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GLP-1 reduces metalloproteinase-14 and soluble endoglin induced
by both hyperglycemia and hypoglycemia in type 1 diabetes
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Endoglin (also known as CD105), is weakly expressed in

resting endothelial cells, but increases during angiogenesis

[1]. Soluble endoglin (sEng) enhances atherogenesis via

down regulation of eNOS expression and inhibition of

TGF-b signaling [2]. The sEng has recently been associ-

ated with cardiovascular damage, also in diabetes [3, 4].

The sEng is generated by the cleavage of the extracellular

domain of the protein by the metalloproteinase-14 (MMP-

14) [2]. The activity of the metalloproteinases is enhanced

by hyperglycemia through the generation of an oxidative

stress [5], and, recently, we have reported that in human

endothelial cells, high glucose also induces sEng over-se-

cretion through the oxidative stress [6].

Recently, much attention is paid to the possibility that

glucagon like peptide-1 (GLP-1) and GLP-1 receptor

agonists (GLP-1RA) can be used in combination with in-

sulin in the management of type 1 diabetes [7]. The

possible usefulness of this combination seems to be not

only related to the possibility of decreasing the insulin

dose, body weight gain, and the risk of hypoglycemia [7],

but also to a direct protective effect of GLP-1 [8].

In particular, we have recently shown that in type 1

diabetes, GLP-1 protects endothelial function and reduces

inflammation during both acute hyperglycemia and hypo-

glycemia [8]. This protective action seems partly related to

the ability of GLP-1 of increasing intracellular antioxidant

defenses and decreasing the oxidative stress [8–10].

Therefore, the aim of this study has been to evaluate the

impact of both acute hyperglycemia and hypoglycemia on

sEng and MMP-14 plasma levels and the possible protec-

tive effect of GLP-1.

Research design and methods

Plasma samples regarding the experiments performed in

type 1 diabetes were from the study previously published

[8]. A total of 30 type 1 diabetic patients (15 males and 15

females) participated in such study (8). For this new study,

30 healthy (17 males and 13 females), age (24.0 ± 2.3 vs.

24.4 ± 2.2 years, mean ± SE), and BMI (23.5 ± 2.0 vs.

23.7 ± 2.2 kg/m2) matched controls were recruited. All

subjects were nonsmokers and had a normal blood count,

plasma lipids, plasma electrolytes, liver, and renal function,

and were normotensive. Studies were approved by the

Ethical Committee, and all participants gave written in-

formed consent.

The diabetic patients were divided in two groups [8]. In

the group 1, two different experiments were planned for

each subject in a randomized order: a period of 2 h of

hypoglycemia (2.9 ± 0 mmol/l), with or without GLP-1

(0.4 pmol/kg/min) infusion [8].
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Two different experiments were planned for each sub-

ject of the group 2 in a randomized order: a period of 2 h of

hyperglycemic clamp (15 mmol/l), with or without GLP-1

(0.4 pmol/kg/min) [8] infusion. For more details see

Ref. 8.

At baseline and after 1 and 2 h, glycemia, plasma 8-iso

prostaglandin F2alpha (8-iso-PGF2a, Cayman Chemical,

Ann Arbor, MI, USA), sEng (R&D Systems, Inc., Min-

neapolis, MI, USA), and MMP-14 (Uscn Life Science, Inc.,

Houston, TX, USA) plasma levels were measured.

Fig. 1 a Glycemia, 8-iso-

PGF2a, sEng, and MMP-14 in

type 1 diabetes during

hypoglycemia. White triangle

hypoglycemia. Black triangle

hypoglycemia ? GLP-1.

*p\ 0.01 versus basal.
#p\ 0.01 versus

hypoglycemia ? GLP-1.

b Glycemia, 8-iso-PGF2a, sEng,

and MMP-14 in type 1 diabetes

during hyperglycemia. White

circle hyperglycemia. Black

circle hyperglycemia ? GLP-1.

*p\ 0.01 versus basal.
#p\ 0.01 versus

hyperglycemia ? GLP-1. The

graphics of glucose and 8-iso-

PGF2a in the figure a and

b have already been published

in Ceriello et al. [8]
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Statistical analysis

Data are expressed as mean ± SE. The Kolmogorov–

Smirnov algorithm was used to determine whether each

variable had a normal distribution. Comparisons of base-

line data among the groups were performed using unpaired

Student’s t test or Mann–Whitney U test, where indicated.

The changes in variables during the tests were assessed by

two-way ANOVA with repeated measures or Kolgorov–

Smirnof test, where indicated. If differences reached sta-

tistical significance, post hoc analyses with two-tailed

paired t test or Wilcoxon signed-rank test for paired com-

parisons were used to assess differences at individual time

periods in the study. Statistical significance was defined as

p\ 0.05.

Results

Baseline 8-iso-PGF2a (67.5 ± 4.8 vs. 34.5 ± 4.5 pg/ml,

p\ 0.01), sEng (9.6 ± 0.4 vs. 4.2 ± 0.3 ng/ml, p\ 0.01),

and MMP-14 (11.3 ± 1.0 vs. 5.0 ± 0.8 ng/ml, p\ 0.01)

were increased in diabetic patients compared to controls.

After 2 h of hypoglycemia, 8-iso-PGF2a, sEng, and

MMP-14 significantly increased, compared to basal values

(Fig. 1). When hypoglycemia was accompanied by the si-

multaneous infusion of GLP-1, all these phenomena were

significantly attenuated (Fig. 1). Similar results were ob-

tained in the hyperglycemic clamp experiments. After 2 h

of hyperglycemia, 8-iso-PGF2a, sEng, and MMP-14 in-

creased, compared to basal values (Fig. 1). When hyper-

glycemia was accompanied by the simultaneous infusion of

GLP-1, all these phenomena were significantly attenuated

(Fig. 1).

Discussion

In this study, we show an increase of sEng and MMP-14

plasma levels in type 1 diabetes. Moreover, for the first

time, we report that both acute hypoglycemia and hyper-

glycemia induce an increase of these molecules and that

GLP-1 can counterbalance this effect. It is worthy of in-

terest that the increase of sEng and MMP-14 is simulta-

neous: the hypothesis is that the increase of MMP-14

favors the cleavage of sEng from the endothelium [2].

Previous evidences suggest that both sEng and MMP-14

can be induced by hyperglycemia through an oxidative

stress [6, 11]. We have demonstrated that also hypo-

glycemia produces an oxidative stress [8]. Therefore, our

data suggest that sEng and MMP-14 are activated by acute

hyperglycemia and hypoglycemia because they generate an

oxidative stress. The data of 8-iso-PGF2a support this

hypothesis.

GLP-1 counteracts the effects of both hyperglycemia

and hypoglycemia, probably because of its antioxidant

activity [8–10]. Consistently, it has been already reported

that antioxidants can reduce the expression of MMP-14

[11, 12].

Acute hyperglycemia, hypoglycemia, and sEng have

been all involved in the development of cardiovascular

disease in diabetes [3, 13, 14]. On the other hand, MMP-14

promotes vulnerable plaque morphology [15]. Our data

suggest oxidative stress as a possible link between them.

Currently, there is a raising interest about the possibility of

using the GLP-1RA for the therapy of type 1 diabetes [7].

Recent evidence show that also GLP-1 RA, widely used in

clinical practice are able to reduce oxidative stress in dia-

betes [16, 17], therefore our data further support the pos-

sible usefulness of these compounds in type 1 diabetes.
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