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Abstract
The Metastatic progression of solid tumors, such as thyroid cancer is a complex process which involves various factors.
Current understanding on the role of epithelial–mesenchymal transition (EMT) in thyroid carcinomas suggests that EMT is
implicated in the progression from follicular thyroid cancer (FTC) and papillary thyroid cancer (PTC) to poorly
differentiated thyroid carcinoma (PDTC) and anaplastic thyroid cancer (ATC). According to the literature, the initiation of
the EMT program in thyroid epithelial cells elevates the number of stem cells, which contribute to recurrent and metastatic
diseases. The EMT process is orchestrated by a complex network of transcription factors, growth factors, signaling cascades,
epigenetic modulations, and the tumor milieu. These factors have been shown to be dysregulated in thyroid carcinomas.
Therefore, molecular interferences restoring the expression of tumor suppressors, or thwarting overexpressed oncogenes is a
hopeful therapeutic method to improve the treatment of progressive diseases. In this review, we summarize the recent
findings on EMT in thyroid cancer focusing on the main role-players and regulators of this process in thyroid tumors.
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Introduction

Thyroid cancer is the most prevalent endocrine malignancy
and its incidence rates have increased during the past three
decades worldwide [1, 2]. Epithelial tumors of thyroid are
the most common forms that originate from thyroid folli-
cular cells. These epithelial cancers can be divided into
three major pathological forms: papillary thyroid carcinoma

(PTC), follicular thyroid carcinoma (FTC), and anaplastic
thyroid carcinoma (ATC), which all originate from folli-
cular epithelial cells [3]. The third type of thyroid tumor is
known as medullary carcinoma (5–10%), which is derived
from C cells of the thyroid gland [4]. Most of the thyroid
carcinomas display biologically indolent behavior and have
a good prognosis with long-term survival rates (95% at 20
years), although the mortality risk from recurrent or per-
sistent diseases is still high [5]. The conventional treatment
for thyroid cancer is thyroidectomy with postoperative
radioiodine therapy. However, unresectable recurrence,
resistance to radioactive iodine and metastasis in DTC,
poorly differentiated thyroid carcinoma (PDTC) and ATC
are still the leading causes of death in thyroid cancer [6, 7].
Accordingly, it is critical to elucidate the molecular altera-
tions associated with aggressive behavior of thyroid tumors
to develop novel therapeutic strategies to overcome thyroid
cancer [6, 8]. Several studies have established that the
invasiveness of thyroid cancer is associated with multiphase
processes like epithelial–mesenchymal transition (EMT)
[3, 9–11].

EMT is a morphology-changing program, by which epi-
thelial cells obtain fibroblast-like phenotype by triggering
transcriptional events, typical of mesenchymal cells [12].
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This program is also implicated in morphogenetic altera-
tions during embryonic development, wound repair, and
cancer metastasis [13]. During EMT process, epithelial cells
dedifferentiate, start to lose the structural restrictions pro-
vided by the tissue architecture and turn from previous
pebble shape to fusiform appearance of cells, which is
related to cytoskeleton rearrangement [14–16]. These cells
induce proteolytic digestion of the receptors implicated in
cell–cell contact, increase the activity of adhesion molecules
that contribute in cell movement and stimulate proteases on
the cell surface leading to an incremented digestion of
extracellular matrix (ECM) constituents [17]. In this regard,
cancer cells switch expression of E-cadherin and cytoker-
atin, typically found in epithelial cells, to fibronectin,
vimentin, or neural cadherin (N-cadherin), which are gen-
erally identified in mesenchymal cells. In addition, an ele-
vated activity of matrix metalloproteinases (MMPs), such as
MMP-2 and MMP-9 has been previously reported [18–20].
The alterations in the expression of E-cadherin and N-
cadherin are shown to be associated with resistance to
anoikis and increase in invasiveness [16, 21]. Tumor
microenvironment is comprised of stromal cells, ECM
components, and secreted factors, all of which play a major
role in EMT induction and further in tumor metastasis
[14, 22]. EMT process may be activated by various con-
ditions, such as tissue hypoxia and fluctuating level of
extracellular stimuli, including transforming growth factor β
(TGF-β), epithelial growth factor (EGF) family member,
and fibroblast growth factor [15, 23].

These stimuli can influence several transcription factors
(TFs), such as Snail, Twist, Zeb and others by modulating
signal transduction pathways, including Wnt, Notch,
mitogen-activated protein kinase (MAPK), and
phosphatidylinositol-3-kinase (PI3K) [13, 23]. EMT is also
under the control of epigenetic modifications, such as DNA
methylation, microRNAs (miRNAs) and long noncoding
RNAs (lncRNAs) [24]. Moreover, correlations between
some EMT regulating factors and cancer stem cell (CSC)
properties have been revealed, because TFs, such as Zeb1
frequently stimulate stemness by repressing stemness-
inhibiting miRNAs [25]. Although primary tumor cells
and circulating tumor cells (CTCs) show EMT character-
istics, they convert back to their epithelial phenotype by a
reverse process called mesenchymal to epithelial transition
(MET), which causes the induction of cell proliferation and
formation of secondary tumors at the distant metastatic site
[13, 26]. Many invasive carcinomas, such as thyroid cancer
undergo EMT in the invasive front (tumor-stromal bound-
ary) of tumor [27]. A growing body of literature has
affirmed that the activation of the EMT program is closely
related to thyroid carcinoma progression, which includes
extrathyroidal extension, distant metastasis, and increased

stemness of cancer cells [10, 28, 29]. Understanding the
different aspects of EMT process could aid in unraveling
the metastasis in thyroid cancer, and may provide new
therapeutic anticancer strategies targeting EMT especially
by reversing this transition process. The main goals of this
review are to summarize current knowledge on the role of
EMT in thyroid cancer focusing on the main role-players
and regulators of this process, such as the inducers and
signaling pathways, TFs, epigenetic modifications, and
microenvironmental factors in thyroid tumors.

EMT regulatory networks in thyroid cancer

EMT, under physiological and pathological conditions, is
controlled by highly evolutionarily conserved regulatory
networks [20]. These networks involve two arms: (1) tran-
scriptional control that implicates several TFs, such as
Snail, Zeb, Twist, Forkhead box D3 (FOXD3), SOX9,
Runx2, and (2) epigenetic mechanisms, such as DNA
methylation, lncRNA, and microRNA functions [20, 24]. In
addition, various inducers activate several signaling path-
ways, including TGF-β, Wnt, Notch, and PI3K and MAPK,
which converge on the regulation of specific TFs involved
in driving EMT in thyroid cancers. Figure 1 depicts several
possible regulators and different markers of epithelial and
mesenchymal cell types in thyroid cancer EMT.

Signaling pathways

TGF-β signaling

TGF-β family is a key inducer of EMT during cancer
metastasis [11]. TGF-β plays two opposing roles in
tumorigenesis: it acts as a tumor repressor at the initial
phases of tumor formation and stimulates cancer growth and
metastasis in later stages [30]. TGF-β signaling functions
via stimulation of receptor-regulated SMADs (R-Smads),
such as Smad2 and Smad3 or non-Smad signaling path-
ways. Activated R-Smads bind Smad4, and this complex is
transported into the nucleus, where it regulates the tran-
scription of several genes [31]. On the contrary, Smad7 has
been shown to antagonize TGF-β/Smad-dependent signal-
ing [32]. The expression of the components of TGF-β/
Smad-dependent signaling has been observed in normal
thyrocytes, but their expressions have been shown to be
significantly higher in PTC tumors as compared with that in
normal thyroid tissues [32]. Cerutti et al. reported that
Smad7 was upregulated in aggressive undifferentiated
thyroid cell lines compared with differentiated ones and that
Smad4 was expressed in all tested cell lines, unlike other
types of tumors, in which Smad4 expression is deleted [33].
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It was supposed that cancer cells become resistant to TGF-β
antitumor effects due to mutations in TGF-β receptors and
Smads [30]. D’Inzeo et al. detected a mutation in Smad4
gene from node metastases of PTC, and reported that the
constant expression of Smad4 in thyroid cells is associated
with a significant increase in TGF-β signaling, resulting in
mesenchymal conversion and E-cadherin loss, the two
important events involved in EMT [34]. Garcia-Rendueles
et al. demonstrated TGF-β/Smad suppressing ability against
p27 gene in normal thyrocytes that leads to Bax upregula-
tion and apoptosis. However, they further asserted that
oncogenic activation stops TGF–β/Smad-dependent
p27 suppression in thyroid cancer cells, the phenomenon
that causes TGF-β/Smad-dependent growth of thyroid
tumors [30]. Moreover, TGF-β has been established to
elevate motility and recruitment of immune cells, such as
monocytes and macrophages, while prohibiting their anti-
tumor activities. Thus, TGF-β can also assist in the pro-
gression of tumorigenesis through secretion of growth
factors and cytokines from immune cells [32]. Non-Smad
signaling pathways have been identified to be involved in
TGF-β-induced invasion of thyroid cancer cells [35, 36].
Baquero et al. clarified the role of TGF-β in promoting EMT
process through two independent pathways of activation of
MAPK by BRAFV600E and stimulation of Src/FAK signal-
ing [11]. Conversely, Anelli et al. experimentally showed
that BRAFV600E expression in thyrocytes results in the
upregulation of genes associated with EMT and TGF-β
signaling. They additionally suggested the TGF-β and EMT
as the most highly differentially induced signaling pathways
in BRAFV600E expressing thyrocytes [37].

PI3K/Akt and MAPK/Erk pathways

A number of evidences have shown that the deregulation of
PI3K/Akt and MAPK pathways participate in EMT initia-
tion and tumor development in thyroid cancer [38]. MAPK
activation is induced by external stimuli (such as growth
factors and mitogens) that bind to their cognate cell-surface
receptors. Mutations in various components of the MAPK
pathway, which can lead to constitutive activation of the
pathway, have been found in ~70% of thyroid cancers.
RET/PTC rearrangement or RAS or BRAF point mutations
are primarily responsible for the initiation and development
of thyroid carcinomas. The most frequently alteration in
thyroid tumorigenesis is BRAFV600E mutation, which acti-
vates MEK-ERK in this pathway [39, 40]. Moreover, it has
been revealed that these effects are mediated by over-
expression of Snail and loss of E-cadherin, both are hall-
marks of EMT [11, 40]. In addition, BRAFV600E expression
has been unraveled to increase TGF-β secretion, which in
turn can result in an augmented invasion and EMT program
in thyroid tumor cells. These effects have been found to be
mediated by the activation of two parallel cascades of
BRAFV600E/MEK/ERK and Src/FAK signaling [11]. Agra-
wal et al. by studying the genomic landscape of 496 PTC
samples, have found that BRAFV600E-mutated samples more
strongly activate the MAPK pathway than RAS-like tumors.
This may be due to the insensitivity of BRAFV600E to ERK
preventive feedback and responsivity of RAS to this inhi-
bition. However, RAS-like tumors can activate both MAPK
and PI3K/AKT pathways by a mechanism distinct from that
of BRAFV600E tumors. They also asserted that the RAS-like

Fig. 1 Schematic representation of EMT modulators in thyroid cancer.
Epithelial cells exhibiting apical–basal polarity are held together by
cell–cell junctions. These cells express molecules that maintain epi-
thelial phenotype (listed in the pink box). Induction of EMT leads to
the expression of genes associated with the mesenchymal state (listed
in the green box) which results in cellular changes including the

disassembly of epithelial cell–cell junctions and the dissolution of
apical–basal cell polarity. The initiation and progression of EMT in
thyroid cancer is under the control of multiple regulatory networks,
including epigenetic mechanisms, transcription factors, signaling
pathways, tumor microenvironmental-associated factors, and specific
cellular proteins with various functions in the cells
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tumors are a distinct subgroup characterized by a higher
differentiation of the tumor [41].

The oncogenes RET/PTC, RAS, and BRAF, by activat-
ing MAPK cascade, can induce pro-inflammatory cyto-
kines, such as tumor necrosis factor-α (TNF-α) and
interferon-γ (IFN-γ). TNF-α and IFN-γ are expressed in
several types of tumor cells and cells in the tumor micro-
environment. They exert numerous pro-tumoral activities in
solid tumors. Lv et al. observed that TNF-α and IFN-γ
induce EMT and malignant progression in human PTC cells
via downregulation of E-cadherin as well as the upregula-
tion of N-cadherin and vimentin [42].

Binding of EGF to its receptor (EGFR) has been reported
to induce EMT in breast cancer cells [43]. EGF also plays a
crucial role in pathogenesis of ATC and affects the
expression of EMT markers, by increasing vimentin and
decreasing E-cadherin expressions. A study by Chin et al.
revealed a regulatory function for EGF in ATC migration
and invasion, which was occurred by modulating the ERK/
CREB signaling pathway [44]. Gao et al. showed that the
binding of hepatocyte growth factor (HGF) to its receptor,
c-Met, could induce the invasion and EMT in thyroid cells
as well as the stimulation of metastasis in vivo through the
c-Met/PI3K/AKT pathway. They have further proven that
HGF-induced EMT was reversed by upregulating E-
cadherin and downregulating N-cadherin in cells treated
with c-Met and PI3K inhibitors [45]. Various studies have
highlighted that upregulation of discoidin domain receptor
tyrosine kinase 2 (DDR2), a member of the receptor tyr-
osine kinase (RTK) family, induces EMT in breast cancer,
hepatocellular carcinoma, and head and neck squamous cell
carcinoma [46–48]. Liang et al. provided evidence to show
that DDR2 is upregulated in PTC tissues with local
metastasis and that its overexpression induces EMT in PTC
cells by stimulating ERK2 and stabilizing Snail1 [49].

The Notch pathway

The Notch pathway plays an oncogenic or tumor suppressor
role, depending on the type of malignancy. This pathway
involves four receptors (Notch1, 2, 3, and 4) with the
Notch1 has been evidenced to participate in the EMT during
both normal development and tumorigenesis. The role of
abnormal Notch-1 expression has been described in thyroid
cancers [50]. Ferretti et al. declared that the expression
levels of the Notch pathway components were visibly
decreased in undifferentiated tumors in comparison to
normal thyroid tissue, and upregulated Notch1 in cancer
cells could reestablish the differentiation, diminish cell
growth, and induce sodium/iodide symporter expression via
a direct act on its promoter [51]. However, Park et al.
indicated that the expression of Notch1 receptor in PTCs
was meaningfully associated with the presence of

clinicopathological complications, such as the large tumor
size, capsular invasion, extrathyroidal extension, and node
metastasis [52]. A study by Zhang et al. showed that the
expression of Notch-Regulated Ankyrin Repeat Protein
(NRARP), as a mediator for controlling Notch and Wnt
signaling, was highly associated with several EMT markers
and poor survival in PTCs [53]. Notch1-induced tumor
advancement may involve the modification of the TGF-β
signaling pathway. The data obtained from the study of
Zhang et al. indicated an elevated expression of TGF-β1,
Notch, and p-Smad3 levels in PTC cells [54]. They also
affirmed that the activated Notch and TGF-β/Smad3 path-
ways in tumors could affect their growth and progression.

The Wnt/β-catenin pathway

Wnt ligands are secreted glycoproteins that have been
shown to be implicated in the progression of thyroid cancer
[55]. The Wnt/β-catenin pathway activation leads to the
accumulation of β-catenin in the nucleus where it functions
as a coactivator for TFs, such as the T-cell factor (TCF)/
lymphoid enhancer factor family [56]. SDC4 is an integrin
co-receptor of Wnt and has been reported to considerably
affect cell adhesion-promoting MAPK pathway. Chen et al.
have demonstrated that SDC4 gene silencing inhibits EMT,
and increases cell apoptosis by suppressing the stimulation
of Wnt/β-catenin signaling in human PTCs [55]. Thyroid
cancer development to PDTC and ATC is associated with
constitutive activation of β-catenin and its target genes,
which are implicated in carcinogenesis [57, 58]. β-catenin
mutations in the most aggressive forms of thyroid cancer
and H-RasV12 expression in tumor cells of differentiated
thyroid cancer have been shown to induce β-catenin nuclear
assembly [59]. An increasing body of evidence supports the
role of β-catenin in upregulation of EMT-related genes and
an increase in the thyroid tumor cell invasion [57]. CSN6 is
a subunit of the COP9 signalosome complex that plays
important roles in protein ubiquitination, transcriptional
activation, signal transduction, tumorigenesis, and stabiliz-
ing β-catenin. Wen et al. showed that the expression of
CSN6 was increased in human PTCs and its elevated
expression facilitated the EMT in these specimens [60].
Hardin et al. observed that β-catenin silencing could upre-
gulate E-cadherin and reduce the EMT markers and tumor
cell invasion [57].

Transcription factors

TFs like Zinc finger E-box-binding homeobox (Zeb) 1 (also
called TF 8) and Zeb2 (also known as ZFXH1B) are
associated with EMT. Zeb1 and Zeb2 are key modulators
implicated in the suppression of several crucial regulators of
epithelial polarity and thereby are involved in EMT and
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metastasis processes [61]. Zeb1 upregulation correlates
closely with EMT in thyroid cancer cells. It has been
demonstrated that Bcl-2-associated athanogene 3 (BAG3)
stimulates the nuclear accumulation of β-catenin and aug-
ments its transcriptional activity, resulting in the over-
expression of Zeb1 in thyroid tumor cells. Overexpressed
Zeb1 is then able to directly bind E-box in the E-cadherin
promoter, repressing its transcription and leading to the
activation of EMT [16]. Twist1 is a basic helix–loop–helix
TF capable of straight binding to E-box consensus sites (5-
CANNTG-3) to exert its regulatory effects [62, 63]. Twist1
gene amplification stimulates a CSC phenotype, prevents
apoptosis, and enhances resistance to chemotherapeutic
agents [63–66]. Elevated Twist1 correlates with poor
prognosis and high grade and stage of the tumor [62, 63].
Twist1 has been reported as a major regulator for EMT
[67, 68]. Survival rate and motility of thyroid cancer cells is
influenced by Twist1 [69]. High expression levels of Twist1
have been observed in ATC resulting in the enhancement of
cell migration, invasion, and resistance to apoptosis. Si-
RNA-mediated repression of Twist1 decreases these effects
[70–72]. Twist1 overexpression has also been reported in
aggressive follicular carcinomas, which are associated with
the loss of E-cadherin expression [73]. Slug (Snail2) is a
member of the Snail zinc finger E-box binding family that
acts as a transcriptional repressor. Snail family members are
involved in a variety of cellular processes related to cell
motility and EMT initiation [74]. The increased expression
of Snail in mammary cell lines may result in loss of E-
cadherin expression and gain of mesenchymal phenotype
[75]. It has recently been revealed that Slug is not expressed
in normal human thyroid cells, but is highly expressed in
thyroid cancer cells and their metastases. Buehler et al. have
shown that the Slug expression was significantly higher in
the ATC tissues and cell lines than in PTCs and FTCs,
suggesting the role of EMT program in the progressive
behavior of ATCs [70]. Moreover, Sun et al. confirmed that
Slug silencing by siRNA transfection significantly decrea-
ses the ability of cell migration and invasion in ATC cells
[76]. Wu et al. have described the upregulation of EMT
marker, Slug, in WD-FTC and its association with highly
aggressive and poorly differentiated phenotype in ATC and
FTC tumors [73].

Sex-determining region Y (SRY)-box 9 (Sox9) is another
TF that plays different roles in several types of cancers.
Sox9 is overexpressed in human PTC cell lines and tissues.
Sox9 has been identified to control PTC cell proliferation,
migration, invasion, and EMT process through affecting the
Wnt/β-catenin pathway [77]. Huang et al. provided evi-
dence to show that knockdown of Sox9 in PTC cells sig-
nificantly inhibited the expression of downstream target
genes of the Wnt pathway, such as β-catenin, cyclin D1, and
c-Myc. Their results also showed that knockdown of Sox9

reversed EMT phenotype, by obstructing the expression of
N-cadherin and enhancing E-cadherin expression levels
[77]. Runx2, runt-related TF2, is a master regulator of
embryonic differentiation. Overexpression of Runx2 has
been detected in PTCs and thyroid cancer cell lines (KTC-1,
TPC-1, WRO, UA-2, and 8305C cells) [78]. Runx2 has
been shown to have promoting effects on cancer cell
metastasis by stimulating the secretion of MMPs and VEGF
and overexpression of EMT-related proteins, including
Sox9, Snail2/Slug/SNAI2, and Smad3 [79–81].

FOXD3 TF participates in embryonic development and
tumorigenesis in many tissues. The upregulation of
FOXD3 suppresses metastatic promotion of non-small cell
lung cancer and its downregulation in infiltrating ductal
carcinomas of breast induces distal metastases [82, 83]. A
recent study has indicated that the inhibition of FOXD3
increases the invasiveness and EMT in ATC cell lines and
tissue samples. The results of that study also showed that
knockdown of FOXD3 could decrease the expression of E-
cadherin through the activation of the MAPK/ERK signal-
ing pathway. In addition, the expression of FOXD3 was
significantly higher in normal samples compared with tumor
samples and was inversely related to p-ERK [84].

TBX1, a member of the T-box family of TFs, is char-
acterized by a conserved and relatively large DNA binding
motif known as T-box. Wang et al. declared that TBX1
functions as a tumor inhibitor in thyroid cancers and its
expression is downregulated in both PTC tumors and some
thyroid cancer cell lines (BCPAP, FTC133, K1, and
8305C). They reported that TBX1 represses EMT via
upregulation of E-cadherin and downregulation of N-cad-
herin, vimentin, and the E-cadherin repressors (Snail, Slug,
and Twist) [85].

Specific cellular proteins

E-cadherin

The E-cadherin gene (CDH1) is frequently downregulated
by different mechanisms including inherited and somatic
mutations, unusual protein processing, hypermethylation of
CDH1 promoter, and repressing effects of Zeb1, Zeb2,
Snail, E12/E47, and Twist [86, 87]. E-cadherin is expressed
in normal thyroid gland and benign thyroid lesions, while
its expression diminishes with the progression of differ-
entiated thyroid cancers to undifferentiated ones [35, 88].
The expression profile of PDTC, a rare aggressive malig-
nancy of thyroid follicular cells, exhibits a significant
decrease in E-cadherin as compared with paired samples of
PTC [35]. Overexpression of BRAFV600E in PTC cells sti-
mulates EMT by enhancing Snail expression and suppres-
sing the E-cadherin levels [87]. Jung et al. also highlighted
the loss of E-cadherin expression in majority of ATC

Endocrine (2019) 66:435–455 439



patients [89]. In thyroid tumors, the loss of E-cadherin is
generally followed by overexpression of several transcrip-
tional factors, such as Snail1, Slug (Snail 2), Zeb, Twist,
which are implicated in EMT [16, 17, 70–72].

Vimentin

During EMT, the actin and intermediate filament of the
cytoskeleton are reorganized, and cells obtain improved
cell-matrix contacts, promoting the detachment from nearby
cells and triggering migration and invasion. Expression of
vimentin, a component of intermediate filaments, is upre-
gulated in mesenchymal cells [20, 90]. Overexpression of
vimentin is associated with the induction of EMT in several
thyroid cancer cell lines and tissues, which is correlated
positively with other mesenchymal markers, including N‐
cadherin, Slug, Zeb1, and Snail [9, 16, 91].

Periostin and fibronectin1

Other ECM proteins, such as periostin and fibronectin1
(FN1) are induced during EMT and alter the composition of
the ECM, the process that seems to contribute in invasive-
ness of tumors [28, 92]. Periostin is a secretory protein that
acts as a scaffold for assembly of ECM proteins (such as
collagen and fibronectin) and plays a role in cell adhesion
and ECM organization [92]. Periostin, localized in the ECM,
interacts with integrins vß3 and vß5, and thereby stimulates
cell adhesion and motility through the modulation of Akt/
PKB and FAK-mediated signaling pathways [93, 94]. This
protein is highly expressed in many types of human cancers,
such as pancreatic, colon, breast, nasopharyngeal, head and
neck, gastric, and thyroid malignancies [93–99]. Periostin
has been found to be a marker and inducer of EMT process
[93]. Kim et al. affirmed the periostin-mediated induction of
the EMT process in prostate cells through loss of E-cadherin
under the control of Snail and enhanced p-Akt [93]. Peri-
ostin is generally upregulated in PTCs regardless of the
presence of a BRAF mutation, and higher levels of periostin
mRNA is associated with decreased expression of thyr-
oglobulin and Thyroid Stimulating Hormone Receptor
(TSHr), which are differentiation markers. Indeed, periostin
overexpression has been shown to be correlated with dif-
ferent clinicopathological characteristics of aggressive PTCs,
such as the presence of extrathyroidal extension, distant
metastasis, and higher tumor grade and stage. These data
suggest that the expression of periostin is related to EMT
and tumor aggressiveness [10].

Some immune-histochemical evidences exhibited that
the enhanced FN1 expression is seen mainly at tumor
invasive front [28]. Sponziello et al. reported the increased
levels of FN1 mRNA in classic PTC (vs follicular-variant
PTC), in response to BRAFV600E oncogene (vs BRAF-wild

type) [28]. Moreover, FN1 expression is higher in PTC
patients with lymph node metastasis (LNM) than patients
without LNM, and its overexpression is related to larger
tumors and an Advanced-stage PTC [100]. Xia et al. found
that FN1 sensitivity in identifying overall cervical LNM in
PTCs was much higher than ultrasonography evaluation,
and its specificity in forecasting LNM in tumors of PTC was
similar to ultrasound examination, proposing it as a reliable
biomarker for predicting LNM in PTC [100].

S100 proteins

Another family of ECM proteins related to metastatic pro-
cesses is the S100 proteins, a multigene calcium-binding
family that covers more than 20 members. S100 proteins
participate in several cellular processes, such as the reg-
ulation of protein phosphorylation, enzyme activity, cal-
cium homeostasis, organization of cytoskeletal components,
and acting as transcriptional factors. S100 proteins, when
are upregulated in the ECM, can disrupt cell–cell adhesion
and facilitate the degradation of ECM and metastasis
[101, 102]. S100A13, a small S100 calcium-binding protein
A13, is characterized by its specificity for diverse forms of
cancers. The overexpression of S100A13 increases the risk
of relapse in melanoma patients, and invasiveness in lung
cancer cell lines [103, 104]. S100A13 has also been found
to be enhanced in PTCs compared with normal tissue
[105, 106]. Knockdown of S100A13 has been described to
reduce the expression of high-mobility group A (HMGA)-1
and Snail and enhances E-cadherin expression in thyroid
cells, suggesting that S100A13 may play a key role in EMT
and thyroid cancer progression [105].

IQGAP1

IQGAP1, as a scaffold protein widely expressed in human
tissues, is involved in various biological processes, such as
the cell adhesion, cell cycle, directional migration, tran-
scription, cell division, and extracellular signaling
[107, 108]. It has been reported that IQGAP1 is over-
expressed in numerous tumors, such as colorectal, gastric,
and pancreatic cancers [109–111]. In addition, IQGAP1
amplification has been unraveled to be significantly asso-
ciated with thyroid cancer cell invasion. Su et al. demon-
strated that the downregulation of IQGAP1 inhibits cell
proliferation and EMT via blocking Wnt/β-catenin signaling
in thyroid cancer cells [107].

KIF3a

The onset of EMT process is accompanied by the loss of
cellular polarity [112]. Epithelial cell polarity occurs
through the uneven distribution of cellular junctions and
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polarity proteins [113]. Basoapical polarity can change the
expression patterns of genes through the interaction of
junctions and polarity proteins with remodeling factors of
genome [113]. Polarity proteins are a highly conserved set
of proteins that form a complex that localizes to the tight
junction. These proteins are able to interact with micro-
tubule motor protein KIf3a, leading to control of the
polarized trafficking of proteins along microtubules [114].
Recently, several studies have discovered the role of KIF3a
in the development of tumorigenesis. Liu et al. described
that the exogenous expression of KIF3a in human prostate
cancer cell lines transfected by a KIF3a-expressing vector
stimulates cell proliferation; however, knockdown of KIF3a
decreases the migration and invasion of these cells
[115, 116]. Wang et al. provided evidence to describe the
significant elevated expression of KIF3a transcript and
protein in the tissues and cell lines of human thyroid cancer
(FTC133 and TPC1). In addition, they demonstrated that
the knockdown of KIF3a inhibits hypoxia-induced EMT of
thyroid cancer cells through suppressing the Wnt/β-catenin
signaling pathway [117].

BAG3

Once the tumor cells start to metastasize, they need to
overcome anoikis, a form of programmed cell death that is
initiated by cell detachment from the ECM [20, 118]. BAG3
is an Hsp70 co-chaperone that supports cell survival by
retaining the antiapoptotic activity of Bcl-2 family of cell
death regulators [119]. It was previously established that
BAG3 silencing through inhibition of HSF1 (TF upstream of
BAG3 and HSP70) decreases cell motility and ECM adhe-
sion in breast and prostate cancer cells, and primes glioma
cells to anoikis [118]. BAG3 has been indicated to control
EMT and metastasis in thyroid cancer cells. Meng et al.
alluded that BAG3 upregulates Zeb1 through β-catenin
activation, which in turn enhances EMT and metastasis of
thyroid cancer cells [16].

HMGA proteins

The high-mobility group A (HMGA) proteins are often
upregulated in human cancers and have significant roles in
the EMT process [120]. HMGA1 controls the transcrip-
tional activity of various genes by changing the chromatin
structure (83). The expression of HMGA1 is almost absent
in normal cells and adult tissues, but are enhanced in
embryonic cells and many cancers, such as breast, pancreas,
lung, colon, and thyroid carcinomas [85, 121–124]. Positive
correlation and increased expression levels of HMGA1
protein has been previously described in thyroid cancer
cases (83). The downregulation of HMGA1 has shown to
decrease the expression of Snail and MMP-2, whereas

increases the expression of E-cadherin, which may result in
the suppression of proliferation and invasion of thyroid
cancer cells [105, 120]. Zhong, et al. pointed out the
inducing activity of TGF-β1 on HMGA1 expression
through PI3K and ERK signaling in thyroid cancer cells,
suggesting a pivotal role of HMGA1 in the progression of
thyroid carcinomas [120].

Epigenetic modulators

Epigenetic modifications are dynamic and reversible
alterations, affecting chromatin structure for the regulation
of gene expression without altering the nucleotide sequence
[125]. They include DNA methylation, histone modifica-
tions, and noncoding RNA regulations [126]. Increasing
evidence has highlighted the critical role of epigenetic
modifications in the initiation and maintenance of EMT, and
that the reversibility of epigenetic changes can describe the
plasticity of EMT for metastatic colonization [127].

DNA methylation

Aberrant DNA methylation is one of the well characterized
epigenetic alterations, which can lead to a number of pro-
cesses, such as the activation of proto-oncogenes or silen-
cing of tumor suppressor genes [128]. DNA methylation is
catalyzed by DNA methyltransferase enzymes that methy-
late cytosine residues in CpG islands located in gene pro-
moters [127]. Tumor suppressor genes DAPK (death-
associated protein kinase), RASSF1A (RAS association
domain family 1A), RAPβ2 (retinoic acid receptor beta 2),
RAP1GAP (RAP1 GTPase activating protein), TIMP3
(tissue inhibitor of metalloproteinase 3) SLC5A8, and
PTEN are epigenetically downregulated in thyroid cancers
[128]. The PTEN, a phosphatase that terminates the PI3K/
Akt pathway, often exhibits a pattern of promoter hyper-
methylation with decreasing the differentiation in FTCs
[129]. In PTCs, promoter hypermethylation of RASSF1A,
DAPK, and TIMP3 genes result in an aggressive phenotype
[128]. Thyroid differentiation genes, such as SLC5A5
(NIS), and NKX2-1 also are hypermethylated in undiffer-
entiated thyroid carcinoma [129]. The hypermethylation of
E-cadherin gene (CDH1) that is associated with gene
silencing has been reported in several human cancers, such
as the breast and thyroid tumors [127]. Jensen et al. con-
ducted a study to evaluate the relationship between E-
cadherin methylation and its expression in PTC samples as
well as the corresponding LNM. They observed that the
hypermethylation of CDH1 promoter in PTC samples was
correlated with loss of E-cadherin expression, extrathyroidal
extension, and lymph node metastases. Loss of epigenetic
silencing of CDH1 due to the reduction in the level of gene
promoter methylation in LNM was correlated with a gain of
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E-cadherin expression [27]. TF TBX1 that inhibits EMT
and invasiveness has been reported to be inactivated by
promoter methylation in PTC tissues and some thyroid
cancer cell lines [85].

miRNA

MicroRNAs (miRNAs) are a wide class of naturally
occurring, small noncoding, and single- stranded RNA
molecules of about 19–25 nucleotides in length. MiRNAs
function as posttranscriptional negative regulators of gene
expression via either splitting mRNA, or hindering their
translation [17, 130]. They are able to regulate majority of
cellular processes including cell proliferation, differentia-
tion, adhesion, and programmed cell death [131]. Further-
more, dysregulation of miRNA occurs in several type of
cancers, in which the processes of cell migration, invasion,
and EMT are intensified [132]. The overexpression and
underexpression of specific miRNAs are linked to some
cancers, suggesting the oncogenic or tumor suppressor role
for these RNAs [133]. Several miRNAs, such as miR-146,
miR-221, miR-222 and miR-17-92, and miR-150‐5p are
upregulated in thyroid cancers, while some are down-
regulated, which include miR-200, miR30, and miR-
NA148a families exclusively in ATC, miR-520a‐3p and
miR-144 in PTC, and let-7 family in both ATC and PTC
[91, 132, 134–136].

Several studies have shown that miR-144 participates in
the tumorigenesis of various tumors and acts as a tumor
suppressor or an oncogene, depending on the type of tissue.
Decreased level of miR-144 is associated with several types
of cancers, such as non-small-cell lung cancer, bladder
cancer, and colorectal cancer cells [137–139]. However, in
nasopharyngeal cancer, miR-144 enhances tumor growth,
migration, and invasion by suppressing PTEN, acting as an
oncogene [61]. MiR-144 has been observed to be mean-
ingfully downregulated in PTC cell lines and tissues, and its
expression was associated with larger tumor sizes [134].
Moreover, miR-144 represses Zeb1 and Zeb2 mRNA, and
induces a mesenchymal phenotype with inhibition of E-
cadherin [61]. Another target of miR‑144 is WW domain-
containing transcription regulator 1 (WWTR1) that is highly
expressed in PTC tissues with the ability to enhance the cell
invasion through EMT [134]. Moreover, miR-144 directly
targets E2F8, a typical E2F TF that participates in the reg-
ulation of genes required for the progression of cell cycle, to
obstruct PTC cell proliferation in vitro and in vivo. E2F8 is
generally overexpressed in PTC tissues, and has been shown
to cause aggressive clinicopathological characteristic, while
its silencing could result in G1-phase arrest by reducing
cyclin D1 (CCND1) [140].

MiR-146, miR-146a, and miR-146b family genes are
abundantly expressed in human thyroid cancers, especially

in ATC, and are under the control of nuclear factor-κB
[141]. Indeed, MiR-146b-5p increases the extrathyroidal
invasion and stimulates EMT in PTC cells. MiR-146b-5p
enhances cell surface Wnt receptor expression and Wnt/
β-catenin signaling through downregulation of zinc RING
finger 3 (ZNRF3), but on the contrary, overexpression of
ZNRF3 can reverse miR-146b-5p effects [142]. MiR146b
has been shown to promote EMT of thyroid follicular cells
by downregulating PTEN, which may result in the hyper-
activation of the PI3K/AKT pathway, increasing Twist
expression, and decreasing E-cadherin expression. Ramirez-
Moya et al. showed that in spite of the fact that PTEN
rescues the miR146b-induced expression of Twist, it fails to
rescue reduced level of E-cadherin [143].

Deregulation of miR‐150‐5p has been illustrated to
modify the biological and pathological processes of several
type of cancers [144]. For example, its overexpression in
gastric cancer cells enhances the mutations of DNA repair
genes [91, 145]. Upregulation of miR‐150‐5p in PTC cell
lines lessens E-cadherin expression, but augments the levels
of N‐cadherin, Slug, vimentin, Zeb1, and Snail, suggesting
a role in EMT. Indeed, it has been observed that miR‐150‐
5p accelerates the EMT switch through the MEK/ERK
signal pathway, and controls the BRAFV600E oncogene
[91].

MiR-200 family members, including miR-200a, miR-
200b, miR-200c, and miR-30 have been recognized as the
inhibitors of EMT in ATC. The expressions of these two
groups of miRNAs are usually diminished in mesenchymal
ATC-derived cell lines. This reduced levels may induce
EMT by targeting the Zeb1 and Zeb2 [135]. According to
some investigations, the stimulation of the EGF pathway
downregulates miR-200s, and enhances the expression of
mesenchymal markers [146]. Basal miR-200s level is also
regulated by transcription activator p53. It was previously
indicated that the presence of a TP53 mutation in ATC
could lead to the loss of miR-200 expression [147].

MiR-520 has been reported to serve as a tumor sup-
pressor in several human cancers, such as hepatocellular
carcinoma, breast cancer and PTC [136, 148, 149]. MiR-
520a-3p is poorly expressed in PTC tissues, where it is
associated with the expression of EMT-related biomarkers
(including reduced expression of E-cadherin and elevated
expression of vimentin). MiR‐520a‐3p has also been
claimed to inhibit cancer progression through inactivating
the JAK/STAT cascade by negatively regulating JAK1.
However, miR‐520a‐3p upregulation or JAK1 knockdown
could reduce the expression of JAK1 and EMT biomarkers
in PTCs [136].

MiR-199a-5p expression is regulated by tumor specific
mechanisms, because it is downregulated in tumors of
breast and colorectal tissues, while it is upregulated in
gastric cancer [150–152]. The expression level of
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miR-199a-5p is markedly downregulated in PTC tissues
and cells. Ma et al. reported that miR-199a-5p over-
expression suppresses the progression of PTC by down-
regulating Snail [153].

LncRNA

LncRNAs are usually referred to RNA transcripts contain-
ing more than 200 nucleotides without any protein-coding
potential [153]. LncRNAs take part in various physiological
and pathological processes, such as carcinogenesis, by
changing gene expression through epigenetic regulation,
transcriptional control, and posttranscriptional regulation.
Accumulating evidence indicates that the lncRNAs parti-
cipate in tumor progression, thus the aberrant expression of
these transcripts are correlated with cancer diagnosis and
prognosis [154]. A number of lncRNAs have also been
characterized to play important roles in EMT and devel-
opment of thyroid and several other cancers [57].

BRAF-activated non-protein-coding RNA (BANCR), a
693-bp-long transcript located on chromosome 9, has been
found to be related to several human malignancies. Li et al.
uncovered high expression levels of BANCR in human
melanoma cancer cell lines and tissues, and asserted that the
upregulation of BANCR stimulates the cell proliferation
through activating ERK1/2 and JNK MAPK cascades
[155]. Jiang demonstrated that BANCR expression was
downregulated in lung carcinoma cells, and this level was
remarkably associated with enhanced cell proliferation and
migration of lung carcinomas [156]. A recent study by
Wang et al. using thyroid cell lines (including WRO, CAL-
62, BCPAP, and FTC-133) indicated that BANCR expres-
sion was augmented in tissue samples from PTC patients
compared with adjacent normal tissues. They also asserted
that the BANCR mediates EMT by downregulating E-
cadherin, and upregulating vimentin and N-cadherin. In
addition, the results of their study proposed that BANCR
overexpression may promote the migration and invasion of
PTC cells through the Raf/MEK/ERK pathway [157].

Long intergenic non-protein-coding RNA 673
(LINC00673) has recently been characterized and shown to
have oncogenic function [158]. Lu et al. have proven that
LINC00673 was overexpressed in non-small cell lung
cancer, and that it could sponge miR-150-5p and indirectly
regulate the expression of a crucial EMT-TF Zeb1 [158].
Yu et al. reported that LINC00673 was considerably upre-
gulated in tongue squamous cell carcinoma samples, and
promoted invasion and metastasis of tumor cells [159]. A
recent study by Xia et al. revealed that LINC00673
expression was highly upregulated in thyroid tumor tissues
compared with paired adjacent normal tissues, and that high
expression of LINC00673 was correlated with larger tumors
and LNM. They also showed that LINC00673 might

influence EMT, because knocking down of LINC00673
decreased the expression of N-cadherin and vimentin, and
increased E-cadherin expression, while its high expression
led to the opposite results [160].

LncRNA CASC2 plays a tumor suppressor role, and its
downregulation contributes to tumor progression in bladder
cancer and renal cell carcinoma [161–163]. Zhou et al.
examined the expression of LncRNA CASC2 in plasma and
tumor tissue samples of patients with PTC in comparison to
nodular goiter. They found that lncRNA CASC2 expression
was remarkably lower in tumor samples than in nodular
goiters. Decreased levels of plasma lncRNA CASC2 was
accompanied by LNM of PTC patients. However, results of
in vitro functional assays revealed that the overexpression
of lncRNA CASC2 inhibits proliferation and migration of
PTC cells. In addition, lncRNA CASC2 overexpression
inhibited EMT process of PTC by upregulation of E-
cadherin and downregulation of Zeb1 and N-cadherin [164].

Taurine upregulated gene 1 (TUG1), an lncRNA located
on chromosome 22q12, has been described to be dysregu-
lated in several malignancies. TUG1 is a member of com-
peting endogenous RNAs (ceRNAs), which has been
proposed as a novel post-transcriptional regulation, in
which lncRNAs interact with miRNAs [165]. Lei et al.
reported that the expression level of TUG1 was increased in
thyroid cancer tissues. They also described that
TUG1 sponged miR-145 and promoted cancer progression
and EMT through the miR-145/Zeb1 signaling pathway in
thyroid cancer cells [165]. Linc-ROR (regulator of repro-
gramming) is a lncRNA that plays key controlling roles in
interaction with miRNAs, conserving stem cell plur-
ipotency, and activating the EMT [166]. Linc-ROR func-
tions as a sponge to prevent the miRNA-mediated
deprivation of the key pluripotency factors Oct4, Sox2, thus
linc-ROR may regulate human embryonic stem cell self-
renewal and differentiation [167]. Previous studies have
demonstrated that miR-145, a known tumor suppressor,
obstructs translation of pluripotency TFs during ESC dif-
ferentiation [166]. Moreover, linc-ROR has a much wider
role as a stress-responsive lncRNA, suggesting a mechan-
istic pathway by which linc-RoR can coordinate cellular
responses to their local microenvironment [168]. Dysregu-
lation of linc-ROR has been reported in several malig-
nancies, such as the breast cancer, hepatocellular carcinoma,
and endometrial cancer [166, 168–170]. Takahashi et al.
alluded that in liver cancer cells linc-ROR is regulated by
hypoxia and is able to support cell proliferation partially by
sponging miR-145 [168]. Zhang et al., by examining linc-
ROR expression in PTC tissue specimens and cell line, have
found that linc-ROR has higher expression in PTC tissues.
Their SiRNA experiments showed that linc-ROR enhanced
cell proliferation and invasion and supported the role of
ROR as a sponge to downregulate miR-145. They also
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demonstrated that linc-ROR expression was highly elevated
in vitro when the PTC cells were treated with TGF-β, and as
a result, the expression of EMT markers was increased and
EMT was initiated [171].

Tumor microenvironment factors

Tumors are dependent on their complicated tissue envir-
onment that sustains tumor growth, invasion, and metastasis
[172]. The tumor stroma consists of a number of cells, such
as fibroblasts/myofibroblasts, inflammatory and immune
cells, and a vascular system along with noncellular con-
stituents of ECM [173–177]. In the tumor microenviron-
ment, cancer-associated fibroblasts (CAFs) exist in
abnormally high numbers, and are implicated in inducing a
mesenchymal-like phenotype and enhancing epithelial
tumor cell invasion [54]. Some studies have suggested that
EMT stimulates the production of CAFs, whereby cancer
epithelial cells dedifferentiate to produce mesenchymal cells
carrying CAF markers [177, 178]. Zhang et al. clarified that
the expression of alpha-smooth muscle actin, a CAF mar-
ker, significantly elevated with advanced tumor stages in
PTC. Furthermore, they found that cancer cell-derived-
TGF-β also influences stromal fibroblasts in a paracrine
manner and may lead to tumor development [54].

Immune cells, as significant constituents of tumor
stroma, can modulate cancer consequences by either limit-
ing or promoting tumor initiation, development and
metastasis [172]. In human PTC, an elevated number of
mast cells have been observed to be associated with
enhanced EMT, stemness, and invasiveness of tumor [175].
Once activated by thyroid cancer cell-derived conditioned
media, mast cells produce high levels of IL-8 that constantly
induce EMT in thyroid cancer cells through an IL-8-Akt-
Slug axis [12]. Tumor-associated macrophages (TAMs) are
one of the main role-players in stroma of various solid
tumors and have been shown to promote cancer initiation
and malignant progression [179]. Therefore, targeting these
cells could result in reducing the number of tumor-initiating
cells, overcoming chemotherapy resistance, inhibiting
metastatic spread, and increasing antitumor T-cell responses
[180]. Qing et al. studied the density of TAMs in benign
thyroid lesions and PTC tumors using CD68 immunos-
taining technique. Their data uncovered that the number of
TAMs in PTC tumors was significantly high in comparison
to thyroid goiter and follicular adenoma, and their high
amount was positively related to LNM. Accordingly, they
concluded that TAMs may play an active and key role in the
progression of PTC tumors [181]. Another study on diffuse
sclerosing variant of PTC has evidenced the accumulation
of TAMs in the lymphatic tumor emboli, with the majority
(76%) of macrophages being of the M2 phenotype. Results
of that study also showed a remarkable association between

M2 TAM density and older age and larger tumor size in
these patients. In addition, the increase in M2 TAMs has
shown to be associated with an increase in lymphatic
invasion, size of tumor emboli, and lymph node metastases
[182]. Fung et al. found that TAMs can promote PTC
metastasis by paracrine secretion of various cytokines,
especially CXCL8. Therefore, they suggested that inhibiting
CXCL8 can hamper PTC cell invasion in vitro and PTC
tumor metastasis in vivo [183].

Accumulating data have confirmed that hypoxia, a cri-
tical microenvironmental factor, can activate the EMT
process [13]. Hypoxia-inducible factor (HIF)-1 plays a key
role in the hypoxia-induced transcription of TFs that include
Twist, Snail, Slug, Sip1 (Smad interacting protein 1), and
Zeb1 [13, 184]. In thyroid cancer cell lines, hypoxia induces
HIF-1α expression and promotes EMT-related changes,
which include typical morphologic changes, cadherin shift,
and enhanced vimentin expression [3]. Upregulation of
HIF-1α, by transfecting this factor, is generally followed by
the aforementioned changes without hypoxia, but the sup-
pression of HIF-1α with RNA interference represses EMT.
Furthermore, Twist has been demonstrated to have a pro-
moter region containing an HIF1 response element, which
can be bound by HIF1 [184]. In thyroid cancer cell lines,
Twist has been realized to be controlled by HIF-1α, and
suppression of HIF-1α obliterates the hypoxia-induced
increase of Twist expression [3]. In patients with PTC,
HIF-1α expression was significantly correlated with the
presence of LNM, peri-tumoral and extrathyroidal invasion,
and larger tumors [185].

Chemokines, a group of small cytokines, promote the
proliferation and migration of tumor cells. Binding of CXC
chemokine ligand 12 (CXCL12, also recognized as stromal
cell-derived factor 1) to CXC chemokine receptor 4
(CXCR4) increases the migration and invasion in CXCR4-
expressing PTCs. In addition, CXCL12/CXCR4 axis indu-
ces the EMT program, as evidenced by enhanced N-
cadherin and vimentin and reduced E-cadherin expressions
[186]. Upregulation of CXCL5 and/or CXCR2 has been
reported in some cancer tissues [187]. The activated
CXCL5–CXCR2 axis promotes the EMT process in PTC
cells. This process is also associated with a downregulation
of E-cadherin and an upregulation of N-cadherin and
vimentin and Snail in these cells [187]. Exosomes are small
(30–150 nm) membranous vesicles secreted by most cells
that play a significant role in cell-to-cell communication.
These vesicles can modulate tumor microenvironment
through transferring their contents, such as DNA, protein,
growth factors, miRNAs, and lncRNAs to neighboring or
distant cells [188]. Emerging evidence indicates that exo-
somes and their contents can contribute to the initiation of
EMT and cancer progression [189]. One study found that
secreted exosomes from thyroid CSC clonal line can induce
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EMT in the normal thyroid cell lines. It was hypothesized
that lncRNAs, especially linc-ROR, transferred via CSC
exosomes stimulate EMT and mediate the formation of
surrounding tumor microenvironment and distant metastatic
niche [189]. Table 1 summarizes different modulators of
EMT process in various thyroid cancers.

The relationship between EMT and thyroid-
derived CSCs

EMT is a remarkable example of cellular plasticity that
implies the capacity of cells to reversible phenotype change
[190]. Stemness is defined as the ability of stem cells to
replicate in a manner that maintains a reservoir of undif-
ferentiated cells with stem cell identity, yet also generates
new differentiated cells [190, 191]. CSCs, as a subset of
tumor cells in various type of cancers, are known to be
implicated in the development of tumors and resistance to
chemotherapy through enhanced levels of ABC (ATP-
binding cassette) transporter family and antiapoptotic pro-
teins [19, 192]. Some investigations have declared that the
activation of EMT process confer stem cell properties to
epithelial cells [190]. It has been clarified that the same
factors that control EMT can regulate stemness [193]. A
classical EMT TF, Zeb1, induces stemness phenotype by
repressing stemness-inhibiting miRNAs (e.g., miR200
family members) [194]. Furthermore, various pieces of
evidence have confirmed a controlling activity for the tumor
suppressor p53 over EMT-linked stem cell features.
Diminished levels of p53 in breast epithelial cells decrease
miR-200c, leading to the augmented expression of EMT
and stemness-related genes [147]. Stemness-linked signal-
ing pathways, such as Wnt have been discovered to parti-
cipate in some features of EMT process. The complex of
β-catenin/TCF4, for instance, binds directly Zeb1 promoter
and stimulates its transcription [195]. The experimental
observations in human breast cancer models showed that
the expression of mesenchymal genes by carcinoma cells
correlates with the expression of many CSC markers.
Indeed, epithelial cells that had undergone EMT may pro-
duce spheres, soft agar colonies, and in vivo tumors [196].
Several lines of evidence have affirmed the relationship
between EMT and an augmented numbers of CSCs in
thyroid cancers [197, 198]. Thyroid CSCs are identified by
their ability to self-renewal, thyrosphere formation, and
expression of stem cell markers, such as Nanog, Sox2,
Oct4, aldehyde dehydrogenase (ALDH), stage-specific
embryonic antigen 1 (SSEA1), and prominin 1
[29, 192, 199]. Hardin et al. showed that the higher per-
centage of CSCs exists in ATCs when compared with DTC
tumors [197]. They also found that, during TGF-β-induced

EMT, PTC cell lines acquire a parallel upregulation of a
new EMT inducer Prrx1 (paired-related homeobox pro-
tein1) and stem cell-like characteristics, including the
overexpression of Sox2 and Oct4, and the formation of
thyrospheres [198]. A study on two thyroidectomy speci-
mens of ATC with coexisting DTC presented a strong
expression of stem cell markers CD133, CD44, and a
neuronal stem cell marker nestin, and decreased expression
of E-cadherin in ATC regions. However, the DTCs and
nonneoplastic thyroid tissue in both specimens were nega-
tive for nestin and positive for E-cadherin, and the expres-
sion of CD133 and CD44 were inconstant and generally
lower than that of ATCs [200]. Ma et al. reported that
SSEA-1 is a specific marker for thyroid CSCs, and that the
cells positive for SSEA1 express high levels of stem cell
factors Nanog, Sox2, and Oct4. Furthermore, these stem
cells displayed evidences of EMT initiation with elevated
expression of Snail and vimentin and reduced expression of
E-cadherin [29]. Consistently, Heiden et al. reported that the
sonic hedgehog pathway plays a significant role in preser-
ving the CSC self-renewal in ATC cells. They showed that
Gli1-induced Snail expression increased the number of
ALDH+ CSCs and thyrospheres in ATC cell lines [6].
Interestingly, Yasui et al. pointed out that ATC cell lines
underwent EMT by overexpressing Snail, and this process
was associated with a significant enhancement in the
number of thyrospheres. They also discovered that Snail
overexpression significantly enhanced spheres formation
ability in ALDH− cells, but not in ALDH+ cells [201].
ALDH seems to be a reliable marker for thyroid CSCs and
that thyrospheres are originated from thyroid CSCs [6].
Some studies using ATC models have uncovered an asso-
ciation between the stem-like features and chemotherapy
resistance. Those data indicated that the multidrug trans-
porters are involved in this refractoriness. Mato et al. were
the first to present evidence that links the overexpression of
the adult stem marker ABCG2/BCRP and EMT inducer
genes in thyroid carcinomas. They identified a cell sub-
population in the PTC cell line (TPC1), which expresses the
ABCG2/BCRP gene, and proposed that these cells may
contribute in the development of PTC tumors. This cell
subpopulation also showed faster migration and higher
invasive ability than parental cell line in correlation with
overexpression of the BIRC5 gene (an apoptosis inhibitor
gene). It is of interest to note that the knocking down of
Zeb1 led to the downregulation of ABCG2/BCRP, vimen-
tin, N-cadherin, BIRC5 genes, re-expression of E-cadherin,
and decreased cell migration. Their additional analysis of
human thyroid carcinoma also showed that the enhanced
expression of ABCG2/BCRP, Snail1, Twist1, and Zeb1
genes in PDTCs, ATCs, and PTCs correlates with the
advanced forms of the diseases [192].
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Concluding remarks and promising targeted
therapy in thyroid cancer

Currently, a small number of patients with well-
differentiated thyroid carcinoma as well as the most cases
with PDTC and ATC that develop recurrent diseases and
metastases are resistant to chemotherapy and radiation
therapy [7]. Therefore, encouraging trials of novel and
effective therapies for these diseases has attracted a lot of
attention among researchers. Most of therapy-resistant
thyroid cancer cells often exhibit an EMT phenotype.
Understanding the molecular and cellular alterations of this
transient state and its relationship with the microenviron-
ment components is expected to identify potential targets to
help to overcome the tumor recurrence and drug resistant
phenotype [202]. Furthermore, in recent years, new treat-
ment approaches have focused on the development of low-
molecular-weight compounds targeting EMT-initiating
factors and their signaling pathways. Point mutations and/
or rearrangement of both serine/threonine kinases, such as
tyrosine kinase receptors, such as EGFR, and RET, as well
as signaling molecules acting downstream of kinase
receptors, such as BRAF or RAS, are known to be involved
in the initiation of EMT process. Therefore, considering
these important receptors and molecules sheds light on an
interesting research area to investigate effective and portent
inhibitors for these targets. There are a number of protein
kinase inhibitors, such as sorafenib and lenvatinib that have
been developed and approved for patients with radioactive
iodine-refractory thyroid cancers. In addition, the combi-
nation of different kinase inhibitors, such as BRAF inhibitor
dabrafenib and the MEK1/2 inhibitor trametinib have been
suggested as a therapy for recurrent thyroid cancers [203].
Wnt/β-catenin signaling is also implicated in EMT program
of thyroid cancer and can serve as a good choice for thyroid
cancer therapy. More interestingly, it has been reported that
silencing of β-catenin decreases EMT markers in thyroid
cancer [57]. The silencing of the C-Met/PI3K/AKT path-
way has also been discovered to reverse EMT and metas-
tasis of thyroid cancer cells [45].

Deregulation of miRNAs is also involved in tumor-
ogenesis and invasiveness of thyroid cancers. Altering the
cellular miRNA levels using miRNA mimics or anti-
miRNAs appear to be used as adjuvant treatment modalities
for thyroid cancer [132]. Restoration of tumor suppressor
miRNAs miR-200, miR-30, and miR-144, or the inhibition
of oncogenic miR-146, for instance, is expected to reverse
the EMT phenotype [132, 134, 141]. Additional attention
should also be given to the microenvironment, with a spe-
cial emphasis on a hypoxic condition, which acts through
HIF-1α stabilization and is a hallmark of cancer progression
[203]. Combination therapeutic approaches targeting

hypoxia-inducible proteins may provide novel therapeutic
options [204].

In conclusion, multiple lines of evidences support the
involvement of EMT in thyroid tumorigenesis. The clinical
significance of the EMT involvement in cancer metastasis,
drug resistance, the generation of CSCs, and tumor micro-
environment is required to be fully unraveled. Indeed, the
development of more detailed and comprehensive experi-
ments is essential to find out different aspects of EMT
process and its importance in the progression and metastatic
spread of thyroid tumors.
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