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Abstract
]The microcirculation of bone and marrow is vital for bone development, maintenance, and repair. In addition to the well-known
function of transporting oxygen, nutrients, systemic hormones, precursor cells, waste, etc., the bone vascular network plays a role
in the mechanical induction of bone formation. In addition, arteries and marrow sinusoids are critical components of hemato-
poietic stem cell niches. This review discusses the various roles of the bone and marrow microcirculation in regard to (1) bone
development, remodeling, and fracture repair; (2) the regulation of bone intramedullary pressure and interstitial fluid flow; and
(3) the mobilization of mature blood cells into the peripheral circulation. Age-associated dysfunction of the microcirculation is
discussed in relation to how it may disturb bone and marrow homeostasis, fracture repair, and organismal vitality. Finally, the
review invites the reader to consider the efficacy of treatments designed to alleviate bone and marrow pathologies in the face of a
compromised vascular network.
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Introduction

Highways and transit systems permit the passage of people
and commerce, with lane closures, road closures, and road
blocks slowing this transport. The vascular network is equiv-
alent to the highways and transit systems in that it carries
white blood cells, red blood cells, platelets, systemic hor-
mones, nutrients, oxygen, carbon dioxide, waste products,
precursor cells, etc. (i.e., goods and services) along its route.
Cells and factors are carried to and from the peripheral circu-
lation, originating in certain tissues and traveling to target
tissues. As we age and/or develop disease, vascular function
declines [1–3]. Age- and disease-related pathologies of bone
blood vessels, in particular, include diminished endothelium-
dependent vasodilation [4–8], vascular rarefaction [9, 10],
augmented vascular calcification [9], and arteriosclerosis/
atherosclerosis [11–13].

In regard to the transit of good and services, declines in
vasodilator function, vascular rarefaction and calcification,
and arteriosclerosis/atherosclerosis of bone blood vessels are
corollary to lane closures, road closures, and road blocks. All
of these vascular ailments serve to reduce and/or impede the
passage of blood and, in essence, diminish or obstruct the de-
livery of blood cells (i.e., white and red blood cells, platelets,
and precursor cells), systemic hormones, nutrients, and oxygen,
and attenuate the removal of tissue waste. In fact, diminished
bone and marrow blood flow and perfusion are a common
occurrence in old age and has been demonstrated in animal
models and humans [4, 6, 14–16]. From this perspective, we
can appreciate how bone vascular dysfunction contributes to
bone and marrow pathology. Under this premise, we must fur-
ther appreciate how bone vascular dysfunction may encumber
efforts to treat bone and marrow ailments. In other words, med-
ications and treatments designed to correct or assuage bone and
marrow pathologies often rely upon the vascular system for its
transport into the skeletal system. This begs the question as to
how effective is the transport of goods and services (i.e., med-
ications and treatments) if the highways and transit systems are
in disrepair. This review will highlight three main facets as to
why we should investigate the bone vascular system, how
blood vessels change with advancing age, and how this impacts
fracture repair and marrow function.
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Bone Development and Repair Require
a Vascular Supply

The interaction between osteoblasts, vascular endothelial
cells, and other cells within the bone microenvironment
modulates development and remodeling [17]. The theory
that vascular endothelial cells and/or pericytes convert into
pre-osteoblasts or osteoblasts suggests the direct involve-
ment of blood vessels in bone formation [17]. During bone
development, remodeling, and regeneration, the formation
of new blood vessels (i.e., angiogenesis) is a key regulating
factor [18, 19]. In fact, vascular ingrowth is necessary for
both endochondral and intramembranous ossification [20].
The presence or absence of a pre-existing cartilage template
and the site of bone development distinguishes the two types
of ossification. During embryogenesis, intramembranous
and endochondral ossification typically occur in the axial
and appendicular skeleton, respectively, and form the flat
and tubular bones, respectively [21]. Both, however, rely
upon a vascular supply.

Intramembranous ossification occurs without a pre-
existing cartilage template and commences with an avascular
mesenchymal condensation [21]. While the role of blood ves-
sels during this type of ossification is not frequently studied
[18], the differentiation of pre-osteoblasts into secretory oste-
oblasts occurs concomitant with blood vessel invasion of the
bone anlage [22]. In models of distraction osteogenesis, which
transpires primarily via intramembranous mechanisms [17],
bone formation occurs only at sites close to blood vessels
[23]. In the distraction gap, bone formation occurred in close
proximity to the recently developed and large (150–200 μm in
diameter) vascular sinuses [17]. It has been postulated that
vascular cells or cells close to blood vessels have osteogenic
properties or secret osteogenic factors [24–27]. In elderly pa-
tients following vertical distraction of the mandible, instances
of scarce vascularization were coupled with poor bone forma-
tion [18]. As anticipated, blood supply to the site of bone
formation is augmented during distraction osteogenesis, as
evidence of this measure via various techniques (e.g., vascular
corrosion casts [28] and scintigraphic investigations [29, 30]).
In addition, regional blood flow to bone-forming sites has
been demonstrated to increase 10-fold above control condi-
tions [17], remaining 3-fold higher vs. control up to 17 weeks
post-corticotomy [31–33].

During endochondral ossification, bone replaces an
existing calcified cartilage template [34], only after invasion
by new capillaries [35]. The cartilage template is established
by chondrocytes that eventually hypertrophy and secrete an
extracellular matrix containing collagen X [36]. Hypertrophic
chondrocytes release vascular endothelial cell growth factor
(VEGF) to initiate blood vessel development and the newly
established blood supply brings in nutrients [37] and presum-
ably brings in osteogenic cells [18, 37]. Pre-osteoclasts and

chondroclasts remove the extracellular matrix secreted by the
hypertrophic chondrocytes [36, 37] and blood vessel invasion
delivers osteoblasts to lay down the extracellular matrix of
bone [36]. In concert with VEGF, osteoclasts and matrix
metalloproteinase-9 work to ensure proper bone development
[36]. Inactivation of VEGF during endochondral ossification
in a murine model altered the vascular morphology within the
growth plate, eliminating proper growth and invasion of the
metaphyseal vascular supply [37]. Thus, vascular invasion of
the cartilage template, as mediated by VEGF, serves as the
linchpin between resorption of the template and formation of
bone [37]. Further, it has been recently speculated that bone
blood vessels serve as a guide for (1) the collagen template, (2)
the replacement of the template with bone, and (3) bone mor-
phogenesis [38]. For example, calcein labeling (i.e., bone for-
mation) was observed in close proximity to blood vessels
during endochondral ossification in developing mice, leading
the authors to conclude that the blood vessels served as a
template for mineral deposition [38]. In the same series of
investigations, VEGF overexpression in osteoblasts altered
the vascular pattern, increased the number of blood vessels,
and caused vascular over-sprouting at the bone circumference
[38]. Interestingly, enhanced bone formation was observed at
the bone circumference, next to the blood vessels [38].

Recent investigations have shed more light on the interre-
lationship between bone blood vessels and bone cells. For
example, co-invasion of pre-osteoblasts and blood vessels into
the cartilage template during bone development and into the
cartilaginous callus during fracture repair has been observed
[39]. Further, angiogenesis related to the development of long
bones in mice was associated with Notch signaling [40].
When Notch signaling was experimentally disrupted, vascular
defects in morphology and growth occurred, as well as bone
abnormalities (i.e., diminished osteogenesis and bone length,
chondrocyte deficiencies, a decreased number of trabeculae,
and reduced bone mass) [40]. Restoration of Noggin, an
angiocrine factor secreted from endothelial cells and regulated
by Notch, reversed the vascular defects and bone abnormali-
ties [40]. In addition, marrow capillaries and sinusoids in ge-
netically modified and aged mice were distinguished
based upon their expression of CD31 and endomucin
(Emcn) [41]. Based upon this categorization, endothelial cells
associated with capillaries stained high for CD31 and Emcn,
while those in sinusoids stained low for CD31 and Emcn [41].
Thus, endothelial cells in bone were termed type H for the
CD31hi/Emcnhi subpopulation (i.e., capillaries) and type L
for the CD31lo/Emcnlo subpopulation (i.e., sinusoids) [41].
Interestingly, osteoprogenitor cells (i.e., Osterix+, Runx2+,
and collagen 1α+), which can eventually differentiate into
osteoblasts, were preferentially located next to the type H as
opposed to the type L blood vessels, despite the low preva-
lence of type H endothelial cells in relation to the total popu-
lation within the marrow [41]. These data suggest a direct
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relationship between endothelial cells and pre-osteoblasts dur-
ing bone growth. Further, 7 days following irradiation in
C57BL/6J mice, tibiae had a high and low number of type H
and type L endothelial cells, respectively, suggestive of a role
for H type blood vessels in neo-angiogenesis [41].

Following intramembranous and endochondral ossification
during development, the skeletal system becomes highly
vascularized [42]. Beyond skeletal maturity, bone resorption
and formation continues under a regulated fashion to maintain
strength and integrity. This is achieved by bone remodeling,
which is under the control of basic multicellular units of cor-
tical bone [43] or bone remodeling compartments of trabecu-
lar bone [44]. Basic multicellular units and bone remodeling
compartments consist of osteoclasts, osteoblasts, and an al-
ways present blood vessel [45–47]. The blood vessel provides
nutrients, oxygen, and precursor cells to the bone-remodeling
site, illustrating the importance of the vascular supply for bone
homeostasis.

Partial or complete breaks cause a discontinuity in bone
and represent fracture. Often there is a disruption in the vas-
cular supply surrounding the fracture site. Bone healing com-
mences in an attempt to restore homeostasis and this occurs
via mechanisms of endochondral ossification [17]. Under
these circumstances, a callus forms over the fracture site
where angiogenesis will occur [18] and blood vessel forma-
tion at the callus allows for the replacement of cartilage with
bone [48]. When blood delivery reaches its nadir, the trans-
ports of products necessary for bone repair are enhanced [49].
For example, blood flow was enhanced 0–14 days following
osteotomy and returned to baseline by 21–28 days, coinciding
with mineral deposition at the fracture site [49, 50]. A review
of the literature in regard to the vascularization of human long
bones revealed disparate zones of blood vessel density in fem-
oral and tibial shafts [51]. When divided into three zones (i.e.,
the upper third, middle, and lower third), femora had moder-
ate, high, and poor vascularization, respectively, and tibiae
had high, moderate, and poor vascularization, respectively
[51]. The authors speculated that these disparate zones of vas-
cularization could contribute to fracture non-union [51],
which occurs at high rates in femora and tibiae [52]. Once
again, the vascular supply is key. Under all four paradigms
(i.e., intramembranous ossification, endochondral ossifica-
tion, bone remodeling, and fracture healing), the vascular sup-
ply is requisite.

The Fluidic Nature of Bone Ensures Its
Dependence upon the Vascular System

The skeletal system is highly vascularized and porous, lending
itself to a high fluid content. The vascular system of bone
contains afferent vessels, capillaries and sinusoids, and effer-
ent vessels [53, 54]. Ionic exchange [53] and filtration [55]

occur in the capillaries and sinusoids, with capillaries located
in yellow (fatty) marrow and the sinusoids located in red
(hematopoietic) marrow [21]. The distinction between capil-
laries and sinusoids based solely on this characteristic should
be done with caution, since fat cells are present in hematopoi-
etic marrow [53] and sinusoids are observed in fatty marrow.
The filtrate from the capillaries and sinusoids enter into the
interstitial spaces of marrow and the porosities of bone. The
porosities comprise of the Volkmann and Haversian canals,
the lacunar-canalicular network of osteocytes and their den-
dritic processes, and the spaces within the mineral hydroxy-
apatite [56]. In mature animals, ~ 1/3rd of cortical bone con-
tains fluid located in blood vessels (~ 6%), cells (~ 25%), and
the interstitial space (~ 69%) [54]. In immature animals, the
fluid spaces in cortical bone are larger [54].

Interstitial fluid is sourced by the marrow capillaries [57],
which are supplied by bone andmarrow arterioles and arteries.
The nutrient arteries serve as bridges between the circulation
of bone and that of the periphery, regulating blood flow and
intramedullary pressure [58]. Recent investigations have re-
vealed interesting findings in relation to newly discovered
transcortical blood vessels, which are suspected to play the
major role in blood supply to the skeleton [59]. In regard to
flow, ~ 5–7%of cardiac output inmale rats 2, 6, and 24months
of age went to the skeleton, which represented ~ 7–8% of the
total body mass [60]. Blood flow to bone is on par with blood
flow to some resting skeletal muscles [61] and, relative to cell
mass, the skeleton receives a significant blood supply [54]. In
regard to intramedullary pressure, recorded values have dem-
onstrated high variability. For example, mean intramedullary
pressures of ~ 16mmHgwere observed in C57BL/6mice [62]
vs. ~ 33 mmHg in adult New Zealand White rabbits [63]. The
recorded variability no doubt reflects the diversity in the ex-
perimental protocols. Since intramedullary pressure is usually
lower than blood pressure (i.e., a pressure differential), plasma
can filtrate and allow for exchange of fluid between the vas-
cular system, the interstitial space, and the lacunar-canalicular
network [56].

Combined with the pressure differential between the
vascular system and interstitial space, mechanical loading
also drives the movement of interstitial fluid, allowing for
the transport of nutrients and factors to and the removal of
waste products from osteocytes embedded within bone
[56]. Mechanical compression of bone and release of that
compression expels and reuptakes interstitial fluid, respec-
tively [64]. The porous nature of the skeleton permits the
passage of interstitial fluid throughout bone [64] and shifts
in interstitial fluid activate bone cells [56]. As a result,
bone tissue is able to adapt to mechanical loading [65]
via this indirect stimulus. As proof of concept, experimen-
tal conditions that eliminated or reduced mechanical load-
ing, but altered bone intramedullary pressure and fluid
flow, initiated bone formation [62, 66–69].
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Bone adaptation to these alterations in interstitial fluid flow
results from the creation of shear stress on bone cell surfaces,
which stimulates bone anabolism or catabolism [56].
Mechanisms by which bone anabolism or catabolism occur
are via release of shear stress-related factors such as nitric
oxide and prostaglandins (e.g., PGE2) from bone cells
[70–73]. Nitric oxide participates in osteoblast differentiation
[74, 75] and impairs osteoclast activity [76]. In addition, PGE2

has been shown to inhibit bone loss with hind limb immobi-
lization, such that trabecular bone was higher vs. age-matched
controls [77]. In fact, vascular endothelial cells release a vari-
ety of factors (e.g., adenosine triphosphate, adenosine diphos-
phate, adenosine monophosphate, adenosine, prostacyclin, in-
terleukin-11, insulin-like growth factor-1, endothelin-1,
RANKL) that modulate bone cellular activity [78–87], indi-
cating a regulatory function of bone blood vessels on bone in
this regard. In conclusion, the delivery of blood flow to the
skeleton via the bone vascular network ensures the fluidity of
bone. As a result of pressure differentials created by the vas-
cular system and mechanical loading, interstitial fluid flow
throughout bone serves as the stimulus to augment or depress
bone remodeling.

Reliance on the Bone Vascular Network
for Egress and Ingress of Bone Marrow Cells
to and from the Peripheral Circulation

Marrow, located in the diaphyseal shaft and the
intratrabecular spaces of the metaphyses, is classified as
either hematopoietic or fatty. The distinction between the
two is minimal, however, since hematopoietic marrow
contains fat cells [53]. In the adult skeleton, hematopoie-
sis occurs primarily in the marrow [88]. Hematopoiesis is
the development and formation of all blood cells, which
develop from a single precursor cell; i.e., the hematopoi-
etic stem cell (HSC) [89]. HSCs have several unique
properties that distinguish them from other cell types;
e.g., (1) they can survive up to the entire lifespan of the
organism, (2) they have self-replicative capacities, and (3)
can proliferate broadly, producing all lineages of myeloid
and lymphoid blood progenies [90] [89]. HSCs grow and
mature on a lattice of non-hematopoietic stromal cells
(e.g., fat cells, fibroblasts, endothelial cells, and macro-
phages), which assist in the development and differentia-
tion of HSCs by providing a hematopoietic-inducing en-
vironment [89]. Thus, the infrastructure capable of hema-
topoietic cell renewal (i.e., a constant production of the
various blood cells per unit volume of blood) is located
within the marrow of the bones throughout the skeleton
[91]. Marrow is therefore important for the integrity of the
whole organism. Due to these lifelong duties, immense
cell turnover rates occur, with ~ 500 billion cells being

produced daily [91]. In states of pathology, hematopoiesis
can occur in extramedullary tissues (i.e., the spleen, liver,
and lymph nodes); however, this occurs at the cost of
reduced efficiency [91].

In the 1970s, the HSC niche was first described as a three-
dimensional space that housed HSCs and provided the regu-
latory environment for self-renewal and proliferation [92],
which is critical for tissue homeostasis [93]. The HSCs located
at the bone endosteumwere referred to as the osteoblast niche,
since HSCs adhere to bone-lining osteoblasts [94]. Early ex-
perimental evidence suggests that as progenitor cells (origi-
nating from the endosteal HSC pool) mature and differentiate,
they migrate towards the marrow sinusoids [95–97]. The
perivascular space surrounding the marrow sinusoids was
coined the vascular niche. Thus, the osteoblast niche repre-
sented HSC quiescence, while the vascular niche represented
HSC proliferation and mobilization [98]. Current evidence
suggests that the osteoblast and vascular niches are both relat-
ed to blood vessels and they have been coined the arteriolar-
pericyte niche and the sinusoidal-megakaryocyte niche [99].
Both reside at the endosteal surface, maintaining the postulate
that osteoblasts are still a component of the niche [99].
Further, subset niches have been demonstrated in the central
marrow [100, 101], countering long-held beliefs of an endos-
teal preference.

The establishment of marrow hematopoiesis and osteogen-
esis is highly coordinated [102–104] and bone andmarrow are
linked by the vascular system [105]. During development,
hematopoiesis and vascularization occur in tandem [93] and
it is theorized that bone and marrow are organized according
to the spatial distribution of blood vessels [38, 106, 107]. For
example, there is a long-held belief that the preponderance of
metabolically active marrow (i.e., hematopoietic) is in close
proximity to the endosteal surface of bone [104], with a sparse
amount of activity occurring in the central area of the marrow
cavity [105]. However, recent data suggest that the majority of
HSC are perivascular, located in highly vascularized regions
at the endosteal surface [108, 109]. This corresponds to the
spatial arrangement of the bone microcirculation, whereby a
rich plexus of sinusoids line the bone endosteum [55], provid-
ing collection sites for mature blood cells and greater flow to
areas of the marrow with higher metabolic rates. The endos-
teal sinusoids extend branches into the adjacent bone and also
extend branches into the central marrow area, towards the
central sinus [55]. Following suit, non-pathological blood
flow follows a centrifugal direction; i.e., from the center of
the marrow towards the endosteal surface [53, 55]. It has been
demonstrated in the long bones of mice that arterial blood
flows through the H-type capillaries, then the L-type sinu-
soids, and finally into the large central vein of the diaphysis
for egress [110]. Further, blood velocity and shear stress are
higher through the H-type capillaries vs. the L-type sinusoids
[110]. Once blood enters the sinusoidal plexus at the endosteal
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surface [55], it flows back towards the central sinus in a cen-
tripetal direction [55, 110]. Most recently, however, discovery
of transcortical blood vessels suggests a large volume of blood
leaves the skeleton via these routes [59]. Nevertheless, the
amalgamation of the vascular, skeletal, and hematopoietic sys-
tems at the endosteal surface may modulate bone formation as
well as hematopoiesis [88].

The marrow sinusoids, consisting of a single layer of endo-
thelial cells with an incomplete basal membrane and discontin-
uous adventitial layer of perivascular cells [111], allow for the
migration of mature blood cells into the peripheral circulation
[55, 112–117]. In fact, passage of mature leukocytes and im-
mature hematopoietic stem and progenitor cells in a murine
model demonstrated access into the peripheral circulation ex-
clusively via a sinusoidal route [118]. This occurs via a
transendothelial route [114], with the formation of temporary
pores in which the blood cells can pass via diapedesis [111].
The newly formed blood cells are collected into the sinusoids
and the central sinus for release into the blood stream [91].
Vascular endothelial cells also play a more direct role in stimu-
lating and regulating myelopoiesis (i.e., the production of mar-
row and cells) via manufacture of myeloid growth factors (i.e.,
colony-stimulating factors) when subjected to interleukin-1
[21]. Further, the vascular endothelium participates in the hom-
ing of cells to the marrow. Transplanted hematopoietic stem
and progenitor cells in Has3−/− mice exhibited delayed
transendothelial migration across the sinusoids in the femoral
metaphysis in comparison to wild-type controls [119]. Has3 is
the synthase that produces hyaluronic acid, which provides a
scaffold of support and localizes, retains, and binds hematopoi-
etic stem cells [120]. Thus, the function of marrow is reliant
upon an intact microvascular system [121]; i.e., hematopoietic
stem cells home to marrow and to other organs via the bone
sinusoidal network [91, 122].

For blood cells incapable of accessing the peripheral circu-
lation via diapedesis (i.e., red blood cells), growth pressure
and pliability of their membranes are key factors. Red blood
cell passage into the peripheral circulation relies upon alter-
ations in intramedullary pressure induced by blood flow
through bone [123]. The investigation of intramedullary pres-
sure within bone has not been given proper attention in regard
to its role in regulating the release of morphotic blood ele-
ments [123], but should be considered as a factor potentially
contributing to the overall health of an organism. Red blood
cell release into the circulation results from extravascular and
vascular factors [123]. Within the rigid bone capsule, two
forces opposed one another; i.e., the pressure generated by
blood flowing through the sinusoids opposes the pressures
generated by proliferating cells in the surrounding marrow
parenchyma [91]. As proliferation pressure in the marrow pa-
renchyma augments, it causes the nearby sinusoids to close
[91]. Under circumstances that increase local blood flow,
closed sinusoids can reopen [91]. At this time, mature cells

that line the sinusoids are captured into the blood steam and
carried into the peripheral circulation [91]. Thus, blood flow
through the sinusoids is a key determinant of blood cell release
from the marrow [117]. The sinusoids are in constant flux [55]
and oscillations between the open or closed state permit a
consistent exchange of parenchymal cells into the collecting
sinuses [91]. In addition, recent finding demonstrated that
neutrophil mobilization from the marrow can occur through
the transcortical vessels [59]. Thus, the vascular system is at
the forefront of the proper regulation of marrow function; i.e.,
it is essential for the mobilization and egress of blood cells
(i.e., white and red blood cells and platelets) [95, 124, 125].

In total, vascular function is important for bone andmarrow
homeostasis as well as organismal health. Figure 1 summa-
rizes how the bone and marrow microcirculation, via its reg-
ulation of blood flow, contributes to adequate nutrition of
bone and marrow cells, supports hematopoiesis, and is requi-
site for bone development and repair. In addition, via the reg-
ulation of interstitial fluid flow and intramedullary pressure,
the bone and marrow microcirculation provide factors that
stimulate or depress bone cellular activity, allow for the trans-
ference of mechanical stimuli into chemical signals, and per-
mit the collection and egress of mature blood cells into the
peripheral circulation.

The Aging Blood Vessel

In association with age-related declines in bone mass, the
cardiovascular system develops multiple pathologies. Recent
studies have associated cardiovascular ailments (i.e., periph-
eral arterial disease, cardiovascular disease) and osteoporosis
[126, 127]. More specifically, development of diseases in the
bone vascular system have been reported [9, 10, 12, 13, 41],
which have a more direct and profound influence on bone and
marrow homeostasis. The end result of bone vascular pathol-
ogy is reduced blood flow [4, 6] and marrow ischemia [128].

Vascular involvement in bone disease has been theorized
since the early part of the twentieth century. In an article exam-
ining senile osteoporosis, Spencer, Hausinger, and Laszlo theo-
rized that “a decline in blood supply due to degenerative vascu-
lar changes, impairment of capillary distribution and altered per-
meability of the capillary wall affecting the exchange of nutri-
ents and waste products, may also be contributing factors”
[129]. In the subsequent decades, many investigators followed
along these lines of thinking and provided a multitude of exper-
imental data in support [4, 6, 7, 10, 14–16, 53, 110, 128,
130–133]. Despite their efforts, investigations examining the
vascular involvement of bone disease were limited by available
technologies.While remaining a difficult subject to examine due
to the necessity of penetrating bone to observe the vascular
network, modern technologies have permitted more advanced
visualization and investigative techniques. Over the years,
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experimental data has proven that blood delivery to bone with
advancing age diminishes in both animal models [4, 6, 16, 110,
133] and humans [14, 15]. Various techniques (e.g., radiolabeled
microspheres [4, 6, 16], magnetic resonance imaging [133], pro-
ton magnetic resonance spectroscopy [14, 15], intravital micros-
copy [110], and dynamic contrast-enhancedmagnetic resonance
[14, 15]) have been employed to examine this age-related phe-
nomenon. Further, the observed decrements in bone blood flow
have coincided with several vascular abnormalities (e.g., vascu-
lar rarefaction, reduced angiogenic capabilities, diminished va-
sodilator capacity, vascular calcification, arteriosclerosis, and
atherosclerosis). Vascular rarefaction (i.e., a reduced number of
blood vessels) has been reported in bone and marrow [9, 10,
128, 134]. Coupled with a reduced capacity to create new blood
vessels, as demonstrated during fracture repair in elderly mice
[135], once vascular rarefaction has occurred, restoration of an
adequate vascular density is not easily achieved. Impaired an-
giogenesis may be reflective of the loss of H-type blood vessels
recently discovered in a murine model and suspected to be high-
ly associatedwith angiogenesis [41]. For example, H-type blood
vessels were diminished in 70-week-old vs. 4-week-old mice,
which corresponded with a loss of osteoprogenitor cells and
bone mass in advanced age [41].

In addition to reduced vascular density and impaired angio-
genesis, pathologies related to the function of blood vessels
have also been observed. Similar to other tissue beds, bone
blood vessels demonstrate age-related diminished vasodilator
capacity. For example, decrements (27–55%) in endothelium-
dependent vasodilation of the femoral principal nutrient artery

(PNA) have been observed in 22–24-month-old vs. 4–6-month-
old female and male rats [4–8]. In addition, arteriosclerosis and
atherosclerosis have been observed in the bone vasculature
[11–13], with arteriosclerosis being linked to diminished mar-
row arterial pressure and marrow ischemia [128].
Arteriosclerosis is suspected to occur ~ 10 years in advance of
the same disease in blood vessels from other tissue beds [12]
and atherosclerosis was observed in bonemarrow blood vessels
from human subjects, such that the cross-sectional lumen area
was reduced by 18–26% in 50-year-old vs. 30-year-old individ-
uals [13]. Interestingly, induction of atherosclerosis in rhesus
monkeys fed a high-fat diet resulted in diminished skeletal
blood flow, even though the lesions were observed in blood
vessels outside of the skeleton [136].

A recent discovery demonstrated a pathology more severe
than arteriosclerosis and atherosclerosis. For example, severe
mineralization and calcification was observed on bone mar-
row blood vessels from the medullary cavity of young and old
rats and human patients [9]. Morphologically, these vessels
appear ossified and resembled bone, such that osteocyte lacu-
nae and osteoid seams were visible on the abluminal surfaces
[9]. Analysis with micro-CT demonstrated progressive ossifi-
cation of the bone marrow vasculature as a function of ad-
vancing age in male rats [9]. The presumed conversion of
blood vessels into bone (i.e., ossification) represents “micro-
vascular dead space”; i.e., diminished vasodilation, vasocon-
striction, and patency. To date, it is unknown which blood
vessels (i.e., arteries, arterioles, capillaries, sinusoids, venules,
and/or veins) undergo ossification. If the sinusoids suffer such
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pathology, another functional consequence may include re-
duced egress of mature blood cells from the marrow.

The Aging Bone Marrow

Anemia is a common and underestimated condition in the
elderly [137], can increase mortality rates [138], diminish
physical performance, and attenuate activities of daily living
[125, 139]. Anemia is a reduced red blood cell count and is
defined by the World Health Organization as hemoglobin
levels of < 12 g/dL for women and < 13 g/dL for men [137].
Mahlknecht and Kaiser reported age-related declines in hemo-
globin and hematocrit for both genders [137]. The cases of
anemia in the elderly can be attributed to several factors (e.g.,
chronic disease, infection, iron or vitamin B12 deficiency)
[140, 141]. However, ~ 36% of cases in the elderly have an
unknown origin [137, 140, 141] and are referred to as senile
anemia [142]. In such instances, reduced blood counts are
linked to reduced hematopoietic stem cells [143], progenitor
cell differentiation anomalies [144], inability to mobilize pro-
genitor cells [145], and attenuated responses to hormonal
stimulation [146–149]. An impaired ability to generate and
mobilize blood cells into the peripheral circulation would also
include those of the lymphoid lineage. Thus, on a broader
scale, pancytopenia is clinically diagnosed as a reduction in
the number of white and red blood cells and platelets. Of
particular note, some elderly individuals present with an atten-
uated host defense mechanisms and a diminished neutrophil
response to infection [150]. While many factors contribute to
reduce blood cell counts in the elderly, few researchers have
examined a vascular etiology in relation to these symptoms.
This review highlighted the importance of the marrow micro-
circulation in maintaining the HSC niches and for the mobili-
zation and egress of blood cells. Further, this review demon-
strated several age-related pathologies in the bone and marrow
microcirculation that can have a dramatic impact on bone and
marrow blood flow. Thus, the possibility exists that the etiol-
ogies contributing to senile anemia and/or pancytopenia may
be partially related to vascular decline.

Hematopoietic marrow is progressively replaced by fatty
marrow with advancing age, whereby for each decade of life,
there is a 10% reduction in cellularity [151]. A study examin-
ing iliac crest biopsies of human subjects revealed an age-
related diminution of the number of marrow sinusoids that
corresponded with a reduced hematopoietic compartment
and fat cell augmentation [10]. Clinically, osteoporosis and
osteopenia in men were associated with augmented vertebral
marrow fat vs. individuals with normal bone density [15] and
marrow perfusion was reduced in the osteoporotic vs.
osteopenic and control subjects [15]. Animal models have
demonstrated similar trends, whereby declines in hematopoi-
etic marrow coincided with augmented adiposity in the

proximal tibia of 42-month-old vs. < 6-month-old rabbits
[152]. Accordingly, reduced marrow cellularity corresponded
with diminished peripheral blood counts in individuals >
60 years of age [144, 153]. Additionally, arteriolar and capil-
lary densities were reduced in 65–70-week-old vs. 4-week-old
mouse tibiae and corresponded with diminished presence of
perivascular mesenchymal cells and stromal cell factor [154].
Mesenchymal cells are linked to HSC regulation [155] and
stromal cell factor participates in HSC maintenance and hom-
ing [156, 157]. Interestingly, experimental enhancement of
vascular niche function (i.e., augmenting arterioles, capil-
laries, perivascular cells, stromal cell factor, and HSC number)
in old mice tibiae could not restore the age-related declines of
HSC function [154], which is suspected to result from abnor-
malities intrinsic to the aged HSC [158, 159].

Since marrow function is reliant upon an intact microvas-
cular system [121], one has to speculate if the age-related
changes in hematopoietic and fatty marrow are related to pa-
thologies that would ultimately serve to reduce skeletal blood
flow. In fact, blood flow to areas of high hematopoietic activ-
ity (i.e., marrow and trabecular bone) is augmented in com-
parison with areas of low hematopoietic activity (i.e., the cor-
tical shell) [4, 6, 160]. Further, blood flow to bone and marrow
is lower in advanced age [4, 6, 128], coinciding with reduced
hematopoiesis and increased marrow adiposity [9, 10, 152].
Blood flow through the marrow sinusoids allows for the cap-
ture and egress of mature blood cells [91, 117, 122, 161].
Thus, one should rightly speculate that diseases such as arte-
riosclerosis [12], atherosclerosis [11, 13], and ossification [9]
will impair this process. In fact, the relationship between ath-
erosclerosis and senile anemia has been previously considered
[13]. In addition, ossification of the marrow microcirculation
may attenuate diapedesis of blood cells through the sinusoidal
wall, if it contains bone and/or calcium deposits. Therefore, in
addition to senile anemia, altered marrow morphology may
have consequences on immune system ontogeny [162].

Aging and Fracture Repair

Fracture in the elderly coincides with elevated rates of morbid-
ity and mortality [163] and age-related delays in fracture repair
have been documented [164–166]. For example, during the
inflammatory phase (day 3) following fracture of the tibia, peri-
osteal cells differentiated into collagen X-expressing
chondrocytes in juvenile (4 weeks of age) vs. middle-aged
(6 months of age) and elderly (18 months of age) mice [166].
By day 5, juvenile mice displayed large volumes of cartilage in
the tibial callus as opposed to smaller volumes of cartilage in
the calluses of the middle-aged and elderly groups [166].
Further, at this time point, new bone and robust osteocalcin
expression were observed in the periosteum of juvenile mice,
while middle-aged and elderly mice demonstrated much
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smaller quantities of both [166]. Vascularization at the fracture
site follows the same sequential pattern. For example, while
PECAM+ blood vessels were observed in fracture calluses of
juvenile (4 weeks of age), middle-aged (6 months of age), and
elderly (18 months of age) 129J/B6 male mice, their presence
was less numerous in themiddle-aged and elderly groups [135].
This coincided with a higher surface density of blood vessels in
the juveniles vs. the elderly [135]. Further, important regulators
of angiogenesis (i.e., hypoxia-inducible factor-1α [HIF-1α]
and VEGF) were also detected at early time points in juvenile
calluses. For example, HIF-1α and VEGF transcripts were de-
tected in the callus at 3 days following fracture in juveniles vs.
5 days following fracture in middle-aged and elderly mice
[135]. This work demonstrates that the processes associated
with vascularization during fracture repair are delayed or im-
paired by the aging process [135]. Further, bone volume and
bone volume-to-total volume ratio in juvenile mice was higher
than the middle-aged and elderly groups, suggesting an en-
hanced ability to form new bone in the youngest age group
[166]. When assessed as a function of age and time, bone vol-
ume was higher in juvenile vs. middle-aged and elderly mice,
indicating delayed healing in the older groups [166]. While
many factors contribute to bone healing following fracture,
the connection of vascular density with the appearance of new
bone formation is noteworthy.

The Clinical Relevance of the Bone Vascular
Network

This review has thus far highlighted the various physiological
roles of the bone vascular network for bone and marrow func-
tion. While this review has focused on the age-related decre-
ments in these three systems (i.e., vascular, bone, and mar-
row), we must recognize that advancing age is often associat-
ed with at least one morbidity and additional comorbidities.
These morbidities and comorbidities often present with vas-
cular challenges similar to those observed in advanced age.
For example, declines in vasodilator (i.e., both endothelium-
dependent and endothelium-independent) capacity of the rat
femoral PNA were observed in a long-term (i.e., 20 weeks)
type 2 diabetes mellitus model [167]. Type 2 diabetic rats also
had elevated vasoconstriction to norepinephrine, enhanced
myogenic vasoconstriction, and reduced mechanical distensi-
bility vs. controls [167]. These vascular alterations
corresponded with diminished bone and marrow blood flow
[167] and decrements in various bone parameters (i.e., bone
mineral density and strength) at several skeletal sites [168]. In
addition to increasing the stiffness of the PNA, type 2 diabetes
mellitus led to a more pro-vasoconstrictor phenotype of the
vessel [167].

Loss of estrogen also alters the bone vascular network.
While there is data demonstrating augmented bone blood

flow, bone loss, and reduced bone mineral density and ash
weight following ovariectomy and orchidectomy in young
rats [169–171], more recent publications have documented
the opposite. Estrogen-associated bone loss [7, 133]
corresponded with diminished vasodilator capacity of bone
arteries [7], enhanced vasoconstrictor capacity of bone arteries
[172], reductions in erythropoietic marrow [133], vascular
rarefaction [173], and declines in bone perfusion [133, 173].
Interestingly, strong, positive correlations existed between
peak vasodilator capacity of bone arteries and bone volume,
while poor associations existed between plasma estrogen and
bone volume in animals with low circulating estrogen (i.e., old
control and young and old ovariectomized) [7]. These data
indicate that vascular function is a better predictor of bone loss
than estrogen status [7].

The vascular alterations associated with hind limb
unloading (i.e., a ground-based rodent model used to simulate
bed rest, physical inactivity, and microgravity) drums home
the clinical relevance associated with altered bone vascular
function and structure in advanced age or morbidity.
Following 2 weeks of hind limb unloading in 6-month-old
male Fischer-344 rats, vasoconstriction to phenylephrine, an
α1-receptor adrenergic agonist, was reduced in the femoral
PNA [174]. Likewise, flow- and acetylcholine-mediated va-
sodilation (i.e., both endothelium-related mechanisms) were
impaired in PNAs from hind limb unloaded animals [174]. In
addition to the vasomotor changes, hind limb unloading struc-
turally remodeled the PNA such that the intraluminal diameter
(i.e., 146 ± 7 μm vs. 177 ± 10 μm, respectively) and medial
wall thickness (i.e., 16 ± 2 μm vs. 22 ± 2 μm, respectively)
were diminished in comparison to control rats [175].
Trabecular bonemineral density in the femur was also reduced
[174]. The structural remodeling of the PNA resulted in an
impaired ability to deliver blood [175]. Thus, 2 weeks of hind
limb unloading remodeled the PNA and impaired its vasomo-
tor function in such a way as to diminish its effectiveness at
delivering blood to the femur upon re-initiation of weight-
bearing activities [174, 175]. This set of experiments illus-
trates how alterations in vasomotor function or structure of
bone arteries impact bone blood flow.

From a clinical perspective, the age- and/or disease-related
alterations in the microcirculation of bone and marrow should
not be overlooked, as they contribute to the declines in skeletal
perfusion and presumably hinder the clinical treatment of
bone and marrow. Singularly, one of these vascular dysfunc-
tions (i.e., diminished vasodilator or enhanced vasoconstrictor
activity, vascular rarefaction, arteriosclerosis, atherosclerosis,
and ossification) could serve to diminish bone and marrow
blood flow, initiating ischemia and affecting interstitial fluid
flow and pressure, bone remodeling, fracture repair, and the
egress of cell from the marrow. Suffering from more than one
of these vascular pathologies, which is most likely the clinical
scenario, could further exacerbate the ischemia and the
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decrements in bone and marrow blood flow. Clinically speak-
ing, it may be prudent to consider the treatment of bone or
marrow pathology as binary; i.e., the treatment of either of
these organ systems should be coordinated with the treatment
of an aged and/or diseased vascular system. Experimental and/
or clinical data in regard to such a strategy, to date, is lacking.
However, experimental evidence related to intermittent para-
thyroid hormone (PTH) administration may provide support.

Intermittent PTH administration is bone anabolic and aug-
ments bone mass. Thus, from a historical perspective, the effi-
cacy of PTH treatment has been attributed to its effects on bone
cellular activity. Recent data, however, illustrate its impact on
bone vascular function and morphology. Intermittent PTH ad-
ministration enhanced endothelium-dependent vasodilator
function in young and old bone blood vessels [8, 176], aug-
mented bone vascular density [173], redistributed the smallest
bone blood vessels closer to bone-forming sites [177], and
increased skeletal perfusion [103, 173]. All of these modifica-
tions serve to aid in the regulation of bone cellular activity and
promote an environment supportive of bone formation. A note
of caution, however, as recent evidence suggests a potential
exacerbation of bone marrow blood vessel ossification with
intermittent PTH administration [178]. Interestingly, 2 weeks
of intermittent PTH administration improved the age-related

decrements in aortic function in old rats [179]. While pre-
scribed to augment bone mass, the totality of these findings
demonstrate an unintended benefit of this treatment on bone
blood vessels and overall vascular function.

To date, diagnosing bone vascular dysfunction in the clin-
ical setting is difficult, if not impossible. Thus, the clinical
treatment of bone vascular pathology without a clear diag-
nosis is not recommended. However, non-pharmacological
remedies are available. Treadmill exercise training in young
and old rodents resulted in increased vasodilator capacity of
the femoral PNA [6], augmented blood flow to the femur [6],
enhanced bone angiogenesis [180], and elicited exercise hy-
peremia to more bone regions [181] vs. sedentary controls.
These vascular enhancements coincided with augmented
bone volume [6, 180] and mineral density [180], except
when rats were administered an anti-angiogenic agent which
prevented bone angiogenesis and, thus, the changes in bone
volume [180]. While clinical and experimental data may be
lacking as to the effects of various medications on bone
vascular function, a prescription of exercise training or phys-
ical activity to patients suffering from bone and marrow ail-
ments may enhance or restore function in the bone and mar-
row microcirculation, particularly if the individuals are of
advanced age.
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Fig. 2 Age- and/or disease-related bone vascular pathologies and the potential consequences on bone and marrow homeostasis
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Decreased Efficacy of Bone-Targeted
Therapies in the Setting of a Compromised
Vascular Network

To date, there are no studies examining the effects of bone
vascular dysfunction on drug delivery to bone and marrow.
Further, there is no experimental evidence indicating a de-
creased efficacy of bone-targeted therapy as a function of ad-
vance age and/or disease. However, “the absence of evidence
is not evidence of absence.” Given the various physiological
roles of the bone vascular network in supplying blood flow,
removing waste products, regulating bone interstitial pressure
and fluid flow, and mobilizing marrow cells for distribution
into the peripheral circulation, it stands to reasons that com-
promises in this organ system would influence the ability to
deliver drugs to bone and marrow. Perhaps it is time as a
scientific and medical community to begin addressing these
questions. At the extreme end of the clinical spectrum, steroid-
induced osteonecrosis of the femoral head is associated with
ischemia; i.e., diminish blood flow resulting from fat emboli
or from hypertrophic adipocytes, which occlude or compress,
respectively, the microcirculation [182–184]. To lesser ex-
tremes, circumstantial evidences provide associations be-
tween the various vascular pathologies and declines in bone
health. For example, a vasoconstrictor phenotype of bone ar-
teries in type 2 diabetes mellitus [7], age-, and/or disease-
related diminished vasodilator capacity of bone blood vessels
[4–8, 133], the presence of arteriosclerosis [12], atherosclero-
sis [11, 13] and ossification [9] in bone blood vessels, vascular
rarefaction [9, 10, 41, 59, 128, 134], and reduced angiogenic
capability [135] coincide with reduced skeletal blood flow
[4, 6, 14–16, 110, 133, 167] and marrow ischemia [128].
Thus, in light of these connections, it may prove beneficial
to begin clinical exploration as to whether an aging and/or
diseased vascular system influences drug delivery or the effi-
cacy of treating of bone and marrow pathology.

Conclusion

The vascular supply is essential for the maintenance of health
and longevity of all tissues. In addition, the bone vascular
network is vital for bone development (i.e., intramembranous
and endochondral ossification), bone homeostasis (i.e., bone
remodeling), and fracture repair. The regulation of bone blood
flow by the nutrient arteries and arterioles allows for the flu-
idic nature of bone, which is essential for shear-mediated re-
lease of factors from vascular endothelial and bone cells, and
for the transduction of mechanical stimuli into chemical sig-
nals. Finally, the mobilization and capture of mature blood
cells depend upon the ability of the cells to penetrate the vas-
cular wall, are reliant upon blood flow through the sinusoidal
network, and are contingent upon pressure gradients between

the sinusoids and the interstitial space. Due to these responsi-
bilities, age- and/or disease-related vascular decline can have
profound influences on bone and marrow homeostasis, as
outlined in Fig. 2. The pathological consequencesmay include
reduced bone and marrow blood flow, attenuated nutrient de-
livery and waste removal, impaired hematopoiesis, bone re-
modeling, and fracture healing, dysregulation of interstitial
fluid flow and intramedullary pressure, impaired transference
of mechanically-induced signals into bone cellular activity,
and diminished egress of mature blood cells. The clinical man-
ifestations of these abnormalities may present as bone loss,
diminished fracture healing, increased fracture risk, senile
anemia, and/or a compromised immune system. From a clin-
ical standpoint, medications and treatments prescribed to alle-
viate these medical conditions may have reduced or no effica-
cy if relying upon a bone and marrow microcirculation with
impaired or obstructed patency. These may be important clin-
ical inquires to address to determine whether the efficacy of
bone and marrow treatment is enhanced via the coinciding
treatment of bone vascular dysfunction.
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