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Abstract
Purpose As the treatment regimens such as metformin could confound the correlation between type 2 diabetes (T2D) and
gut microbiome, we should revisit the relationship between gut microbiota and T2D patients who are not currently treated
with metformin.
Methods The study recruited 65 T2D patients: 49 with and 16 without diabetic complications, and 35 healthy controls. We
sequenced the 16S rRNA V3-V4 region of gut microbiota and detected metabolites based on liquid chromatography mass
spectrometry (LC/MS) and gas chromatography mass spectrometry (GC/MS) in faecal samples.
Results The composition of both the gut microbiota and faecal metabolites changed significantly with T2D patients. The
abundance of Proteobacteria and the ratio of Firmicutes/Bacteroidetes were higher in T2D patients than healthy subjects,
and the short chain fatty acids (SCFAs), bile acids and lipids of T2D patients were significantly disordered. Moreover, the
abundances of certain SCFA-producing bacteria (Lachnospiraceae and Ruminococcaceae etc.) were significantly increased
in T2D patients, while the faecal SCFAs concentrations were significantly decreased. It’s suggested that the role of SCFA-
producing bacteria was not simply to produce SCFAs. Then we identified 44 microbial modules to explore the correlations
between the gut microbiota and metabolic traits. Specially, most modules including certain SCFA-producing bacteria were
comprehensively correlated to body mass index, the levels of blood glucose, blood pressure, blood cholesterol and faecal
bile acids and lipids.
Conclusions Our study identified the relationships between the gut microbiota and faecal metabolites, and provided a
resource for future studies to understand host–gut microbiota interactions in T2D.
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Introduction

Recent studies have shown that the gut microbiome is
closely related to various metabolic diseases, such as type 2
diabetes (T2D) [1]. However, several associations between
gut microbial dysbiosis and T2D differed between studies
[2, 3]. One of the reasons is that the treatment regimens
such as metformin could alter the composition and function
of gut microbiota [4]. It is meaningful to explore the com-
position of the gut microbiota in T2D patients who are not
taking metformin.

Multiple studies have established that microbial meta-
bolites have a major influence on host physiology [5, 6].
The most commonly known fermentation products are short
chain fatty acids (SCFAs), especially acetate, propionate
and butyrate, which are not only energy sources and

* Xiaobo Li
xbli@sjtu.edu.cn

1 School of Pharmacy, Shanghai Jiao Tong University, 800
Dongchuan Road, 200240 Shanghai, China

2 Key Laboratory of Chemical Biology (Ministry of Education),
School of Pharmaceutical Sciences, Shandong University, 44
Wenhuaxi Road, 250012 Jinan, China

3 Department of Endocrinology, The Second Hospital of Shandong
University, 247 Beiyuan Road, 250033 Jinan, China

Supplementary information The online version of this article (https://
doi.org/10.1007/s12020-019-02103-8) contains supplementary
material, which is available to authorised users.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1007/s12020-019-02103-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12020-019-02103-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12020-019-02103-8&domain=pdf
http://orcid.org/0000-0002-7500-9275
http://orcid.org/0000-0002-7500-9275
http://orcid.org/0000-0002-7500-9275
http://orcid.org/0000-0002-7500-9275
http://orcid.org/0000-0002-7500-9275
mailto:xbli@sjtu.edu.cn
https://doi.org/10.1007/s12020-019-02103-8
https://doi.org/10.1007/s12020-019-02103-8


signalling molecules in the gut, but might also enter the
systemic circulation and directly affect metabolism or
function of the peripheral tissues [7]. Another example is
trimethylamine N-oxide (TMAO), which is derived from
phosphatidylcholine (PC) by gut microbiota, has been con-
firmed to play an important role in atherosclerosis [8]. In
addition, branched-chain amino acids [9, 10], aromatic amino
acids [11], glutamate [12] and amino acid-derived metabo-
lites [13] have been reported as microbially modulated
metabolites, which are harmful to metabolic diseases. Since
the gut microbiota can affect the metabolic process of host
physiology through its related products, the interplay between
gut microbiota and faecal endogenous metabolites might also
mediate the associations between T2D and gut microbiota.

In the study, we enroled a cohort of one hundred 40–60
years old Chinese individuals including 65 T2D patients
without metformin or Traditional Chinese Medicine (TCM)
treatment and 35 healthy controls to further analyse the gut
microbiota and metabolites in their faecal samples. The
differential gut microbiota and faecal metabolites in the
T2D patients compared with the healthy subjects were
examined. In addition, the functional pathways based on gut
microbiota and faecal metabolites were predicted. We also
identified some correlations between gut microbiota and
clinical characteristics/faecal metabolites in T2D patients
and healthy subjects. Finally, we focused on the interactions
in some SCFA-producing bacteria and SCFAs, bile acids
and PCs, which might provide resources for future studies
to understand host–gut microbiota interactions in T2D.

Materials and methods

Subjects

We consecutively enrolled 65 T2D patients who were
hospitalised for hyperglycaemia in the Department of
Endocrinology of the Second Hospital of Shandong Uni-
versity. All T2D cases were diagnosed by having a fasting
blood glucose (FBG) of ≥7.0 mmol L−1, post-oral glucose
tolerance test (OGTT) of ≥11.1 mmol L−1 or a HbA1c of
≥ 6.5% [14]. The T2D cases (T2D group, n= 65) were
further divided into two subgroups: T2D with chronic
complications (T2D+ group, n= 49) and T2D without
chronic complications (T2D− group, n= 16). The T2D
individuals with chronic complications were registered by
two professional diabetologist in the morning the day after
admission. Briefly, a fundus camera was used to obtain
retinal photography and screen for retinopathy; 10-g
monofilament testing, 128-Hz tuning fork testing, tendon
reflexes or electrophysiological testing were used to screen
diabetic peripheral neuropathy; A systolic blood pressure
(SBP) ≥ 140 mmHg or a diastolic blood pressure (DBP) ≥

90 mmHg was defined as hypertension; and whether or not
patients had established cardiovascular disease was noted.
T2D− group was defined as newly diagnosed T2D without
complications. Thirty-five age- and sex-matched healthy
controls with FBG < 6.1 mmol L−1 and HbA1c of < 6.5%
[15], and without metabolic syndrome (e.g. having a body
mass index ≥ 24 kg m2−1, hypertension or dyslipidemia etc.)
were recruited from volunteers at the Physical Examination
Centre of the Second Hospital of Shandong University. The
patients in T2D+ group received therapies for hypergly-
caemia, hypertension and/or dyslipidemia by insulin,
aspirin, irbesartan, valsartan, atorvastatin or fenofibrate, but
not by metformin or TCM. The subjects in T2D− and
healthy groups were not received concomitant therapies
including drugs, health care products, probiotics or its
products. The exclusion criteria for all research subjects
included constipation or diarrhoea, hepatitis, an alcohol
intake of more than 20 g day−1, smoking, or an intake of
probiotics or antibiotics for more than 3 days in the previous
8 weeks. The baseline clinical characteristics of all subjects
are summarised in Table 1.

Informed consent was obtained from all subjects, the
study was performed under the guidance of the Helsinki
Declaration, and was approved by the Committee on the
Ethics of the Second Hospital of Shandong University. The
study was registered in the Research Chinese Clinical Trial
Registry (No. ChiCTR1800014700).

Sample collection, preparation, sequencing and
data processing

Fasting faeces were aseptically collected, immediately frozen
at −20 °C, then stored at −80 °C within 24 h until analysis.

Gut microbial DNA was extracted from a 0.2 g thawed
faecal sample using a FastDNA® Spin Kit for soil (MP
Biomedical, LLC, catalogue 116560-200) following man-
ufacturer instructions. The 16s rRNA V3-V4 region was
amplified by Primer F (5’- AACGGGAAGACAACGT
ACGG -3’) and Primer R (5’- CAGATGCAGGAGGACAT
GTC -3’) with barcode sequence. Library was constructed
following the manufacturer’s instructions of the Ion Plus
Fragment Library Kit and sequenced by Ion S5TM

Sequencer. The 16S raw sequencing reads are available in
the NCBI Sequence Read Archive (SRA) database under
the SRA accession number SRP168691.

The raw reads were de-multiplexed using USEARCH
software [16]. Operational taxonomic unit (OTU) picking
was conducted using the QIIME [17]. 16S rRNA gene
sequences were clustered at a similarity cutoff value of 97%
using UCLUST [16]. Matching of OTUs to bacteria was
then conducted using the SILVA reference database [17].
Microbial composition at each taxonomic level was defined
using the summarise taxa function in QIIME. Alpha and
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beta diversity plots were also generated using QIIME, two-
sided student’s two-sample t-test with Bonferroni correction
was used to compare the unweighted UniFrac distances
within or between groups [18].

Phylogenetic investigation of communities by
reconstruction of unobserved states (PICRUSt)
analysis

For functional metagenome prediction, 97% of the OTUs
were picked using a closed-reference OTU picking protocol
(QIIME) and the Greengenes database [19]. Reconstruction
of the metagenome was performed using PICRUSt [20].
Predicted functional genes were catalogued into Kyoto
Encyclopedia of Genes and Genome orthology (KO), and
compared between research groups using STAMP [21].

Faecal SCFAs and endogenous metabolites
measurements

The faecal SCFAs, including acetate, propionate, butyrate,
isobutyrate, valeric acid, isovaleric acid and hexanoic acid
were measured using Agilent 7890A equipped with an

7000D Triple Quadrupole gas chromatography mass spec-
trometry System (Agilent, USA), fitted with a HP-FFAP
column (30 m × 0.25 mm × 0.25 μm, Agilent, USA). The
standard solutions and faecal sample (0.2 g) were prepared
as previously described [22]. The chromatography was
programmed for an initial temperature of 100 °C for 1 min.
The temperature was increased to 145 at 5 °C min−1,
increased to 240 at 40 °C min−1, held for 10 min. Helium
was used as the carrier gas (flow rate: 1 mLmin−1). The
mass spectrometer was operated in the electron impact (70
ev) and selected ion monitoring (SIM) mode both for qua-
litative and for quantitative analysis with a solvent delay of
3 min. The typical total ion chromatogram of SCFAs stan-
dards and faecal samples are described in Supplementary
Fig. S1. The SCFAs concentration were calculated by the
standard linear regression curves [23].

An ACQUITY UPLC I-Class system & VION IMS
QTOF Mass spectrometer (Waters, USA) was used to
analyse endogenous faecal metabolites. 0.2 g of thawed
faeces was precipitated with 5 mL methanol containing
1 μg mL−1 L-chlorophenylalanine. Samples were vortex
mixed for 1 min. After 60 min of incubation at 4 °C, sam-
ples were stored overnight at −20 °C to improve protein

Table 1 Clinical and biological
characteristics of type 2 diabetes
and healthy subjects

Healthy T2D T2D− T2D+

Gender (male/female) 35 (18/17) 65 (35/30) 16 (7/9) 49 (28/21)

Age (years)a 44 (42, 48) 52 (43, 58) 52 (40, 58) 52 (44, 58)

BMI (kg m2 −1)b 22.01 ± 1.32 25.20 ± 3.84** 23.33 ± 3.92 25.81 ± 3.64**

WC (cm)a 74 (70, 81) 87 (81, 99)** 83 (80, 90)* 90 (84, 100)**

HC (cm)a 91 (88, 97) 100 (94, 105)** 96 (93, 99) 101 (97, 106)**

WHR (WC/HC)a 0.81 (0.79, 0.84) 0.89 (0.86, 0.94)** 0.89 (0.87, 0.90)** 0.90 (0.86, 0.95)**

SBP (mmHg)b 117.03 ± 8.70 141.22 ± 20.77**## 126.06 ± 10.12* 146.16 ± 21.02**##

DBP (mmHg)b 72.69 ± 7.76 86.38 ± 11.04**# 80.56 ± 9.52* 88.29 ± 10.92**##

HbA1c (%)b 4.38 ± 0.78 9.42 ± 2.49** 9.65 ± 2.65** 9.35 ± 2.47**

FBG (mmol L−1)a 5.33 (4.06, 5.15) 9.55 (6.72, 11.96)** 9.55 (7.74, 12.23)** 9.55 (6.53, 11.96)**

TC (mmol L−1)a 4.82 (4.35, 5.03) 5.08 (4.33, 5.76) 5.10 (4.23, 5.68) 5.08 (4.35, 6.55)

TG (mmol L−1)a 1.06 (0.84, 1.34) 1.29 (0.93, 1.75)* 1.48 (1.21, 1.98)* 1.16 (0.93, 1.70)

LDLC (mmol L−1)b 2.33 ± 0.57 2.70 ± 0.90 2.74 ± 0.71 2.69 ± 0.97

HDLC (mmol L−1)a 1.42 (1.13, 1.60) 1.24 (1.03, 1.49) 1.76 (1.09, 1.25) 1.31 (0.99, 1.58)

BMI body mass index, WC waist circumference, HC hip circumference waist, WHR waist-hip ratio, SBP
systolic blood pressure, DBP diastolic blood pressure, FBG fasting blood glucose, HbA1c glycated
haemoglobin, TC total cholesterol, TG triacylglycerol, LDLC low-density lipoprotein cholesterol, HDLC
high-density lipoprotein cholesterol, Healthy healthy control, T2D− T2D patients without complications,
T2D+ T2D patients with complications, T2D T2D− and T2D+ patients
*P < 0.05; **P < 0.01; compared to Healthy group
#P < 0.05; ##P < 0.01; compared to T2D– group
aMedian (25th, 75th) for non-distributed variables or percentages (%). P values were calculated by using
Kruskal-Wallis H-test with Bonferroni adjustment
bMean ± standard deviation for normally distributed variables. P values were calculated by using one-way
analysis of variance (ANOVA) followed by LSD test or Dunnett’s test
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precipitation and then centrifuged at 14 000 × g for 20 min
at 4 °C [24]. 1 μL of supernatant was injected into an
ACQUITY UPLC BEH C18 column (100 × 2.1 mm,
1.7 μm, Waters, USA) maintained at 45 °C. A quality
control (QC) sample, which was prepared by mixing equal
volumes (50 μL) of each faecal sample supernatant, was
injected after every 10th faecal samples to monitor system
stability. The mobile phase was composed of formic acid/
water (1/1000, v/v, A) and formic acid/acetonitrile (1/1000,
v/v, B), the linear gradient conditions were 5–20% B
(0–1.0 min), 20–40% B (1.0–2.5 min), 40–100% B
(2.5–9.0 min), 100% B (9.0–12.0 min), 100–5% B
(12.0–12.5 min) and 5% B (12.5–14.5 min), the flow rate
was 0.4 mLmin−1. The Vion IMS QTOF MS specific
conditions were set as follows: the lockspray ion source was
operated in positive and negative electrospray ionisation
mode (ESI), and the scan range was set from 50 to
1000 amu. The MSE mode was used to collect MS data, as
this scan mode includes a low-energy scan (CE 4 eV) and a
high-energy scan (CE ramp 20–45 eV), the typical base
peak ion chromatogram of each group is described in
Supplementary Fig. S2. The raw data were imported to
Progenesis QI (Waters, USA) for peak alignment to obtain a
matrix including indices (retention time_m/z pairs), ion
intensities and sample names. The matrix was further
reduced by removing peaks with missing values in more
than 80% samples. The repeatability of metabolomics data
sets was assessed by the coefficient of variation in the QC
samples at a threshold of 30% [25]. Then, the matrix was
transferred to SIMCA-P 13.0 software (Umetrics, Sweden)
for further statistical analysis. Partial least squares dis-
crimination analysis (PLS-DA) was performed to globally
analyse the metabolite differences between T2D and healthy
groups. The differential metabolites were identified as
variable of importance based on a projection (VIP value) >
1.0 from the seven-fold cross-validated orthogonal partial
least squares discriminant analysis (OPLS-DA) model.
These were validated by using Kruskal–Wallis H-test with
Bonferroni adjustment and were further adjusted for BMI
and age by multivariate analysis of co-variance. The online
HMDB [26], LIPIDMAPS [27] and METLIN [28] data-
bases were used to align the molecular mass data (m/z) and
identify the differential metabolites. The pathway enrich-
ment module of MetaboAnalysis was performed to analysis
metabolic pathways [29].

Co-occurrence network analysis

In order to detect relationships between the gut microbiota
and their potential combined effects on metabolic output,
we constructed a network of co-occurrence taxa and
interrogated the network for modules using weighted gene
co-expression network analysis (WGCNA) [30].

Functionally related taxa were observed to cluster into the
same modules preferentially, and the formation of modules
depended upon additional ecological affinities, reflecting
complementary convergent functionality [5]. Briefly,
WGCNA constructs networks using the correlation coef-
ficient between all possible pairs of the variable microbiota
taxa as the co-expression measure, which was raised to a
soft thresholding power (optimal beta= 12) to create the
adjacency matrix. The topological overlap distance cal-
culated from the adjacency matrix was then clustered with
the average linkage hierarchical clustering, and modules
were identified on the dendrogram using the Dynamic Tree
Cut algorithm [31]. The correlation coefficient (absolute
r > 0.4) between microbial modules and metabolic traits
were used to explore the correlation of Hub-microbiota
(eigengene connectivity value > 0.8) in modules and clin-
ical characteristics/faecal metabolites. The significance of
the correlations was determined by a Student asymptotic
P value [5].

Statistical analysis

Statistical analyses were performed using SPSS 21.0 soft-
ware (IBM, USA). Shapiro–Wilk test was used to check
the normality distributions of metabolic parameters. To
analyse the statistical differences among the groups, nor-
mally distributed variables were assessed with one-way
analysis of variance (ANOVA) followed by LSD test or
Dunnett’s test. Kruskal–Wallis H-test with Bonferroni
adjustment was used to compare the not-normally dis-
tributed variables. Differential abundance of gut micro-
biota between T2D and healthy groups were tested by
Welch’s t-test, P values were corrected by Bonferroni
correction for multiple tests. Statistical analyses were
adjusted for BMI and age by multivariate analysis of co-
variance. The post hoc type on GPower 3.1 was used to
calculate sample size and power. Box plots were per-
formed using GraphPad Prime 7.0. The correlation net-
work was visualised by Cytoscape 3.6.1. A P value < 0.05
was considered statistically significant.

Results

Clinical characteristics of T2D patients and healthy
controls

The clinical characteristics of T2D and healthy groups are
shown in Table 1. Compared with the healthy group, BMI,
waist circumference (WC), hip circumference (HC), waist-
hip ratio (WHR), HbA1c, FBG, DBP, SBP and triacylgly-
cerol (TG) were all significantly higher in the T2D group
(one-way ANOVA or Kruskal–Wallis H-test, P < 0.05 or
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0.01). In addition, SBP and DBP in the T2D+ group were
significantly higher than the T2D− group (one-way
ANOVA, P < 0.01).

Differences of gut microbial composition between
T2D patients and healthy subjects

The raw gut microbial sequence data of 16S rRNA V3-V4
region were sorted into 6933 OTUs (>97% identity), and
which were assigned to 526 taxa, with 245 of these pre-
sented in at least 80% of all samples. Overall, comparing
the healthy group, the gut microbial richness was non-
significantly higher in the T2D− group, but lower in T2D+
group. When T2D+ group was compared with T2D−
group, the observed OTUs and chao index were sig-
nificantly decreased (one-way ANOVA, P < 0.05, BMI and
age adjusted P < 0.05) (Supplementary Fig. S3a and Table
S1). For beta diversity, although unweighted unifrac
distance-based principal coordinate analysis (PCoA) of the
gut microbiome were not significantly different between the
healthy group and T2D groups, most of the differences
between groups were more significant than the differences
within groups (student’s t-test, P < 0.001) (Supplementary
Fig. S3b, c), indicating that there were statistical differences
between the three groups.

Welch’s t-test was used to investigate the differences in
gut microbial composition among the T2D and healthy
groups. At phylum level, the most dominant microbial taxa
in the three groups were Firmicutes (mean= 47.5%), Bac-
teroidetes (mean= 39.3%) and Proteobacteria (mean=
6.9%) (Supplementary Fig. S3d). Bacteroides (mean=
20.7%), Prevotella (mean= 10.1%), Dialister (mean=
7.6%), Megamonas (mean= 6.2%), Ruminococcus (mean
= 4.7%), Subdoligranulum (mean= 4.7%), Alistipes (mean
= 4.2%), Fusobacterium (mean= 3.9%), Faecalibacterium
(mean= 3.7%), Escherichia-Shigella (mean= 2.6%), Bifi-
dobacterium (mean= 2.3%) and Lachnoclostridium (mean
= 1.8%) were the most highly abundant microbial taxa at
genus level (Supplementary Fig. S3e).

Compared with the healthy group, the abundance of
phylum Firmicutes and Proteobacteria were significantly
increased in T2D group (Welch’s t-test, P < 0.001), while
Bacteroidetes was decreased (Welch’s t-test, P < 0.001),
and the ratio of Firmicutes/Bacteroidetes (F/B ratio) in
T2D/T2D+ groups were higher than that in the healthy
group. The Actinobacteria and Tenericutes were also
significantly altered among the T2D groups and healthy
group (Fig. 1a). At the taxonomic level (Fig. 1b), the
Bacteroides and Prevotella from phylum Bacteroidetes in
all T2D groups were significantly lower than those in the
healthy group (fold change=−6.53 to −2.01, Welch’s
t-test, P < 0.01–0.05). The genus Coprococcus 1 was

significantly increased in T2D groups compared with the
healthy group (fold change= 2.54–4.79, Welch’s t-test,
P < 0.01–0.02). Interestingly, the genera Blautia and
[Eubacterium] hallii group were only significantly higher
in the T2D− group than in the healthy group (fold change
= 4.94 and 2.38, Welch’s t-test, P < 0.01). Genus Para-
sutterella from Proteobacteria were also only significantly
increased in the T2D+ group than in the healthy group
(fold change= 7.49, Welch’s t-test, P < 0.05).

When the T2D+ group was compared with the T2D−
group, the ratio of Firmicutes/Bacteroidetes was increased,
and the phylum Firmicutes was decreased, while the Pro-
teobacteria was increased in the T2D+ group, that was
reflected in genera [Eubacterium] hallii group, Blautia,
Coprococcus 1 and Parasutterella.

After adjusting for BMI and age, the statistical differ-
ences of certain microbiota in the phylum Firmicutes were
changed when the T2D+ group compared with other
groups (Supplementary Tables S2 and S3). Sample size and
power calculation using differential gut microbiota as out-
come variables showed that most of the power values were
greater than 0.8 (Supplementary Table S4).

PICRUSt predicted analysis identified that carbohy-
drates, energy and lipids were significantly altered among
T2D patients and healthy subjects. As shown in Fig. 1c, the
carbohydrate metabolism, including TCA cycle and sugar
metabolism were significantly depleted, and the glycer-
ophospholipid metabolism, synthesis and degradation of
ketone bodies and fatty acid metabolism were significantly
enriched in T2D patient group.

SCFA differences in T2D patients and healthy
subject

The faecal SCFAs were analysed by GC/MS. The standard
linear regression curves and concentration of SCFAs are
shown in Supplementary Tables S5 and S6. Compared with
the healthy subjects, the concentrations of SCFAs including
acetate, propionate, butyrate, valeric acid and hexanoic acid
were predominantly reduced in the T2D patients
(Kruskal–Wallis H-test, P < 0.01; BMI and age adjusted
P < 0.01). However, these trends were not significant in the
T2D− group (Fig. 1d), which indicated that the differences
in SCFAs between T2D patients and healthy controls were
mainly from the T2D+ group. When the T2D+ group was
compared with the T2D− group, the concentrations of
acetate, propionate and butyrate were significantly
decreased (Kruskal–Wallis H-test, P < 0.05; BMI and age
adjusted P < 0.05). Sample size and power calculation using
differential faecal SCFAs as outcome variables showed that
most of the power values were greater than 0.8 (Supple-
mentary Table S8).
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Faecal metabolite profiles in T2D patients and
healthy subjects

After LC/MS analysis of faecal samples, the metabolite
profiles from the T2D and healthy groups were dis-
criminative in PLS-DA patterns of positive and negative
models (Fig. 2a). Moreover, individuals in the T2D+, T2D−

and healthy groups were separated from each other in the
OPLS-DA score scatter plots (R2Y(CUM) from 0.52 to 0.99,
and Q2(CUM) from 0.20 to 0.64) (Supplementary Fig. S4).
As shown in Fig. 2b and Supplementary Table S7, the PC
(16:0/17:0), lysophosphatidylcholine (LPC) (18:2) and
palmitoylcarnitine were higher in T2D group than in the
healthy group (fold change= 4.51–13.84, Kruskal–Wallis

Fig. 1 Relative abundance of selected phyla a and genera b with
significant differences among T2D and healthy groups. Welch’s t-test
corrected *P < 0.05, **P < 0.01, ***P < 0.001. F/B ratio, the ratio of
Firmicutes/Bacteroidetes. Functional differences of gut microbiota in
T2D and healthy groups c. The box plots of short chain fatty acids

(SCFAs) in faecal samples of T2D and healthy groups
d. Kruskal–Wallis H-test, Bonferroni adjusted *P < 0.05, **P < 0.01,
***P < 0.001. Healthy healthy controls (n= 35), T2D− T2D patients
without complications (n= 16), T2D+ T2D patients with complica-
tions (n= 49), T2D T2D− and T2D+ patients (n= 65)
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H-test, P < 0.05; BMI and age adjusted P > 0.05), whereas
some faecal bile acids, including cholic acid, glycocholic
acid and glycoursodeoxycholic acid were significant lower
in T2D group (fold change=−3.68 to −2.05,
Kruskal–Wallis H-test, P < 0.001; BMI and age adjusted
P < 0.001). When T2D+ group compared with T2D−
group, the cholic acid was further decreased (fold change=
−1.51, Kruskal–Wallis H-test, P= 0.030; BMI and age
adjusted P= 0.006), which indicated that cholic acid might
contribute to T2D complications. Sample size and power
calculation using differential faecal metabolites as outcome
variables showed that most of the power values were greater
than 0.8 (Supplementary Table S8).

The differential metabolites among T2D patients and
healthy subjects were related to bile acid metabolism, gly-
colipid metabolism and carbohydrate metabolism after
pathway enrichment analysis (Fig. 2c). To be emphasised,
these metabolic pathways were almost as same as the gut
microbiota-gene functions, especially the carbohydrate
metabolism and glycerophospholipid metabolism.

The gut microbiota and metabolic traits correlations
of T2D patients and healthy subjects

From our available evidence, the gut microbiota and faecal
metabolites were significantly altered between T2D patients
and healthy subjects. Meanwhile, the SCFAs and some
SCFA-producing bacteria were also remarkably changed

among of them. Therefore, we performed WGCNA (see
“Materials and Methods”) to detect the comprehensive
correlations between gut microbiota and faecal metabolites/
clinical characteristics. We identified 44 different microbial
modules (MMs). The complete list of taxa and their module
organisation are shown in Supplementary Table S9. There
were some interesting associations between the MMs and
clinical characteristics, faecal metabolites and SCFAs (Fig.
3 and Supplementary Fig. S5). For example, the MM32,
which contained family Lachnospiraceae genera Lachnos-
piraceae NK4A136 group, Marvinbryantia and Blautia,
were negatively correlated with T2D groups and DBP, SBP,
TC, TG and HDLC. The FBG and HbA1c were positively
correlated with the MM12, which contained genus Akker-
mansia in phylum Verrucomicrobia. Figure 3 shows that
clinical characteristics, including BMI, WC, HC, WHR,
DBP, SBP, TG, TC, HDLC and LDLC were positively
correlated with MM35 and MM19, which contained genera
Prevotella and Prevotellaceae UCG-003 in Bacteroidetes
and genera Streptococcus, Weissella, Veillonella, Pseudo-
butyrivibrio in Firmicutes. These two MMs were also
positively correlated with faecal metabolites linolenic acid
and LPC (18:2). The MM15 and MM16 contained families
Lachnospiraceae and Ruminococcaceae were negatively
correlated with acetate, while positively associated with
LPC (18:2). Bile acids (cholic acid, glycoursodeoxycholic
acid, chenodeoxyglycocholate and glycocholic acid) and
SCFAs (acetate, propionate and butyrate) were negatively

Fig. 2 Abnormal metabolic patterns of T2D and healthy groups. Partial
least squares discriminant analysis (PLS-DA) score plots based on the
metabolic profiles in positive (ES+) and negative (ES−) modes a. The
box plot of differential faecal metabolites in T2D and healthy groups
b. Kruskal–Wallis H-test, Bonferroni adjusted *P < 0.05. LPC lysopho-
sphatidylcholine, PC phosphatidylcholine, PE phosphatidylethanolamine,

DG diacylglycerol. The disordered metabolic pathways are enriched
based on differential metabolites between T2D and healthy groups
c. Healthy healthy controls (n= 35), T2D− T2D patients without
complications (n= 16), T2D+ T2D patients with complications (n=
49), T2D T2D− and T2D+ patients (n= 65)
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correlated with MM38, MM14 and MM34, which con-
tained microbiota in families Lachnospiraceae, Rumino-
coccaceae, Planococcaceae and Prevotellaceae ect.

From the results, some gut microbiota, such as genera in
families Lachnospiraceae and Ruminococcaceae were not
only significantly associated with SCFAs, but also corre-
lated with clinical characteristics and several faecal meta-
bolites, lipids and bile acids.

Discussion

In this study, we focused on the associations of gut
microbiota with faecal metabolites and clinical character-
istics using a cohort of 100 Chinese individuals. We
sequenced the 16S rRNA V3-V4 region, analysed meta-
bolites and SCFAs of faecal samples from 65 T2D patients
without metformin or TCM treatment and 35 healthy sub-
jects. We detected some meaningful associations between
gut microbiota and metabolic traits. For example, the
SCFA-producing bacteria were not only related to the
SCFAs, but also to faecal bile acids and lipids. However,
the gut microbiota’s effect on the development of T2D and
its complications remains controversial.

From our results, the concentrations of SCFAs, including
acetate, propionate and butyrate were significantly
decreased, while certain SCFA-producing bacteria in
families Ruminococcaceae and Lachnospiraceae were sig-
nificantly increased in T2D patients compared with healthy
subjects, contradicting the findings of Qin et al. [32, 33].
The main reason for this inconsistency was the limitation of

gene sequencing technology. The 16S rRNA sequencing
could not acquire all the SCFA-producing bacteria. The
second reason might be that Qin’s research didn’t consider
treatment regimens, especially the metformin or TCM,
which might affect the composition and function of gut
microbiota in T2D patients [4, 34]. In addition, the con-
centrations of faecal SCFAs reflect a balance status between
colonic production and absorption of SCFAs [35], or even
reflect SCFAs absorption rather than its production [36]. It
was concluded that SCFAs do not necessarily have the same
metabolic influence as SCFA-producing bacteria on T2D
[37]. More studies are needed to determine whether the
kinetics of SCFA production and metabolism differ in T2D
patients and healthy subjects.

In addition, we confirmed and supplemented previous
correlations between certain SCFA-producing bacteria [38]
and metabolic disorders in humans. For example, the
abundance of family Prevotellaceae was significantly
decreased in T2D patients with coronary artery disease and
was positively correlated with BMI [39]. The Prevotella
species was increased in obesity and hypertension subjects
[40, 41]. The genera Anaerostipes, Pseudobutyrivibrio,
Streptococcus, Butyricicoccus and Veillonella from families
Lachnospiraceae, Ruminococcaceae and Veillonellaceae
were increased in faecal samples of insulin resistance, T2D
and cardiovascular disease patients, while these were posi-
tively correlated with FBG, HbA1c and blood pressure
[38, 39, 42, 43]. Most of the above bacteria are SCFA-
producing bacteria [38], which were comprehensively cor-
related with T2D clinical characteristics, such as BMI, DBP,
SBP, TG, TC, HDLC, LDLC and faecal LPC/PC

Fig. 3 The correlation network
based on WGCNA between gut
microbiota (circle) and
metabolic traits (hexagon) in
T2D and healthy groups
(square). BMI body mass index,
WHR waist-hip ratio, SBP
systolic blood pressure, DBP
diastolic blood pressure, FBG
fasting blood glucose, HbA1c

glycated hemoglobin, TC total
cholesterol, TG triacylglycerol,
LDLC low density lipoprotein
cholesterol, HDLC high density
lipoprotein cholesterol, LPC
lysophosphatidylcholine,
Healthy healthy control, T2D−
T2D patients without
complications, T2D+ T2D
patients with complications
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metabolites in our study. A previous study indicated that gut
microbiota played a role in generation of TMAO from the
PC and revealed the following metabolic pathway: PC→
choline→ TMA→ TMAO [44]. TMAO is a cardiovascular
and mortality risk of T2D complications independent of
traditional hyperglycaemia, and TMAO is closely related to
disordered gut microbiota [45]. Remarkably, LPCs were
associated with cardiovascular risk and strongly age-
dependent [46]. This might be one of the reasons for the
changes in the statistical difference of faecal metabolites
after adjusting for age and BMI, such as LPC (18:2) and PC
(16:0/17:0). And the situation was also observed on certain
microbiota in the phylum Firmicutes. Previous study
reported that the phylum Firmicutes was altered with BMI,
but not Bacteroidetes [47]. Thus, we concluded that the
above metabolites and microbiota were closely related with
adiposity and age. Since in human studies such controls are
not possible, it is significant to split apart the contributions
of age and BMI (and other factors) to clarify the relation-
ships between the gut microbiota and PC on T2D/T2D
complication. And it is vital to personalised diabetes care
for the older or overweight/obese individuals with T2D
since they have a high risk for the development of diabetic
complication.

Bile acid are produced in the liver from cholesterol and
metabolised in the intestine by the gut microbiota. These
bioconversions modulate the signalling properties of bile
acids via the nuclear farnesoid X receptor (FXR) and the G
protein-coupled membrane receptor 5 (TGR5), which reg-
ulate numerous metabolic pathways in the host. And these
processes can be altered by targeting the interplay between
bile acids and the gut microbiota [48]. Studies confirmed
that FXR and TGR5 signaling controls glucose homo-
eostasis by regulating glucagon-like peptide-1 (GLP-1)
synthesis in intestinal L cells [49, 50]. In the human
intestinal, the bile acids and the microbiota reciprocally
control their composition. Indeed, bile acids act as anti-
microbial agents by damaging bacterial membranes [51].
Gut microbial bile salt hydrolase (BSH) enzymes hydrolyse
the conjugated bile acids to free bile acids, which then are
further modified by microbiota to secondary bile acids
during the feedback mechanism [52]. In our findings, some
significantly decreased faecal bile acids in T2D patients
were negatively correlated with some SCFA-producing
bacteria, including families Lachnospiraceae, Rumino-
coccaceae and genera in phylum Proteobacteria, which
have activation effects on BSH [53, 54]. Collectively, we
hypothesised that there was interplay between the SCFA-
producing bacteria and bile acids, which might alter the
processes of glucose and lipid metabolism in T2D patients.

Moreover, the major trend of Firmicutes and Bacter-
oidetes or the ratio of Firmicutes/Bacteroidetes in case-
control studies seem to be unstable [55]. Our results showed

that the ratio of Firmicutes/Bacteroidetes was higher in the
T2D groups compared with the healthy group, and the
genera Bacteroides and Prevotella were the major con-
tributors to the significant reduction of the phylum Bacter-
oidetes in T2D patients. Although Bacteroides and
Prevotella seemed to be beneficial to T2D [40], Bacteroides
species was reported to be an opportunistic pathogen of T2D
[32], while Prevotella could induce insulin resistance [9] and
was significantly increased in T2D with hypertension [56].

However, our study existed several limitations. First, the
healthy control group screened by using FBG and HbA1c

was not measured by OGTT to exclude prediabetes or
diabetes. Second, we could not eliminate the impact of
concomitant therapies and food intake [57] on the faecal
microbiota and metabolites in this cohort. Third, due to the
small sample size, the correlations between the gut micro-
biota and metabolic traits and the predicted functions of
microbiota were not able to adjust for age and BMI. Fur-
thermore, data on faecal consistency were not available for
our participants and this might have an impact on faecal
microbiota and metabolites. And the serum levels of bile
acids and SCFAs were not measured in the study, which
might have hid more possible mechanisms underlying the
correlations between gut microbiota and T2D metabolic
characteristics [58].

Nevertheless, our study comprehensively described the
correlations between disordered gut microbiota and faecal
metabolites, which might provide significant evidences for
subsequent studies on causality of gut microbiota in T2D.
Although there are some controversies about the interplay
between gut microbiota and T2D, it is undeniable that gut
microbiota affects the metabolism of T2D patients by their
related metabolites. Large longitudinal and interventional
studies are further required.
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