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Abstract We recently showed that the peripheral cannabi-
noid receptor type 1 (CNRI) gene is upregulated by the
synthetic glucocorticoid dexamethasone. CNR1 is highly
expressed in the central nervous system and has been a drug
target for the treatment of obesity. Here we explore the role
of peripheral CNRI1 in states of insulin resistance in human
adipose tissue. Subcutaneous adipose tissue was obtained
from well-controlled type 2 diabetes subjects and controls.
Subcutaneous adipose tissue gene expression levels of
CNRI and endocannabinoid synthesizing and degrading
enzymes were assessed. Furthermore, paired human sub-
cutaneous adipose tissue and omental adipose tissue from
non-diabetic volunteers undergoing kidney donation or
bariatric surgery, was incubated with or without dex-
amethasone. Subcutaneous adipose tissue obtained from
volunteers through needle biopsy was incubated with or
without dexamethasone and in the presence or absence of
the CNRI1-specific antagonist AM281. CNRI gene and
protein expression, lipolysis and glucose uptake were eval-
uated. Subcutaneous adipose tissue CNRI gene expression
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levels were 2-fold elevated in type 2 diabetes subjects
compared with control subjects. Additionally, gene expres-
sion levels of CNRI and endocannabinoid-regulating
enzymes from both groups correlated with markers of
insulin resistance. Dexamethasone increased CNRI expres-
sion dose-dependently in subcutaneous adipose tissue and
omental adipose tissue by up to 25-fold. Dexamethasone
pre-treatment of subcutaneous adipose tissue increased
lipolysis rate and reduced glucose uptake. Co-incubation
with the CNR1 antagonist AM281 prevented the stimulatory
effect on lipolysis, but had no effect on glucose uptake.
CNRI is upregulated in states of type 2 diabetes and insulin
resistance.  Furthermore, CNR1 is involved in
glucocorticoid-regulated lipolysis. Peripheral CNR1 could
be an interesting drug target in type 2 diabetes and
dyslipidemia.

Keywords Type 2 diabetes * Glucocorticoids * Insulin
resistance * Adipose tissue * Endocannabinoid system

Abbreviations

2-AG 2-Arachidonoylglycerol

ACEA Arachidonyl-2'-chloroethylamide

AM281 1-(2,4-Dichlorophenyl)-5-(4-iodophenyl)-4-
methyl-N-4-morpholinyl-1H-pyrazole-3-
carboxamide

AEA Anandamide

CNRI1 Cannabinoid receptor type 1

CNR2 Cannabinoid receptor type 2

DAGL Diacylglycerol lipase

ERK Extracellular signal-regulated kinase

FAAH Fatty acid amide hydrolase

HSL Hormone-sensitive lipase

KRH Krebs-Ringer media

MAPK Mitogen-activated protein kinase
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MGL Monoacylglycerol lipase

NAPE-  N-acyl phosphatidylethanolamine phospholi-
PLD pase D

OAT Omental adipose tissue

SAT Subcutaneous adipose tissue

2D Type 2 diabetes

Introduction

Obesity and type 2 diabetes (T2D) are recognized as major
health problems of epidemic proportions worldwide. Obe-
sity, in particular central obesity, increases the risk of car-
diovascular disease, insulin resistance and T2D. It is
estimated that globally more than 1.9 billion adults are
overweight and 9 % of adults are diabetic [1]. From a public
health perspective it is of interest to identify and explore
mechanisms and potential treatment concepts that are
common for insulin resistance and obesity because of their
shared association with the onset of T2D.

Glucocorticoids are steroid hormones whose synthetic
analogs are used clinically for the treatment of autoimmune
or inflammatory conditions [2]. Due to their immunosup-
pressive properties they are also used in transplant patients to
prevent graft rejection. However, elevated plasma gluco-
corticoid levels, such as in Cushing’s syndrome or during
long-term treatment, are associated with several adverse
effects such as obesity, dyslipidemia, insulin resistance, and
the onset of T2D [3]. The identification of glucocorticoid-
regulated genes that are associated with insulin resistance or
obesity can provide novel pharmacological approaches for
such conditions. In a previous microarray study [4], using a
model of insulin resistance by incubating human adipose
tissue with the synthetic glucocorticoid dexamethasone,
cannabinoid receptor type 1 (CNRI) was identified as one of
the genes with the greatest increase in expression in sub-
cutaneous and omental adipose tissue (SAT and OAT,
respectively). CNR1 is a member of the cannabinoid
receptor family and the superfamily of G protein-coupled
receptors recognized to activate multiple signaling pathways
regulating cell survival/death and energy metabolism [5].
The highest expression levels of CNRI are observed in
different brain regions, but it is also present at lower levels in
most other cells/tissue types, including adipose tissue [6, 7].

The endocannabinoid system, composed of CNR1 and
CNR2, their lipid ligands (endocannabinoids) 2-
arachidonoylglycerol (2-AG) and anandamide (AEA), and
the endocannabinoid synthesis and degrading enzymes; plays
an important role in the regulation of energy homeostasis
[8, 9]. 2-AG is synthesized by diacylglycerol lipase (DAGL)
and degraded by monoacylglycerollipase (MGL). While
AEA is synthesized by N-acyl phosphatidylethanolamine
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phospholipase D (NAPE-PLD) and degraded by fatty acid
amide hydrolase (FAAH) [10]. DAGL enzymes are encoded
by two separate genes, denoted DAGL-ALPHA and DAGL-
BETA.

An association between glucocorticoids and the endo-
cannabinoid system has previously been demonstrated;
where glucocorticoids elevate expression of endocannabi-
noids in regulation of the hypothalamic-pituary-adrenal axis
[9, 11]. CNRI1 regulates food intake in the hypothalamus
[12] and in obesity the endocannabinoid/CNRI1 system is
upregulated, both centrally and peripherally [13, 14]. Given
the role of CNR1 in obesity, antagonists have been devel-
oped as anti-obesity drugs. In 2006, a potent and selective
CNR1-antagonist, rimonabant, was approved for treatment
of obesity and for overweight patients with metabolic
comorbidities such as T2D [15]. However, due to reported
side effects such as depression and anxiety, rimonabant was
withdrawn from the market [16]. Although the association
between the central and peripheral levels of CNR1 and
obesity has been demonstrated, it is uncertain if an increase
of CNRI in adipose tissue is sufficient to induce changes in
glucose and lipid metabolism. Prior studies have attempted
to separate the brain effects of endocannabinoids from their
peripheral effects [17, 18]. However, these studies have
been inconclusive since they have lacked a peripherally
restricted CNR1 antagonist.

In this study we aim to investigate if CNRI1 is a factor
associated with the development of insulin resistance in
adipose tissue by the examination of the endocannabinoid
system in freshly harvested SAT from healthy control vs.
T2D subjects. In addition, we aim to, via glucocorticoid-
induced insulin resistance by long-term incubation
(24 h) of SAT; investigate whether CNR1 plays a role in the
regulation of glucose and lipid metabolism in human
adipocytes.

Materials and methods
Adipose tissue donors

A cohort of 20 T2D subjects was group-wise matched with
20 non-diabetic subjects by gender (10F/10M), age (58 +9
vs. 58 +11) and body mass index (BMI) (30.7 +4.9 vs.
30.8 + 4.6 kg/m?) [19]. Fasting blood samples, and oral
glucose tolerance test (OGTT) and SAT needle biopsies
were performed as previously described [19]. SAT was
acquired by needle aspiration of the lower abdominal region
and used to assess the endocannabinoid system and measure
adipocyte glucose uptake [19]. Clinical and biochemical
characteristics of the subjects are shown in Supplementary
Table 1. A schematic view of the study is given in Sup-
plementary Fig. 1A.
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In a separate cohort, paired samples of human SAT and
OAT were obtained from non-diabetic subjects with a wide
distribution of BMI and insulin sensitivity (13M/31F, 24—66
years, BMI 20.7-56.3 kg/m®) undergoing kidney donation
(n=35) at the Sahlgrenska University Hospital or bariatric
surgery (n=9) at the Uppsala University Hospital. Paired
SAT and OAT were used to study the CNRI mRNA
expression levels (n =41) and the effects of dexamethasone
on CNRI mRNA (n =30) and protein expression (n = 5) and
glucose uptake (n =12-21). In addition, SAT was obtained
from a separate group of non-diabetic volunteers (SM/21F,
21-72 years, BMI 21.3-32.9 kg/m?) by needle aspiration of
the abdomen after local dermal anesthesia with lidocaine
(Xylocain; AstraZeneca, Sweden). These adipose tissue
samples were used to study the effects of dexamethasone
treatment and a CNR1-antagonist or CNR1-agonist on adi-
pocyte lipolysis (n = 19) and glucose uptake (n = 12). Due to
limited amounts of adipose tissue obtained from biopsies,
not all experiments were performed on samples from every
subject. A representative schematic view of this part of the
study is given in Supplementary Fig. 1B.

Fasting blood samples were collected for analysis of
plasma glucose, insulin and lipids at the Department of
Clinical Chemistry at the respective hospitals. Subjects with
type 1 diabetes and/or T2D, other endocrine disorders,
cancer or other major illnesses, as well as ongoing medi-
cation with beta-adrenergic blockers, systemic glucocorti-
coids or immune-modulating therapies were excluded from
the study. Eighteen individuals were positive for having
first-degree relatives with T2D. Among the 52 female
subjects, 24 were pre-menopausal. Clinical and biochemical
characteristics of the subjects are shown in Supplementary
Table 2. Most of the subjects included in the lipolysis
experiments were females (Supplementary Table 3).

The study protocols were approved by the Regional
Ethics Review Boards in Gothenburg (Dnr 336-07) and
Uppsala (Dnr 2013/330 and Dnr 2013-183/494). Written
informed consent was obtained from all study participants.

Endocannabinoid system in freshly harvested SAT

Immediately after the biopsies, the SAT from T2D and
control subjects was snap frozen in liquid nitrogen. The
gene expression levels of CNRI and the major enzymes
responsible for the synthesis and degradation of the two
principal endocannabinoids, 2-AG and AEA, was mea-
sured. 2-AG levels in SAT were also assessed but AEA
levels were not detectable. Gene expression levels were
obtained with RNA-Seq at Exiqon A/S, Vedback, Denmark
and 2-AG quantification was done by Metabolon Inc’s
(Durham, North Carolina, USA) TrueVision™ as pre-
viously described [19].

Adipose tissue incubation and assessments

Paired samples of SAT and OAT were cut into small pieces
and incubated in DMEM containing 6 mM glucose (Invi-
trogen Corporation, Paisley, UK), 10 % FBS (Invitrogen)
and 1 % PEST (Invitrogen) with or without the addition of
dexamethasone (Sigma-Aldrich, St. Louise, MO, USA) at
varying concentrations (0.003-3 uM), to assess the dose-
response, or at a single optimal concentration (0.3 uM) for
24h in 37 °C, 5 % CO,. Following incubation, part of the
adipose tissue was snap-frozen for CNRI gene (real-time
PCR) or protein (immunohistochemistry) expression ana-
lysis. Other parts of the incubated adipose tissue were used
to isolate adipocytes with collagenase (Sigma), as pre-
viously described [20, 21], and glucose uptake was assessed
in isolated adipocytes.

In addition, SAT was incubated in DMEM (6 mM glu-
cose, 10% FBS, 1% PEST) with or without the gluco-
corticoid cortisol or dexamethasone (1 pM for both) and
CNRI gene expression was measured. The potency of
dexamethasone is ~5 times higher than cortisol, assessed
as effects on f-adrenergic receptor expression (EC50 4.8
nmol/L for dexamethasone 24 nmol/L for cortisol) [22], and
we have internal data showing a similar potency difference
(not shown). Thus, 0.3 uM concentration of dexamethasone
would correspond to a maximum physiological level of
cortisol under stress conditions of about 1-2 uM [23]. To
ensure a maximal effect on CNRI expression and compare
the effects of dexamethasone and its natural glucocorticoid
cortisol in CNRI mRNA expression, 1 uM was used.
Moreover, SAT was incubated in DMEM (6 mM glucose,
10 % FBS, 1% PEST) with or without dexamethasone
(0.3 uM) for 24 h in 37 °C, 5 % CO, and with or without the
CNRI1 antagonist/inverse agonist AM281 (1-(2,4-dichlor-
ophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-
pyrazole-3-carboxamide, Sigma, 3 uM) for the final 4 h of
incubation. SAT was also incubated with or without the
CNR1 agonist ACEA (Arachidonyl-2'-chloroethylamide,
Cayman, 1 uM) for 24 h. Adipose tissue was used to test the
effects of dexamethasone and the CNR1 antagonists on the
adipocyte lipolysis and glucose uptake. In an acute setting,
isolated fresh adipocytes were pre-incubated with the CNR1
antagonist AM281 (3uM) for 30 min, which was then
present during lipolysis. Lipolysis and glucose uptake were
performed as previously described [20, 24].

Total RNA was isolated from adipose tissue and the
RNA concentration was determined. RNA was then con-
verted to cDNA and relative quantification of CNRI mRNA
was performed. Frozen sections of adipose tissue incubated
with or without dexamethasone were stained for CNR1
protein using immunohistochemistry.

Mitogen-activated protein kinase (MAPK) and lipolysis
signaling was assessed by measuring protein levels and
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activation of extracellular signal-regulated kinase (ERK)
and the key lipolytic protein hormone-sensitive lipase
(HSL) in lysates of adipose tissue treated with or without
dexamethasone and the CNR1 selective antagonist AM281
by immunoblotting. Immunoblotting was performed with
equal amount of protein for all samples (10 pg) and with the
use of primary antibodies to ERK (4695S, Cell Signaling
Technology (CST), Danvers, MA, USA; diluted 1:1000)
phospho-ERK  (Thr202/Tyr204) (4370S, CST; diluted
1:1000), HSL (4107S, CST; diluted 1:1000) and phospho-
HSL (Ser563) (4139S, CST; diluted 1:1000). GAPDH
(517485, CST; diluted 1:1000) was used as a loading control
for all samples.
See Supplementary Materials and Methods for details.

Statistical analysis

All data are presented as mean + SEM, unless stated
otherwise. All statistical analyses were performed using
IBM SPSS Statistics software. The Kruskal-Wallis H Test
was used to study differences in the CNRI gene expression
in the dexamethasone dose-response. For comparison of
CNRI gene expression between males and females in both
SAT and OAT, data was log-transformed and one-way
analysis of variance with Tukey’s Multiple Comparison
post-hoc test was used. Differences between treatments in
gene expression, glucose uptake and lipolysis for paired
samples were determined using Wilcoxon signed-rank test,
while Mann-Whitney U test was used to compare differ-
ences in gene expression between independent groups.
Spearman’s bivariate correlation test was used to assess
correlations between CNRI gene expression and metabolic
parameters. Significant variables in the bivariate correlation
analyses were subsequently included in multivariate step-
wise regression analyses. A p-value < 0.05 was considered
statistically significant.

Results

CNRI1 gene expression in freshly harvested SAT is
elevated in T2D subjects and associated with markers of
insulin resistance

Freshly harvested SAT from T2D subjects was found to
have 1.6-fold higher (p <0.01) CNRI gene expression
levels compared with control subjects (Fig. 1a).

In bivariate correlation analyses, CNRI gene expression
positively correlated with HbA ., fasting glucose, 2 h glu-
cose and glucose area under the curve (AUC) during OGTT
and a trend of positive correlation with insulin and HOMA-
IR (Table 1). There was no correlation with BMI or basal or
insulin-stimulated adipocyte glucose uptake. After inclusion

@ Springer

of glucose AUC during OGTT and HbA,. in multivariate
analyses, glucose AUC during OGTT (standard f coeffi-
cient=0.44, p < 0.01; model: 2= 0.17) remained the only
significant predictor of CNRI gene expression in SAT.

2-AG and endocannabinoid-regulating enzymes are
associated with markers of insulin resistance

The gene corresponding to the endocannabinoid synthe-
sizing enzyme DAGL-ALPHA was upregulated in T2D
subjects compared with control subjects (p < 0.05, Fig. 1d),
while DAGL-BETA was downregulated (p < 0.05, Fig. le).
The expression levels of NAPE-PLD did not differ between
the groups (Fig. 1f). The gene expression levels of the 2-
AG-degrading enzyme MGL had a trend to be reduced in
T2D subjects compared with control subjects (p=0.094,
Fig. 1g) while the gene expression levels of the AEA-
degrading enzyme, FAAH, were lower in T2D subjects
compared with control subjects (p < 0.05) (Fig. 1h).

The SAT levels of 2-AG did not differ between T2D
subjects and control subjects (data not shown), but its levels
negatively correlated with adipocyte basal and insulin-
stimulated glucose uptake (p < 0.01, Supplementary Fig. 2A).

MGL positively correlated with basal and insulin-
stimulated adipocyte glucose uptake (p <0.05), HDL-
cholesterol (p <0.01) and negatively with HbA ., 2h glu-
cose during OGTT (p <0.05), fasting glucose, glucose
AUC during OGTT and waist-hip ratio (p < 0.01) (Table 1,
Supplementary Fig. 2B). Following multivariate analysis
where HbA |, glucose AUC during OGTT, HDL and waist-
hip ratio and basal and insulin-stimulated glucose uptake
were included; HbA . (standard f coefficient = —0.36, p <
0.05) and HDL (standard S coefficient=0.41, p <0.01)
remained significant predictors of MGL expression (model:
»=0.32, p<0.001).

FAAH, positively correlated with insulin-stimulated adi-
pocyte glucose uptake (p < 0.05) and negatively correlated
with HbA,., 2 h glucose during OGTT (p < 0.05), fasting
glucose and glucose AUC during OGTT (p < 0.01) (Table 1,
Supplementary Fig. 2C). Following multivariate analysis
with 1000 pU insulin-stimulated glucose uptake, HbA ., and
glucose AUC during the OGTT; glucose AUC during the
OGTT alone (standard B coefficient=-0.41, p<0.01;
model: 7* =0.15) remained a significant predictor of FAAH.

Neither of DAGL-ALPHA or DAGL-BETA or NAPE-
PLD was found to correlate with markers of insulin resis-
tance (data not shown).

Glucocorticoids increase CNR1 gene and protein
expression in human adipose tissue

The synthetic glucocorticoid dexamethasone (0.003-3 uM, n
=3-10) increased CNRI gene expression in a dose-dependent
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Fig. 1 CNRI gene expression a is elevated in type 2 diabetes subjects
(n=20) compared with control subjects (n =20). Bivariate correlation
between CNRI mRNA expression levels in freshly harvested sub-
cutaneous adipose tissue and HOMA-IR b and HbAlc ec.
Endocannabinoid-synthesizing d—f and degrading g-h enzymes are
differentially expressed in SAT from type 2 diabetes subjects vs.

manner in both SAT and OAT during 24 h incubations by up
to 25- and 22-fold, respectively (p <0.001, Fig. 2a). The
concentration-response curves show that a maximum effect
on CNRI mRNA expression was exerted by 0.3 uM dex-
amethasone. A similar effect was exerted by the natural glu-
cocorticoid cortisol (1uM, n=5, Fig. 2b). The
glucocorticoid-induced upregulation was similar in adipose
tissue from men and women. (Supplementary Fig. 4).

CNRI1 protein expression in control and dexamethasone-
treated SAT was assessed by immunohistochemistry. Dex-
amethasone treatment increased CNR1 protein amount by
about 2-fold (p < 0.05, n =35, Fig. 2c and d) compared with
control (i.e., absence of dexamethasone).

See Supplementary Results for additional details.

Associations between CNRI gene expression in long-
term incubated adipose tissue and metabolic parameters

After adjustments in multivariate analyses following
bivariate correlation analyses; HOMA-IR (standard § coef-
ficient =0.42, p <0.001), waist circumference (standard f
coefficient =0.83, p <0.001) and omental adipocyte dia-
meter (standard g coefficient =—0.45, p <0.001) remained
significant predictors of CNRI gene expression in non-
treated SAT (model: r2=0.81, p <0.001) (Table 2, Fig. 3
and Supplementary Fig. 3). In non-treated OAT only

controls. Mann-Whitney U test used to compare the differences
between independent groups. * p < 0.05. SAT was freshly harvested.
DAGL, Diacylglycerol lipase; NAPE-PLD, N-acyl phosphatidyletha-
nolamine phospholipase D; MGL, Monoacylglycerol lipase; FAAH,
Fatty acid amide hydrolase; CNRI, Cannabinoid receptor type 1

HOMA-IR (standard f coefficient=0.65, p <0.001)
remained as a significant predictor of CNRI gene expression
(model: r* =0.43, p <0.001) (Table 2, Fig. 3). Additionally,
a negative correlation was found between the fold-change of
SAT CNRI gene expression by dexamethasone, and HbA .
(r=-0.47, p<0.05) and a trend of negative correlation to
HOMA-IR (r=-0.37, p=0.061). In OAT, there was a trend
of negative correlation between the CNRI fold change and
HbA,. (r=-0.35, p=0.081). See Supplementary Results
for additional details.

Effects of dexamethasone, AM281 and ACEA on
lipolysis

Incubation of SAT (n=10) with dexamethasone for 24 h
significantly increased isoproterenol-stimulated lipolysis in
adipocytes by 42 % (p <0.01), compared with control
(Fig. 4a). Addition of the CNR1-specific antagonist AM281
(3 uM) to the incubation media for the last 4 h of incubation
prevented the dexamethasone effect on isoproterenol-
stimulated lipolysis (p <0.01, Fig. 4a). In addition, dex-
amethasone reduced the anti-lipolytic effect of insulin,
while addition of AM281 prevented this effect (p <0.05,
Fig. 4a). Dexamethasone treatment, or co-incubation of
dexamethasone with AM281, had no effects on basal
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Table 1 Association between

CNRI, MGL, and FAAH gene CNRI mRNA MGL mRNA FAAH mRNA

expression in freshly harvested r p r p r p

SAT from healthy control

subjects (n=20) and T2D HbA . 0.398 0.011 -0.387 0.014 -0.397 0.011

subjects (n=20) and metabolic  HomA-IR 0310 0052 -0296 0063 -0262  0.103

parameters L
Fasting insulin 0.301 0.059 -0.141 0.384 -0.191 0.237
Insulin AUC during OGTT 0.044 0.786 0.083 0.609 0.093 0.569
2 h Insulin during OGTT 0.069 0.673  -0.009 0.958 -0.037 0.821
Fasting glucose 0.411 0.008 -0.506 0.001 -0.517 0.001
Glucose AUC during OGTT 0.375 0.017 -0.446 0.004 -0.430 0.006
2 h Glucose during OGTT 0.353 0.025 -0.394 0.012 -0.385 0.014
HDL-cholesterol -0.310 0.052 0.427 0.006 0.139 0.393
Triglycerides 0.193 0.232  -0.130 0422 -0.191 0.238
BMI 0.017 0.919 0.111 0.497 0.159 0.329
Waist circumference -0.148 0.362 -0.078 0.632 0.081 0.621
WHR —-0.004 0978 -0.436 0.005 -0.217 0.179
SC adipocyte diameter 0.069 0.671 0.177 0.275 0.181 0.263
Basal glucose uptake -0.093 0.584 0.336 0.036 0.245 0.134
25 pU insulin-stimulated glucose uptake -0.095 0.575 0.384 0.019 0.299 0.073
1000 pU insulin-stimulated glucose uptake  —0.126 0.446 0.385 0.015 0.367 0.022

Bold values represent significant correlations as indicated by the p-values

Variables with p-value < 0.05 and gender were considered to multivariate stepwise regression analysis

HDA,, glycosylated hemoglobin, HOMA-IR homeostatic model assessment of insulin resistance index,
Glucose AUC Area under the glucose curve, HDL-cholesterol high-density lipoprotein cholesterol, BMI
body mass index, WHR waist-hip ratior-values are Spearman correlation coefficients.

lipolysis. Results from individual lipolysis measurements
are reported in Supplementary Table 4.

Freshly harvested subcutaneous adipocytes that were
pre-treated with AM281 for 30 min with the compound
present throughout the lipolysis experiment showed a
reduced isoproterenol-stimulated lipolysis by 11 % com-
pared with non-treated adipocytes (n =5, p <0.05, Fig. 4b
and Supplementary Table 5 for individual results).

In contrast, incubation of SAT for 24 h with the CNR1-
specific agonist ACEA increased adipocyte isoproterenol-
stimulated lipolysis by 17 % and counteracted insulin’s
antilipolytic effect (n=28, p <0.01, Fig. 4c). Individual
lipolysis measurements are reported in Supplementary
Table 6.

Effects of dexamethasone and AM281 on glucose uptake

Incubation of SAT with dexamethasone for 24 h sig-
nificantly reduced adipocyte basal and insulin-stimulated
glucose uptake by 40 and 30 %, respectively (n=12, p <
0.01, Fig. 4d). Addition of the CNRI1-specific antagonist
AM281 did not prevent the inhibitory effects of dex-
amethasone on glucose uptake.

The difference in SAT and OAT CNRI gene expression
induced by dexamethasone after 24 h incubation was found
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to correlate negatively with the insulin-stimulated glucose
uptake in both subcutaneous and omental dexamethasone-
treated adipocytes (p < 0.05, Supplementary Fig. 5).

Effects of dexamethasone and AM281 on MAPK and
lipolysis signaling

Incubation of SAT for 24h with dexamethasone or co-
incubation with dexamethasone and the CNRI1 selective
antagonist AM281 had no effects in total or phosphorylated
levels of HSL or ERK (n =35, Fig. 5a, b, respectively).

Discussion

In this study we show that CNRI gene expression is ele-
vated in states of insulin resistance and T2D. We also
demonstrate that gene expression of endocannabinoid-
degrading enzymes is reduced in T2D subjects and that
this, together with elevated 2-AG levels, is associated with
reduced glucose uptake capacity in adipocytes. This sug-
gests a potential role of the peripheral endocannabinoid
system to promote insulin resistance. However, whether
CNRI1 overexpression is a cause or a result of insulin
resistance remains to be determined.
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Fig. 2 Glucocorticoids increase
CNRI1 gene and protein
expression in adipose tissue. a
24 h incubation with
dexamethasone (0.003-3 uM)
increased the CNRI gene
expression in a dose-dependent
manner in SAT and OAT,
compared with control (n=3
for 0.003 uM; n=9 for
0.1-0.03 uM; n =10 for 0 and
0.3-3 uM), Kruskal-Wallis test,

>

mRNA expression

vr)

-o-Subcutaneous -Omental

O Control
Cortisol
B Dexamethasone

mRNA expression
w
1

##% p < 0.001. b 24 h incubation 0.0-

with cortisol (1 uM) or
dexamethasone (1 uM) increased
CNRI gene expression to a
similar level in SAT compared
with control (n =5), * p <0.05.
¢ Subcutaneous adipose samples
incubated for 24 h with
dexamethasone had a higher
immunofluorescence staining of
CNRI1 (red) compared with non-
treated samples (n =5). Cell
nuclear DNA was stained with
DAPI (blue). A representative
image is presented. d Average
CNR1 immunofluorescence per
nucleus of 5 independent
experiments

0 0.003 0.1

C control-24h

We also show that the synthetic glucocorticoid dex-
amethasone increases CNRI gene expression in human SAT
and OAT in a dose-dependent manner. Our findings also
imply that subjects with elevated insulin resistance have less
elevation of CNRI gene expression by glucocorticoids
compared with insulin sensitive subjects, possibly due to the
already elevated levels of CNRI in insulin resistance states.
The ability of dexamethasone to increase CNRI gene
expression was expected, as we have previously shown in a
microarray study that CNRI is one of the genes with the
greatest increase in expression in human adipose tissue after
dexamethasone treatment [4]. However, we could not
demonstrate a correlation between gene and protein
expression levels across the few individuals studied. The
CNRI1 protein levels were increased by about 2-fold in
dexamethasone-treated SAT compared with control, while
the mRNA levels were increased by about 25-fold.
Although immunofluorescence is a powerful tool for
determining the cellular distribution of an antigen, the
extent of agreement between mRNA expression and semi-
quantitative immunostaining data is usually poor [25].
Additionally, post-translational modifications of CNRI
have previously been reported [26]. Overall, the results
suggest that incubation for 24 h with dexamethasone upre-
gulates CNR1 mRNA and protein expression in adipose
tissue.
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Dexamethasone (UM)

1 -
. . 0 -
0.3 3 Subcutaneous
Dexamethasone - 24 h D 0 Control - 24 h

B Dexamethasone - 24 h

Q
= *
150000 - —
223
z 93
O oG
= 3 5 100000 A
S5 c
Eég
50000 A
E
0_

There have been discordant results concerning CNRI
expression in adipose tissue. We believe that experimental
design is a possible contributor to the variability. We show
that after 24 h incubation with no additional treatments,
CNRI gene expression in both adipose tissue depots is
positively correlated with several parameters of insulin
resistance and central obesity (e.g., HOMA-IR, BMI, waist
circumference and fat cell diameter). After adjustments in
multivariate analyses, HOMA-IR, waist circumference and
omental fat cell diameter remained significant predictors of
subcutaneous CNRI gene expression while BMI was
excluded. In OAT, only HOMA-IR remained a significant
predictor of CNRI gene expression. Therefore, insulin
resistance, rather than obesity, seems to be associated with
CNRI gene expression in both SAT and OAT. Furthermore,
our data in freshly harvested SAT showed that CNRI gene
expression is increased in T2D subjects compared with
controls, and associated with fasting glucose, glucose AUC
during OGTT and HbA,., but not with BMI. This dis-
crepancy vs. the incubated tissue may suggest that culturing
of adipose tissue per se affects CNRI gene expression. This
is in agreement with a previous study showing no asso-
ciation between CNRI gene expression in adipose tissue
and BMI in freshly harvested samples [27]. In contrast,
increased CNRI expression with obesity has been shown in
some reports [14, 28], but no multivariate corrections were
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Fig. 3 CNRI gene expression in 24 h incubated adipose tissue from
the subcutaneous, but not the omental depot, is increased with insulin
resistance. Bivariate correlation between CNR/ mRNA expression in
non-treated (control, n =41) and dexamethasone-treated (n=30) for
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Fig. 4 Effects of CNR1 antagonist/agonist on lipolysis and glucose
uptake. a Effects of long-term incubation of SAT without (control) or
with dexamethasone (0.3 uM) for 24 h or dexamethasone for 24 h plus
the CNRI1-specific antagonist AM281 (3 uM) for the final 4h of
incubation in basal, isoproterenol (0.5 uM) and isoproterenol plus
insulin (100 nU/mL) adipocyte lipolysis (n=10). b Effects of short-
term incubation (30 min) of isolated adipocytes without (control) or
with the CNRI-specific antagonist AM281 (3 uM) in basal, iso-
proterenol (0.5 uM) and isoproterenol plus insulin (100 pU/mL)

performed and the number of subjects per group is limited
(<10). In addition, others have found reduced CNRI

24 h paired samples of SAT a and OAT b and HOMA-IR. ¢ CNR!
mRNA expression levels in paired samples of SAT and OAT non-
treated and dexamethasone-treated for 24h (n=41 and 30,
respectively)
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adipocyte lipolysis (n =15). ¢ Effects of long-term incubation of SAT
without (control) or the CNR1-specific agonist ACEA (1 uM) for 24 h
of incubation in basal, isoproterenol (0.5 uM) and isoproterenol plus
insulin (100 pU/mL) adipocyte lipolysis (n = 8). d Effects of long-term
incubation of SAT without (control) or with dexamethasone (0.3 uM)
for 24 h or dexamethasone for 24 h plus the CNR1-specific antagonist
AM281 (3uM) for the final 4 h of incubation in basal and insulin-
stimulated (1000 pU/mL) adipocyte glucose uptake (n=12)

expression in adipose tissue with obesity, but only post-
menopausal women [6] or surgical patients with variation in
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Fig. 5 Incubation of adipose
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age and concomitant medication were included [13]. In our
study with freshly harvested samples we had well-
controlled T2D subjects with a tight BMI and gender
matching with control subjects, which allowed us to strictly
compare the disease vs. the influence of obesity on CNRI
gene expression.

Activity of the CNR1 depends on the endocannabinoid
levels. Therefore, we measured the levels of one of the key
endocannabinoids in the adipose tissue, 2-AG, and also
expression levels of enzymes responsible for synthesis and
degradation of 2-AG and AEA. 2-AG levels in adipose
tissue did not differ between T2D and control subjects but
were negatively associated with the adipocyte glucose
uptake. In addition, we found that the gene expression
levels of the endocannabinoids-degrading enzymes FAAH
and MGL were reduced in T2D subjects compared with
controls, and negatively associated with HbA .. This is in
agreement with several studies showing increased activity
of the endocannabinoid system in T2D and/or obese sub-
jects [29-31]. Altogether these findings suggest a potential
role of the peripheral endocannabinoid-system in adipocyte
metabolism and insulin resistance. One study measuring
FAAH mRNA levels in SAT following hyperinsulinemic
clamp showed a 2-fold elevation of FAAH mRNA in lean
subjects that was not observed in the obese [32]. However,
neither 2-AG levels or FAAH or MGL expression correlated
with BMI in this study. We also found DAGL-ALPHA to be
upregulated and DAGL-BETA downregulated in T2D sub-
jects compared with controls. However, DAGL-ALPHA is
reported to play a greater role than DAGL-BETA in 2-AG
synthesis in adipose tissue [33]. It should be considered that
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other endocannabinoids and/or enzymes, as well as levels in
other tissues and circulating levels are also of interest when
exploring the activity of the endocannabinoid system.

We also explored the in vitro role of CNRI in the glu-
cocorticoid regulation of glucose and lipid metabolism
in vitro in human subcutaneous adipocytes. To our
knowledge, we show, for the first time, that a CNRI-
specific antagonist, AM281, partly prevents the stimulatory
effects of dexamethasone on lipolysis in adipocytes. A role
of CNRI in lipolysis is further supported by the effects of
the CNR1-specific agonist, ACEA, to stimulate lipolysis.
Elevated CNR1 expression levels may therefore be impor-
tant for the regulation of lipolysis by glucocorticoids in
human subcutaneous adipocytes and might contribute to the
elevation of the FFA levels in circulation as observed in
glucocorticoid-treated subjects [34, 35]. This might, in turn,
contribute to ectopic fatty acid deposition in tissues, such as
liver and skeletal muscle, and to insulin resistance and
inflammation in these tissues [36]. Moreover, the observed
inhibition of dexamethasone-induced lipolysis by AM281
mimics the insulin-mediated inhibition of lipolysis. The
insulin suppression of isoproterenol-stimulated lipolysis by
30 % was modest. However, this suppression is similar to
previous reports [19, 24] with identical in vitro incubation
conditions. Moreover, we found that short-term treatment
with the CNR1 antagonist, AM281, attenuated the lipolysis
rate in freshly isolated adipocytes independent of
dexamethasone-treatment. This suggests that CNR1 antag-
onism can regulate lipolysis independent of glucocorticoid-
induced CNR1 expression levels, and also that AM281 may
acutely affect lipolysis most likely by acting as an inverse
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agonist and reducing the intrinsic CNR1 activity. This
indicates an involvement of CNR1 in the lipolysis regula-
tion and suggests that peripherally restricted CNRI
antagonists via lowering of FFA levels may improve insulin
sensitivity. In agreement with our findings, treatment of rats
with CNR1 agonists stimulates lipolysis [37, 38], whereas a
CNRI1 antagonist [39] decreases plasma free fatty acids,
supporting the notion of lipolysis being inhibited by CNR1-
antagonism in vivo.

To explore possible mechanisms involved in the effects
on the CNR1 activation of lipolysis we addressed the effects
of dexamethasone and AM281 incubation in phosphoryla-
tion and protein levels of ERK1/2 and HSL in adipose
tissue. ERK1/2 is a protein involved in the MAPK-pathway
known to be regulated by the endocannabinoid system [40].
HSL is a key factor involved in lipolysis regulation by
beta-adrenergic and insulin signaling, and is regulated by
ERK [41, 42]. However, ERK and HSL activation and
protein levels were not affected by dexamethasone or
AM281 incubation. Future studies should thoroughly elu-
cidate underlying mediators of lipolysis and their putative
involvement in the action of CNR1 and its antagonists, as
well as their interaction with beta-adrenergic and insulin
signaling. Indeed, CNR1 has been shown to mediate glu-
cocorticoid effects on AMPK activity in the hypothalamus
of mice [43]. AMPK, being a mediator of lipolysis,
is therefore another target of interest within the context of
our study.

The inhibitory effect of dexamethasone on adipocyte
glucose uptake is well known [44—46]. Our in vivo data also
suggest an association between adipocyte glucose uptake
and the levels of the endocannabinoid 2-AG and the gene
expression of endocannabinoid-degrading enzymes MGL
and FAAH in the adipose tissue. However, CNR1-specific
antagonist/inverse agonist with AM281 did not affect dex-
amethasone inhibitory effect on glucose uptake in vitro. In
contrast to our findings, CNR1 antagonism has previously
been shown to improve tissue-specific glucose uptake in
skeletal muscle [17] and in nucleus accumbens [47] from
rats. In contrast, other in vitro studies indicated that glucose
uptake is increased in murine 3T3-L1 adipocytes and
human adipocytes by CNR1 agonism rather than antagon-
ism [14, 48]. The discrepancies might be explained by
different biological effects of the CNR1 antagonists/ago-
nists in the different cell models used in these studies, e.g.,
rat skeletal muscle or brain tissue, murine cell lines or
human adipocytes and in vivo or in vitro studies. In addi-
tion, different CNRI1-specific compounds were used, e.g.
the antagonists SR141716 or O-2050 [17, 47], the agonist
WIN 55,212 [14, 47] or the endocannabinoids 2-AG or
AEA [47, 48].

There are limitations to this study. This is primarily an
in vitro study that does not take into consideration the

complex cross-talk between tissues occurring in the reg-
ulation of metabolism in vivo. Although we measured the
expression levels of genes corresponding to enzymes
involved in the synthesis or degradation of endocannabi-
noids in adipose tissue, measurements in other tissues and
plasma would also be valuable. That could further elucidate
the overall activity of the peripheral endocannabinoid sys-
tem including its autocrine, paracrine and endocrine func-
tions [9, 49].

Furthermore, the collagenase isolation procedure might
compromise the dexamethasone effects. However, the glu-
cocorticoid receptor is located intracellularly and is not
expected to be affected by collagenase acting in the extra-
cellular environment. Still, it cannot be completely excluded
that the dexamethasone effects are different between adi-
pocytes isolated with collagenase and intact adipose tissue,
respectively. Moreover, the lipolysis experiments involving
dexamethasone and AM281 were performed only in female
subjects, ruling out gender comparisons. However, as pre-
viously shown, dexamethasone treatment amplified adre-
nergic stimulation of lipolysis in adipocytes from women
but not from men [50]. Female adipose tissue samples were
therefore a priority in our experiments. Nonetheless, we
plan to investigate males in future work on CNR1-mediated
lipolysis regulation.

We selected the synthetic antagonist AM281 and the
agonist ACEA because of their high affinity and specificity
to the CNRI1 receptor [51, 52]. However, other compounds
with higher selectivity, e.g., SLV319 [53], could very well
have more pronounced effects on lipolysis and glucose
uptake than we have observed here.

Our data demonstrate that CNR1 and the endocannabi-
noid system in human adipose tissue is upregulated in states
of insulin resistance, including T2D and glucocorti-
coid exposure. Also, our results suggest that CNRI is
involved in glucocorticoid-regulated lipolysis in sub-
cutaneous adipocytes. This study gives further support to
the concept of a role of the peripheral endocannabinoid
system in insulin resistance, particulary in the context of
high glucocorticoid exposure. The cannabinoid receptor
type 1 in peripheral tissues may be an attractive drug target
for the treatment of dyslipidemia and insulin resistance
associated with T2D.
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