the mRNA level during adipocyte
differentiation (Fig. 1e). The addition of FABP4 inhibitor I-
9 reversed the inhibitory effect of eFABP4 on adipocyte
differentiation, manifested as an increased TG content as
well as increased expression of PPARγ, C/EBPα, FABP4,
and adiponectin (Fig. 1f).

eFABP4 promotes adipocyte lipolysis in vitro and
in vivo

To investigate the effects of eFABP4 on mature adipocytes,
fully differentiated 3T3-L1 adipocytes were incubated with
eFABP4 (500 and/or 2000 ng/mL) in the presence or
absence of 50 μM I-9 for 48 h. As shown in Fig. 2a–c,
eFABP4 dose-dependently induced both basal (15 and 26%
increase) and forskolin-stimulated glycerol release (7 and
24% increase) from mature adipocytes, while I-9 inhibited
eFABP4-induced glycerol release by 33% decrease com-
pared with the eFABP4-treated group. To map signals
beneath lipolysis, we examined the protein level of adipose
triglyceride lipase (ATGL) as well as phosphorylation of
HSL on key serine residues. ATGL content and reversible
HSL phosphorylation are hallmarks of lipolysis regulation,
and phosphorylation of HSL at serine-660 has been
demonstrated to activate HSL activity [41]. As illustrated in
Fig. 2d, e, ATGL protein level and phosphorylation of HSL
at ser-660 were potently induced under eFABP4 treatment
(54 and 37% increase, respectively), with I-9 reversed the
induction by 53 and 45% decrease compared with the
eFABP4-treated group.

If eFABP4 also functions to regulate adipocytes in vivo,
there might be crucial physiological and pathophysiological
implications of such activity and its aberrant regulation in
immunometabolic disease. To verify the in vivo effect of
eFABP4 on adipose tissue, we subcutaneously injected
recombinant FABP4 into conscious C57BL/6J mice for
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14 days, thus elevating serum FABP4 in otherwise meta-
bolically normal mice to examine the effects of eFABP4 on
adipose tissue. Similar to the in vitro results, the level of
phosphorylated HSL (ser-660) was significantly upregu-
lated, while ATGL showed an upward trend in epididymal
adipose tissue of eFABP4-treated group (51 and 28%
increase, respectively). FABP4 inhibitor I-9 reversed
eFABP4-induced upregulation of ATGL and HSL phos-
phorylation in adipose tissue by 26 and 48% decrease
compared with the eFABP4-treated group, respectively
(Fig. 2f, g). Above all, we could draw a conclusion that
eFABP4-induced adipocyte lipolysis.

eFABP4 induces adipocyte inflammation in vitro and
in vivo

As eFABP4 has been reported to regulate the inflammatory
response in macrophages and endothelial cells [37, 42], we

next detected the inflammatory reaction in adipocytes by
eFABP4 treatment. As illustrated in Fig. 3a–d, eFABP4
treatment induced the phosphorylation of p38 (43%
increase) and NF-κB (21% increase) in differentiated 3T3-
L1 adipocytes, but no significant change was observed on
phosphorylation of JNK and ERK, while I-9 reversed the
pro-inflammatory effect of eFABP4 by decreasing the
phosphorylation of p38 and NF-κB. Similarly, to verify the
in vivo effect of eFABP4 on adipose tissue inflammation,
we detected the inflammatory pathway of epididymal adi-
pose tissue obtained from the aforementioned short term/
high concentration of eFABP4 injection mice. As shown in
Fig. 3e-g, eFABP4 treatment led to a 2.1-fold increase in
both the phosphorylation of p38 and NF-κB compared with
the vehicle group, while no significant change was observed
on phosphorylation of JNK. In addition, eFABP4 treatment
upregulated the inflammatory genes MCP-1 (89% increase),
TNF-α (76% increase), and IL-6 (61% increase) expression

Fig. 1 Effects of eFABP4 on 3T3-L1 differentiation. TG determination
(a, f) and oil red O staining (b) of 3T3-L1 cells after 6-day differ-
entiation. c, d, f Protein levels of PPARγ, C/EBPα, FABP4, and
adiponectin. e Gene expression of PPARγ, FABP4, and adiponectin.

*p < 0.05, **p < 0.01, ***p < 0.001 vs. the control group and ###p <
0.001 vs. the eFABP4-treated group. Values are given as mean ± S.E.
M. (n= 3)
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of adipose tissue, while I-9 downregulated these inflam-
matory genes (Fig. 3h). Moreover, the expression of adi-
ponectin was reduced by eFABP4 treatment (38%
decrease), with I-9 rescued the turbulence (Fig. 3h). Thus,
short term/high concentration of eFABP4 injection stimu-
lated inflammatory response in adipose tissue of C57BL/6J
mice, and caused pathological transformation of adipose
tissue under normal physiological state. These results sug-
gested that eFABP4-induced adipocyte inflammation both
in vitro and in vivo.

p38 MAPK is involved in eFABP4-induced lipolysis
and inflammation in adipocytes

To dissect the underlying mechanisms involved in eFABP4-
induced lipolysis and inflammation, we focused on p38
MAPK pathway, as it was potently induced by eFABP4
treatment. To minimize the background activity, cells were
incubated for 2 h in the presence or absence of SB203580, a
well characterized inhibitor for p38 MAPK, prior to

stimulation with eFABP4. Interestingly, SB203580 did not
affect basal lipolysis, but displayed a significant inhibitory
effect on eFABP4-stimulated lipolysis (Fig. 4a). In accor-
dance with the phenotype, we found that SB203580
reversed the upregulation of ser-660 p-HSL and ATGL
induced by eFABP4 (Fig. 4b, c). As for inflammatory
response, SB203580 also inhibited eFABP4-stimulated NF-
κB phosphorylation, as well as the expression of MCP-1,
but had negligible effect on TNF-α expression (Fig. 4d, e).
Taken together, lipolysis and inflammation were almost
reversed by the addition of blocker specific for p38 MAPK
(SB203580), indicating that p38 MAPK was involved in
regulating eFABP4-mediated lipolysis and inflammation in
mature adipocytes.

Discussion

With the ability of releasing various bioactive lipids and
substrates as well as a variety of adipokines, adipose tissue

Fig. 2 eFABP4 treatment promoted lipolysis in both differentiated
3T3-L1 cells and epididymal adipose tissue of C57 mice. a–c Super-
natant glycerol measurement. Western blot analysis of p-HSL (Ser-
660), t-HSL, and ATGL of differentiated 3T3-L1 cells (d, e) and

epididymal adipose tissue (f, g). *p < 0.05 vs. control group; #p < 0.05,
###p < 0.001 vs. the eFABP4-treated group. Values are given as
mean ± S.E.M. (n= 3)
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Fig. 3 eFABP4 treatment promoted inflammation in both differ-
entiated 3T3-L1 cells and epididymal adipose tissue of C57 mice. The
phosphorylation of p38, NF-κB, JNK, and ERK were detected in
differentiated 3T3-L1 cells (a–d) and epididymal adipose tissue of C57

mice (e–g). h Gene expression of inflammatory markers and adipo-
nectin in epididymal adipose tissue. *p < 0.05, **p < 0.01, ***p <
0.001 vs. control group; #p < 0.05, ##p < 0.01 vs. the eFABP4-treated
group. Values are given as mean ± S.E.M. (n= 3)
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has become the central focus of intracellular signaling and
communication over the years [41]. A pivotal integration
node among these mediators and reactions is regulated by
FABP4, a lipid chaperone protein highly expressed in adi-
pose tissue and a secreted adipokine predominantly derived
from adipocytes [42]. Numerous epidemiological studies
have identified circulating FABP4 as a common risk factor
for metabolic disorders [24–27, 43–45], provoking ques-
tions of how circulating FABP4 levels correlate with dis-
ease, and how FABP4 interacts with target cells to mediate
biological activity. Several groups have reported the func-
tion of eFABP4 on various peripheral tissues and cells, but
there are at present no reports of eFABP4 on adipocytes
differentiation and function. As the main source of circu-
lating FABP4, it is significant to elucidate the influence of
FABP4 on adipocytes. Hence we were committed to this
research, demonstrating that eFABP4 could impair adipo-
cyte differentiation, induce lipolysis and inflammation of
mature adipocytes. More importantly, we also delineated
the p38 MAPK signal involved in eFABP4-stimulated
lipolysis and inflammation.

The development and maintenance of adipose tissue
depend on adipocyte differentiation, which is regulated by
many factors, such as glucocorticoids, cyclic AMP agonists,
and insulin [46]. PPARγ and C/EBPα, two critical tran-
scription factors with synergetic role in supervising the
entire terminal differentiation process, are involved in the
differentiation of fibroblast-like pre-adipocytes into mature

adipocytes [47]. As the downstream regulatory element of
PPARγ, FABP4 has been reported to be largely induced
along with adipocyte differentiation [19]. Besides,
researchers have also found that FABP4 regulated adipo-
genesis by specifically triggering proteasomal degradation
of PPARγ and recombinant FABP4 decreased PPARγ
protein content in differentiated 3T3-L1 cells [19, 48].
Consistent with their research, we found eFABP4 nega-
tively regulated adipogenesis during adipocyte differentia-
tion by attenuating the expression of adipogenic
transcription factors and genes, further confirming that
FABP4 was not only an outcome but also a regulator of
adipocyte adipogenesis. Interestingly, we found eFABP4
regulated PPARγ not only at the posttranscriptional level,
but also at the gene level, thus forming a negative feedback
loop between FABP4 and PPARγ. Adiponectin is another
adipokine that is regulated by PPARγ [49], as an insulin-
sensitizing factor which can also enhance adipocyte lipid
storage and maintain healthy adipose tissue expansion [50],
the downregulation of adiponectin by eFABP4 was likely to
disturb the physiological status of adipocytes.

FFAs released by adipose tissue during lipolysis were
augmented in obesity and diabetes, and the chronic eleva-
tion of FFAs liberated by HSL could activate p38 to med-
iate pro-inflammatory cytokines expression in adipose
tissue [51, 52]. Moreover, inflammatory cytokine such as
TNF-α has been claimed to stimulate lipolysis in murine
and human adipocytes [53]. We found that eFABP4

Fig. 4 p38 inhibitor SB203580 blocked eFABP4-induced lipolysis and
inflammation in differentiated 3T3-L1 adipocytes. a Supernatant gly-
cerol measurement. b–d Western blot analysis of ATGL and the
phosphorylation of HSL and NF-κB. e Expression of inflammatory

genes. *p < 0.05 vs. control group; #p < 0.05, ##p < 0.01, ###p < 0.001
vs. the eFABP4-treated group. Values are given as mean ± S.E.M.
(n= 3)
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promoted adipocyte lipolysis by upregulating phosphor-
ylation of HSL at ser-660 and ATGL level, and induced
adipocyte inflammation by increasing the phosphorylation
of NF-κB and expression of MCP-1 and TNF-α. We
speculated that eFABP4-induced adipocyte lipolysis and
inflammation were mutually regulated to form a positive
feedback loop. We also noticed the pro-inflammatory
effects of eFABP4 in vivo were more obvious than that
in vitro. As a more complicated circumstance, other factors
may also be involved in the organism, such as the existence
of adipose tissue derived macrophages (ATMs) [54]. ATMs
comprise tissue resident macrophages present in adipose
tissue and secrete a variety of inflammatory cytokines under
certain stimulations [54]. As previously reported, eFABP4
combined with palmitic acid potently increased the
inflammatory response in macrophages [36]. The effect of
eFABP4-induced inflammation in adipose tissue in vivo
may at least in part attribute to its direct effect on ATMs.
Moreover, considering the close association between lipo-
lysis and FABP4 secretion, high concentration of eFABP4
treatment might simultaneously affect endogenous
FABP4 secretion accompanied with lipolysis, thus dis-
turbing the internal balance and physiological role of
FABP4 in adipocytes [55].

We primarily simulated pathological states and pre-
liminarily clarified the effects of eFABP4 and FABP4
inhibitor on normally differentiated adipocytes or adipose
tissue of mice in normal physiological state, but the precise
mechanisms of eFABP4/peripheral cells interaction and
FABP4 inhibitor action remains unclear. eFABP4 might
affect adipocytes through an autocrine/paracrine manner,
and the more detailed mechanisms of eFABP4-mediated
adipocyte dysfunction still needs further investigation. As
previously reported, eFABP4 can be taken up into endo-
thelial cells by interacting with plasma membrane proteins,
specifically cytokeratin 1, and the pharmacological inhibi-
tion of FABP4 decreased the eFABP4-cytokeratin 1 com-
plex formation [56, 57]. The inhibitor might interfere with
the cellular uptake of eFABP4, therefore modulated its
action in adipocytes. Moreover, the FABP4 inhibitor I-9
with a stronger affinity than linoleic acid might block the
FABP4-fatty acid mediated disorders by competitively
binding within the FABP4 fatty acid binding pocket [38].

In summary, our results demonstrate for the first time that
exogenous FABP4, as a pleiotropic adipokine, interferes
with adipocyte differentiation, promotes p38/HSL mediated
lipolysis, and p38/NF-κB mediated inflammation in adipo-
cytes. Our findings give more credence to implicate FABP4
as a critical factor in coordinating cellular metabolic and
inflammatory responses, and as a promising target in the
pathogenesis of immunometabolic diseases, thus offering
hope for the development of new therapeutic approaches for
their treatments.
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