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Abstract The objective of this study is to identify the

genetic defects in a Chinese family with autosomal domi-

nant familial neurohypophyseal diabetes insipidus. Com-

plete physical examination, fluid deprivation, and DDAVP

tests were performed in three affected and three healthy

members of the family. Genomic DNA was extracted from

leukocytes of venous blood of these individuals for poly-

merase chain reaction amplification and direct sequencing

of all three coding exons of arginine vasopressin–neuro-

physin II (AVP–NPII) gene. Seven members of this family

were suspected to have symptomatic vasopressin-deficient

diabetes insipidus. The water deprivation test in all the

patients confirmed the diagnosis of vasopressin-deficient

diabetes insipidus, with the pedigree demonstrating an

autosomal dominant inheritance. Direct sequence analysis

revealed a novel mutation (c.193T[A) and a synonymous

mutation (c.192C[A) in the AVP–NPII gene. The missense

mutation resulted in the substitution of cysteine by serine at

a highly conserved codon 65 of exon 2 of the AVP–NPII

gene in all affected individuals, but not in unaffected

members. We concluded that a novel missense mutation in

the AVP–NPII gene caused neurohypophyseal diabetes

insipidus in this family, due to impaired neurophysin

function as a carrier protein for AVP. The Cys65 is

essential for NPII in the formation of a salt bridge with

AVP. Presence of this mutation suggests that the portion

of the neurophysin peptide encoded by this sequence is

important for the normal expression of vasopressin.
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Introduction

Autosomal dominant familial neurohypophyseal diabetes

insipidus (adFNDI) is a rare inherited disease characterized

by polydipsia, polyuria, and dehydration caused by deficient

secretion of the peptide hormone, arginine vasopressin

(AVP) [1]. AVP and its corresponding carrier neurophysin II

(NPII), are synthesized as a composite precursor by the

magnocellular neurons of the supraoptic and paraventricular

nuclei of the hypothalamus. The precursor is packaged into

neurosecretory granules and transported axonally in the

stalk of the posterior pituitary, En route to the neurohy-

pophysis, the precursor is processed into the active hormone.

Prepro-vasopressin has 164 amino acids and is encoded by

the 2.5 kb prepro-AVP–NPII gene located in chromosome

region 20p13. The AVP–NPII gene consists of three exons

and two introns. Exon 1 of the AVP gene encodes the signal

peptide AVP and the NH2-terminal region of NPII. Exon 2

encodes the central region of NPII, and exon 3 encodes the

COOH–terminal region of NPII and the glycopeptide [2, 3].

Disease onset is typically in infancy or adolescence in the

affected individuals, with symptoms worsening throughout

adulthood. To date, there have been more than 50 different

mutations in the AVP–NPII gene encoding the AVP prep-

rohormone [4]. The mutations occur in different types and
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are located at different sites in the coding region, and affect

amino acid residues that are essential for proper folding and

dimerization of the neurophysin II moiety of the AVP

preprohormone [5, 6]. This study analyzes a Chinese family

with adFNDI associated with mutations in the AVP–NPII

gene. We also report a novel mutation (c.193T[A) and a

synonymous mutation (c.192C[A) identified in the AVP–

NPII gene. The novel missense mutation resulted in the

substitution of cysteine by serine at a highly conserved

codon 65 of exon 2 of the AVP–NPII gene in all the affected

individuals.

Subjects and methods

Subjects

After obtaining written informed consent, we studied only

six living members of the Chinese pedigree of Han family

presenting with adFNDI, as other members of the pedigree

refused to participate. II.3 and II.4 had a chronic history of

polyuria and polydipsia with onset of symptoms including

edema of lower extremity, at about the ages 38 and

40 years, respectively. Subsequently, they were diagnosed

with backache at a local hospital. The findings from color

Doppler sonography revealed hydronephrosis and enlarged

urinary tract, for which they consulted with an urologist at

our hospital initially. The family member II.9 showed

milder signs, while the other living members including

III.8, III.12, IV.18 were unaffected (Fig. 1).

Methods

Clinical data and sample collection

All participants underwent full physical examination and fluid

deprivation test plus desmopressin (using DDAVP to termi-

nate the fluid restriction period used for differentiating central

from nephrogenic diabetes insipidus). Urine was measured for

specific gravity. All the samples of urine and serum were

analyzed at the second affiliated hospital of Harbin Medical

University (Harbin, China). Samples of blood were shipped to

Department of Genetics, National Research Institute for

Family Planning for DNA analysis (Beijing, China).

Molecular genetic procedures

Venous blood samples were obtained from six members of

the pedigree and 100 normal controls. Genomic DNA was

extracted from whole blood using a QIAamp DNA Blood

Mini Kits (QIAGEN Science, Germantown, MD). All

coding exons of AVP–NPII genes were amplified by

polymerase chain reaction (PCR) with primers listed in

Table 1. The PCR products were then sequenced from both

directions with the ABI3730 Automated Sequence (PE

Biosystems, Foster City, CA).The sequencing results were

analyzed using Chromas (version 2.3) and compared with

the reference sequences in the NCBI database.

Results

Clinical data

Analysis of the water deprivation test results was performed

in the index patient, according to the standard procedures,

along with the DDAVP test (Table 2). Patients voided the

bladder before the administration and urinary flow was

determined hourly. The water deprivation test demonstrated

the urine concentration deficiencies in the affected individ-

uals of the Chinese family: the urine specific gravity sharply

increased in the affected individuals after DDAVP admin-

istration (AVP, 5 IU i.m.). The data supported the diagnosis

of diabetes insipidus (DI), differentiating central from

nephrogenic types [7]. However, in all the investigations, no

abnormalities were seen in the three unaffected individuals

of the family. Overall, the clinical findings were consistent

with the diagnosis of central AVP-deficient DI. The patients

were treated by DDAVP (II.3 and II.4: Minrin 0.1 mg 9 4

t.i.d, p.o.; III.9: 0.1 mg 9 2 t.i.d, p.o.). Although some

family members refused to undergo the various tests details

of family history obtained from the participants indicated

seven living family members were suspected to have

symptomatic vasopressin-deficient DI to varying degree.

Although not tested, I.1 might be the first affected family

member, and thus expected to have milder signs.

Molecular genetic analysis

Direct sequencing of AVP–NPII gene revealed a heterozy-

gous T[A transition at position c.193, which resulted in the
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Fig. 1 Pedigree of the kindred. The individuals numbered are those

who were available for mutation screening of the AVP–NPII gene.

Black and white symbols represent clinically affected and unaffected

individuals, respectively. Genetically tested individuals are indicated

by the ‘‘?’’ symbol. The arrow to II.3 is propositus and indicates the

carrier of the 1619T[A mutation
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substitution of cysteine by serine at the highly conserved

codon 65 of exon 2, and a synonymous mutation c.192C[A

at codon 64 of exon 2, changing GGC to GGA corre-

sponding to Gly codon (Fig. 2). Meanwhile, the mutation

was confirmed by restriction endonuclease analysis of PCR

amplification products that contain the corresponding seg-

ment of the AVP–NPII gene. The mutation was a thymidine

base substituted by adenine at nucleotide c.193(T[A) in

exon 2, which altered codon 65 of the prepro-AVP–NPII

sequence where the NPII moiety was derived from TGC to

an AGC mutation. No other mutations were detected in

exons 1, 2 or 3. The missense mutation and the synonymous

mutation were found to be similar in all the affected indi-

viduals and co-segregated with the affected individuals in

Table 1 Primers used for DNA amplification by PCR

Exon Forward (50–30) Reverse (50–30) Product length (bp)

AVP-II-1 AGCGCTGCAGTCACAGTAGA GCTACCACCACCCATGACTT 521

AVP-II-2 CTCGCTGCGTTCCCCTCCAACCCCTCGACTC CCCCCAGCCCCAGGCCCGCCCCCGCCGCGC 305

AVP-II-3 CCGTGCTCACACGTCCTC CATTGGCGGAGGTTTATTGT 270

Primers for exons 1, 2, and 3: exon 3 and exon 2 have been previously reported [18]. Exon 1 has been slightly modified to improve sequencing

results; cycle conditions include 96�C for 30 s, 65�C for 45 s, and 74�C for 30 s, 35 cycles

Table 2 Water deprivation and vasopressin tests in the index case

Experiment Patients Time Blood pressure

(mmHg)

Pulse Weight

(kg)

Volume

(ml)

Urine

temperature (�C)

Specific

gravity

Corrected

specific gravity

Water deprivation test II.3 8:00 140/80 92 100

9:00 135/75 98 99.5 420 30 0.998 1.003

10:00 135/75 75 99.2 380 27 0.996 1.001

11:00 140/85 83 98.7 260 27.5 1.000 1.004

12:00 130/90 87 98.3 310 28 0.998 1.002

13:00 135/80 75 98.1 230 30 1.000 1.005

II.4 10:15 146/100 88 75 620 32.5 0.996 1.002

11:15 140/95 90 74.5 410 29.5 0.998 1.003

12:15 140/95 85 74.3 247 33 0.998 1.004

13:15 135/90 92 73.8 225 31 0.996 1.001

14:15 135/90 90 73.7 230 30 1.000 1.005

III.9 8:00 115/85 75 67.5 260 33 0.998 1.004

9:00 110/80 80 67.2 250 29 0.996 1.001

10:00 110/80 75 67 245 27.5 1.000 1.004

11:00 125/85 81 67 300 28 0.998 1.002

12:00 125/90 80 66.8 200 27.5 1.000 1.004

Vasopressin test II.3 14:00 135/75 87 98.8 210 31 1.002 1.007

15:00 140/85 75 98.6 100 30 1.005 1.010

16:00 135/80 82 98.6 80 33 1.008 1.014

17:00 135/75 90 98.7 50 29.5 1.012 1.017

18:00 140/80 85 98.5 100 30 1.010 1.015

II.4 15:15 130/90 88 74.3 270 28 1.006 1.010

16:15 135/85 90 74.1 50 30 1.010 1.015

17:15 135/85 88 74.1 40 29.5 1.010 1.015

18:15 140/85 85 74 50 30 1.012 1.016

III.9 13:00 115/85 88 67.3 200 33 1.005 1.011

14:00 125/80 75 67.2 75 32 1.006 1.012

15:00 120/80 85 67.2 50 32 1.009 1.015

16:00 120/80 88 67 35 31 1.009 1.015

Intramuscular injection 5 IU of arginine vasopressin to terminate the water deprivation test

Corrected specific gravity = (urine temperature - 15)/3000 ? specific gravity
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the family but absent in the unaffected family members as

confirmed by the sequencing of 100 control chromosomes.

Discussion

The mutations included intragenic deletions, missense and

nonsense mutations affecting the signal peptide, the AVP

moiety, or the AVP carrier protein (NPII). Over 50 distinct

AVP–NPII gene mutations have been reported in adFNDI.

However, only five nonsense mutations were reported, with

almost a quarter affecting one of the seven disulfide bonds

present in NPII that are important in determining its tertiary

structure [5, 8, 9]. If only the mutations affecting the NPII

moiety were considered, the proportion of the modified

cysteine residues, forming disulfide bonds, rises to nearly

50%. Therefore, the mutations affecting the NPII play an

important role in the adFNDI pathophysiology. The study

demonstrated the clinical symptoms in this kindred, with a

co-segregation of the novel mutation (c.193T[A) in the

AVP–NPII gene. The heterozygous c.193T[A mutation

identified in the neurophysin moiety corresponds with the

different patterns of the other known mutations associated

with initial mild symptoms worsening in severity with AVP

deficiency. The novel mutation identified in the Chinese

kindred resulting from the substitution of cysteine by serine

at the highly conserved codon 65 of exon 2 of the AVP–

NPII gene was seen in all the affected individuals. Only the

affected individuals carrying a mutation showed the

symptoms of the adFNDI. Therefore, c.193(T[A) is most

likely a disease-causing mutation.

The pathogenesis of adFNDI is generally linked with

deficient or insufficient function of mutant NPII molecules.

NPII is responsible for safe axonal transport and prevention

of intracellular AVP proteolysis. Mutant AVP prohormone

is degraded by the cytosolic proteolytic system. The mutant

precursor hormones are retained by the endoplasmic

reticulum quality control mechanisms resulting in cyto-

toxic accumulation and protein aggregation in the neurons,

or degeneration of magnocellular neurons of the supraoptic

and paraventricular nuclei of the hypothalamus [2, 10–17].

The AVP peptide binds in a ‘‘pocket’’ formed by NPII, and

thereby shielded from proteolytic degradation during the

axonal transport of the secretory granule to the neurohy-

pophysis where AVP is released, as needed [2, 18].

Therefore, heterozygous T[A transition at highly con-

served codon 65 of exon 2, resulting in the substitution of

cysteine by serine could disorder the NPII protein. The

mutant NPII with a deficient or insufficient function

interferes with the safe axonal transport and prevention of

intracellular AVP proteolysis.

NPII is a cysteine-rich protein that contains seven

disulfide bonds between its 14 cysteine residues. The

disulfide bonds occur between codons 41–85, 44–58,

52–75, 59–65, 92–104, 98–116, and 105–110 of the prepro-

AVP–NPII sequence. Mutations involving cysteine resi-

dues, which form disulfide bonds in the NPII protein, have

been described: one in the fourth, three in the fifth, and four

in the sixth, and three in the seventh [17, 19]. In the three-

dimensional structure of neurophysin, the mutation

(c.193T[A) disrupted the normal disulfide bond linking

C59 with C65. Until now, Cys65Phe and other mutations

involving cysteine residues in four of the seven disulfide

bridges have reportedly disrupted the disulfide bonds dur-

ing protein folding in the endoplasmic reticulum, leading to

destabilization of protein structure and function in NPII

[19, 20]. The novel mutation involving the disruption of the

fourth disulfide bond in the AVP–NPII precursor protein

will enable us to further investigate the pathogenesis of

adFNDI, at the molecular level.

Mutations in the NPII-coding region are apparently

linked with an early disease onset. Interestingly, fewer cases

live to a normal age as reported here, beyond the first few

decades, possibly due to adequate AVP to maintain the

urine volume. A few researchers report that the pathogen-

esis may be associated with abnormal neuronal secretion

due to improper AVP protein folding or synthesis compared

Normal:

Mutation:

.3

.4

.5

II

II

III

Fig. 2 Automated sequencing of the AVP–NPII gene. A portion of

exon 2: the two superimposed chromatographic peaks demonstrate the

heterozygous mutation c.193(T[A) and nonsense mutation

c.192(C[A) found in the Chinese family. The arrow represents the

novel mutation identified
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with individuals possessing the normal alleles. Further-

more, the cadaver studies of ADNDI patients show that the

neurocytes in the patients’ hypothalamus for AVP have

selective deletion. Other autopsy studies demonstrated that

although the structure of hypothalamus and the staining of

supraoptic nucleus are normal, the staining of the para-

ventricular nuclei is abnormal [6, 10, 21–24].

In conclusion, a novel missense mutation identified in

the AVP–NPII gene resulted in neurohypophyseal DI due

to disruption of the fourth disulfide bond in the AVP–NPII

precursor protein required for correct folding of the neu-

rophysin moiety; a synonymous mutation (c.192C[A) was

identified in the AVP–NPII gene in this Chinese family.

Although the findings do not directly explain the underly-

ing pathogenesis of the adFNDI, this mutation increases the

number of genetic abnormalities in the AVP–NPII gene and

provides a molecular basis for understanding the charac-

teristics of NPII that are associated with abnormal protein

translation.
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