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Abstract Low bone mineral density (BMD) is a strong

risk factor for low trauma fractures in the postmenopausal

population without known chronic kidney disease (CKD).

In stage 1–3 CKD, low BMD can also be used to predict

fracture risk with the gradient of risk similar to patients

without CKD even though patients with stage 3 CKD have

an approximate doubling of risk compared with age-mat-

ched patients without CKD. This greater risk of fracture in

stage 3 CKD is not calculated in the current FRAX model.

In stage 4–5 CKD, BMD by dual-energy x-ray absorpti-

ometry (DXA) is a poor predictor of fracture risk probably

related to the severe derangements in bone metabolism in

severe CKD, which alter bone quality and strength not

measured by DXA. Serial BMD by DXA, however, may be

useful in all stages of CKD to monitor for potential loss of

BMD or effect of pharmacological agents to improve

BMD. Newer radiological technologies, particularly high-

resolution peripheral quantitative computerized tomogra-

phy (HRpQcT) of the radius and tibia show promise to

define the microstructural changes in bone that explain the

greater risk of fracture observed in patients with CKD

versus patients without CKD. BMD by DXA may still be

of value across the spectrum of CKD, but physicians

should realize its limitations and understand the greater risk

of fracture in patients in all stages of CKD as compared to

age-matched and BMD-matched patients without CKD.

Keywords Bone mineral density in chronic kidney

disease � Fracture risk in CKD � HRpQct in CKD

Introduction

Measurements of bone mineral density (BMD) by a num-

ber of methodologies have advanced the science and clin-

ical management of metabolic bone diseases. Most notably,

BMD measurements have provided the framework for the

diagnosis of postmenopausal and male osteoporosis before

a fracture occurs, have been validated as one of the

strongest risk factors for the prediction of fracture risk in

the postmenopausal and male osteoporosis populations,

and are valuable for monitoring either the natural biology

of change in BMD or change induced by pharmacological

therapy for osteoporosis [1–29].

The United States Surgeon General Office and the

United States Prevention Services Task Force (USPSTF)

recommend population screening for early detection of

osteoporosis in all postmenopausal women aged 65 years

and older without any additional risk factors for osteopo-

rosis, and in all postmenopausal women with even one

additional risk factor for osteoporosis [30, 31].

The Bone Mass Measurement Act (BMMA) of 1995, a

congressional statute to expand the indications for bone

mass measurements in the postmenopausal population,

provided even stronger United States government support

for facilitating widespread use of bone mass measurements

for the diagnosis of osteoporosis and for monitoring

patients on Food and Drug Administration (FDA) approved

therapies [32]. Since all worldwide populations are living
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longer and renal function declines with aging, it is inevi-

table that nephrologists will increasingly be faced with

management decisions in the chronic kidney disease

(CKD) population who also have BMD determinations. In

the National Health and Nutrition Examination Survey

(NHANES), the prevalence of CKD and osteoporosis is

clearly increasing [33, 34].

The 1994 publication of the World Health Organization

(WHO) criteria for the diagnosis of postmenopausal oste-

oporosis (PMO) or osteopenia are not predicated on any

known level of renal function [3]. In addition, the 9 pop-

ulation trials that constituted the data used by the WHO to

validate the 10-year risk factors for fracture in untreated

postmenopausal and male populations (FRAXTM), and

renal function by any methodology was not captured in an

adequate sample size to become a validated factor for

fracture risk prediction [17, 21]. Diagnosis, fracture risk

prediction, and management of patients at high risk of

fractures will increasingly become important management

considerations for the nephrologist for a number of reasons:

1. Populations are aging.

2. Age is an independent risk factor for fracture at

equivalent levels of BMD (Fig. 1) [12, 13, 15, 20–23].

3. Glomerular filtration rate (GFR) declines with increas-

ing age [35–37].

4. Stage 3 CKD, (GFR \60 ml/min), is the largest

growing stage of CKD in the worldwide population

[33–37].

5. Risk of all fractures doubles by stage 3 CKD at the

same level of BMD, age, and body mass index (BMI)

as compared to those without CKD [38–42].

Thus, risks of fragility fractures are greater in patients

with CKD at the same BMD than in those without CKD.

There are many pathophysiological disturbances associated

with CKD that make these patients more likely to break

bones compared with patients without CKD, despite having

the same bone mass measurement. These biochemical

interactions are outlined in Fig. 2 [43]. Phosphorus retention,

secondary hyperparathyroidism, elevated fibroblast growth

factor 23 (FGF-23), chronic metabolic acidosis, and disor-

ders of vitamin D metabolism singularly or collectively

could alter bone metabolism and contribute to decreases in

bone quality and thus bone strength beyond the contribution

provided by low BMD per se [43–48].

It is inevitable that the question is ‘‘What is the pre-

dictability of BMD measurements by dual X-ray absorp-

tiometry (DXA) to predict fracture risk in stage 3 CKD?’’

Equally important for the nephrology community is the

question of ‘‘How well are BMD measurements by DXA in

predicting risk of fracture in more severe CKD (stage 4–5

CKD), that is, patients with GFR values of \30 ml/min?’’

This manuscript will examine data and put into real-

world perspective the applicability of using BMD by DXA

to diagnose PMO or to predict fracture risk across the

spectrum of CKD.

How the WHO Established the ‘‘T-score’’

The data that led to the establishment of the WHO diag-

nostic criteria for defining the T-score were derived pre-

dominately from 2 separate postmenopausal populations:

Olmstead County, Rochester, Minnesota, USA, and Shef-

field, UK [3, 8, 15]. From these 2 populations, where renal

Fig. 1 The relationship between bone mineral density, age, and

fracture risk [9]

Fig. 2 The biochemical interactions between bone, kidney, parathy-

roid glands, gastrointestinal tract, and vascular tissue that regulate

serum phosphorus, bone turnover, and vascular calcification (adapted

from [43])
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function was not assessed, the data related the T-score

(defined as the number of standard deviations {SD} the

patient’s BMD was above or below the average BMD for a

healthy 30-year-old Caucasian woman), to the lifetime risk

of hip fracture. The diagnostic cutoff value (T-score [
-2.5) was chosen since the lifetime risk of hip fracture in

untreated Caucasian postmenopausal women (20%) mat-

ched the average T-score across this population

(50–85 years) at the femoral neck [49]. From this data, the

initial quantification suggested that the relative risk (RR) of

lifetime fracture was approximately 29 greater for each SD

that a patient’s BMD is below the average for the young

normal healthy population. The development of the T-score

launched bone densitometry into clinical medicine since it

provided clinicians with a simple and fast way to make a

diagnosis of PMO in a non-fractured patient and a simple

single number to assess fracture risk by a noninvasive

means [50].

However, it soon became clear that measurements of

BMD had limited ability to predict the true risk of either

hip fractures or all fractures (‘‘global’’). This was due to the

recognition that there are other factors that contribute to

bone fragility that are not captured by BMD. This group of

factors found a new name, ‘‘bone quality,’’ to explain the

non-BMD components of bone strength that may lead to

fractures. While intense investigative efforts continue to

define these non-BMD aspects of bone and have led to the

quantification of independent variables that constitute bone

quality (cortical porosity, stress-risers, remodeling space,

remodeling rates, etc.), measurement of bone quality fac-

tors in clinical practice has escaped refinement [51–53].

Many of these bone quality factors are being differentiated

in the CKD population from the osteoporotic population as

independent contributors to bone strength, and will be

discussed in the next section of this manuscript.

In the osteoporotic population, the first non-BMD-

independent factor to be defined as a risk factor for fracture

was increasing age [12]. Even before the WHO T-score

was developed, it was published by the University of

Indiana group that fracture risk approximately doubles by

each decade above 50 years at the equivalent BMD. The

reasons for this greater fracture risk as age increases are

still not well defined but may have to do, in part, with

alterations in bone quality with aging and with a greater

risk of falling as age increases.

The second most robust risk factor for future fracture

independent of the prevailing BMD is the number and/or

type of prior low trauma fracture [1, 2, 17, 21, 23].

Exceptional data from multiple population, cohort, or

placebo groups of osteoporosis pharmacological clinical

trials have validated, for example, that the risk of any

fracture is greater in a patient with 3 versus 1 prevalent

vertebral fracture or is greater in a patient with a severe

(grade 3) versus mild (grade 1) vertebral fracture [48, 54–

59]. Prior vertebral fracture (or wrist fracture) [60, 61] not

only predict a greater risk of future vertebral fractures, but

also future non-vertebral fractures. The exact reason for

this greater risk of fractures at sites distant from the initial

fracture and independent of the T-score remains unclear. It

might be that a low trauma fracture conveys some symbol

of systemic skeletal fragility—another bone quality issue.

As it became clear that factors independent of BMD

contributed to fracture risk, a number of international

population studies were initiated to prospectively examine

how risk factors independently and collectively contribute

to future fracture risk prediction. These population studies

led to the creation and implementation of the Fracture Risk

Assessment Modeling (FRAXTM) [32]. FRAXTM is the

most robust longitudinal data acquired validating risk fac-

tors for fragility fractures in the postmenopausal and male

populations over age 50. In addition, FRAXTM defined how

independent risk factors interact to enhance risk prediction

over 10 years in untreated populations. The risk factors

captured and validated in FRAXTM are shown in Fig. 3,

which is a template of how the input of the risk factors

appears on the DXA or smartphone devices. FRAXTM

calculates the 10-year risk of ‘‘all major’’ (clinical spine,

hip, humerus, pelvis, and femur) or hip only fractures.

FRAXTM sets ‘‘treatment thresholds’’ of 20% (major) or

3% (hip) which were based on health-economic data based

on pharmacological therapy that costs *$600 US/year. It

is obvious that for osteoporosis drugs that cost less or more

than the pharmacological costs calculated for cost-effec-

tiveness in FRAXTM and that the intervention threshold for

treatment will differ. Furthermore, FRAXTM did not cap-

ture a group of additional known independent risk factors

for fracture (listed below) that also contribute to fracture

risk and increase risk above and beyond that risk captured

by the current FRAXTM model. This is not a criticism of

the FRAXTM data but simply a function of the fact that

when FRAXTM was initiated, these latter independent risk

factors were not known. These separate risk factors that the

clinician can assess clinically can be added to the risk

calculated by FRAXTM, though these ‘‘newer’’ risk factors

have not been validated in the populations used to develop

the ‘‘FRAXTM score.’’ They can, however, be a part of

clinical judgment when deciding whether or not to treat an

individual patient, especially in borderline cases where

FRAXTM per se shows an uncertain risk. These other risk

factors are as follows:

1. Rate of bone turnover as assessed by biochemical

markers of bone turnover

2. Morphometric vertebral compression fractures

3. Lumbar spine BMD

4. Doses of glucocorticoids
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5. Frailty and fall risk

6. Chronic kidney disease

The National Osteoporosis Foundation’s Clinician’s

Guide for the utilization of FRAXTM in the United States

health care system does include lumbar spine T-score

of -2.5 or below or the presence of morphometric verte-

bral fractures that should be considered as independent

factors for consideration of treatment [5]. In addition, the

International Osteoporosis Foundation and the Interna-

tional Society for Clinical Densitometry recently published

their Position Development Guidelines that addressed how

to incorporate these other risk factors into the FRAXTM

model [62]. These professional organizations have pro-

vided different levels of evidence on how to consider these

other risk factors in the total risk calculation—with the

exception of CKD.

Bone Mineral Density for Diagnosis and Risk

Prediction in Patients with Reduced GFR

The osteoporosis and renal communities have just begun to

come to an understanding as it relates to the utilization of

BMD measurements by DXA in patients across the spec-

trum of CKD. This alignment is driven by a number of key

developments:

1. There were a number of the elderly patients in the

FRAXTM populations who did have reduced GFR,

though the sample size was inadequate to validate

fracture risk by the level of GFR to be included in the

FRAXTM model.

2. The FDA approval for pharmacological therapies for

PMO-randomized patients 60–90 years of age with

known GFR down to 30 ml/min (i.e., stage 3 CKD).

3. The US Surgeon General and the USPSTF both

endorsed population screening of the elderly (65 years

and older) postmenopausal population by DXA, which

as a simple function of aging will include persons with

reduced GFR.

Hence, it became important to the National Kidney

Foundation working through the evidence provided by the

Kidney Disease Improving Global Outcome (KDIGO)

working group on bone metabolism across the spectrum of

CKD that some agreement be achieved in how to apply the

WHO criteria to these populations with known CKD.

In the nephrology community, the renal metabolic bone

diseases associated with progressive CKD are given the

name renal osteodystrophy when defined by quantitative

histomorphometry [63–65] or CKD-MBD (chronic kidney

disease-mineral and bone disorder) (Table 1) when defined

by the abnormalities in bone turnover, mineralization, and

volume, which are mediated by changes in parathyroid

hormone, phosphorus retention, FGF-23, and metabolic

acidosis [45]. The pathophysiological processes involved

in CKD-MBD may explain the greater risk of fracture in

the CKD population than seen in age-matched persons

without CKD and in part, explain why DXA underesti-

mates fracture risk in the CKD population.

Diagnosis of Osteoporosis and Prediction of Fracture

Risk in Patients with Stage 1–3 CKD

While there is a greater risk of fracture even in stage 3 CKD

(GFR 60–30 ml/min) than in age-matched patients without

CKD, it is acceptable to use the WHO criteria for the diag-

nosis of osteoporosis in stage 1–3 CKD as it is in populations

without known CKD. This criterion is predicated in the

absence of any biochemical abnormalities that might suggest

the concomitant presence of CKD-MBD: hyperphosphate-

mia and/or hyperparathyroidism, for example [45]. A recent

study reported on 211 men and women with stages 3–5 CKD.

There were 74 fractures in this group, and the numbers of

subjects were distributed equally into stages 3, 4, and 5 CKD.

Mean serum levels of parathyroid hormone (PTH) and

phosphate were slightly above the normal reference range for

all stages of CKD. The authors reported that BMD by DXA

was able to discriminate fracture status but due to limited

power could not comment on differences in fracture risk

prediction by stage of CKD or biochemical abnormalities

[66]. It is also important that the nephrology community

recognizes that just because a PTH might be elevated in a

patient with CKD, that the 2 may not be linked; for example,

Fig. 3 The printout of FRAXTM showing the validated risk factors

used to calculate fracture risk in untreated postmenopausal women

[9, 11]
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there are other causes of elevated serum PTH that could be

unrelated to CKD [67] (Table 2). Hence, before concluding

that osteoporosis by WHO criteria cannot be used in a patient

with stage 3 CKD because they also have an elevated serum

PTH and, therefore, have CKD-MBD, it is important to first

exclude other non-renal related causes of elevated PTH; one

of the most common and treatable causes being vitamin D

insufficiency [68].

A word of clinical guidance about risk prediction using

DXA in stage 3 CKD: while the standard rule for risk

prediction in the general postmenopausal population using

DXA is that RR is increased *29 for each SD reduction in

BMD, that risk will be higher in stage 3 CKD for reasons

previously cited. Hence, the risk calculated by FRAXTM

will also be higher in patients with stage 3 CKD than in

comparable patients without stage 3 CKD. The exact

magnitude of that greater risk is not validated but the cli-

nician should take this greater risk into consideration when

deciding on management strategies to reduce fracture risk

in those with CKD.

Diagnosis of Osteoporosis and Prediction of Fracture

Risk in Patients with Stage 4–5 CKD

The abnormalities in bone metabolism associated with

CKD become far more manifested in stages 4–5 CKD.

Phosphorus retention is greater, PTH levels are often

higher (or lower if patients are receiving agents {vitamin D

analogues or cinacalcet} that suppress PTH production),

FGF-23 levels are higher, metabolic acidosis is more

severe, and vitamin D metabolism is more deranged [45,

46, 69–73]. Because of this, BMD and bone strength may

be modified by factors that are not present in postmeno-

pausal or elderly male patients who do not have CKD. Due

to the presence and severity of these multiple metabolic

derangements in stage 4–5 CKD, it is not acceptable to use

the WHO criteria for the diagnosis of osteoporosis. In

addition, since all forms of renal osteodystrophy have

reduced bone strength and are at greater risk of fragility

fracture, low trauma fractures cannot be used to diagnose

osteoporosis in severe CKD [74–81]. While osteoporosis,

as defined by the National Institute of Health Consensus

statement on osteoporosis [82], may also be a component

of the aberrant bone metabolism observed in severe CKD,

the additional metabolic abnormalities of bone defined

within the defects encompassing CKD-MBD contribute

independent negative effect on bone mineral content and

bone strength that limit the use of DXA for diagnosis or

risk prediction. The diagnosis of osteoporosis in stage 4–5

CKD is one of exclusion. By excluding the other histo-

morphometric forms of renal osteodystrophy in a patient

with fragility fractures or low BMD, osteoporosis remains

as the one metabolic bone disease that can also cause

fractures in this population.

The gold standard test for exclusion is double tetracy-

cline-labeled quantitative bone histomorphomery by

transiliac bone biopsy [83–86]. Quantitative bone histo-

morphometry has established normative reference data

created by The American Society for Bone and Mineral

Research (ASBMR) [63] and is the only objective, scien-

tific means of distinguishing among the different forms of

renal osteodystrophy including: osteomalacia, osteitis fib-

rosa cystica (hyperparathyroid bone disease), mixed renal

bone disease, and adynamic bone disease. If a patient with

low trauma fractures does not have one of these 4 renal

bone diseases, then the diagnosis of osteoporosis can be

made. While bone biopsy is a safe procedure with little to

no morbidity when performed by trained individuals, it is

not readily accessible at this time. Even more limiting are

the fewer competent quantitative histomorphometrists to

read the biopsy for clinical purposes. Currently, a working

group made up of many physicians skilled in performing

and reading biopsies has been created to work toward

improving access and reimbursement for quantitative

biopsies. In the absence of quantitative histomorphometry,

biochemical markers of bone turnover may have some,

though limited, value to discriminate among the different

forms of renal bone disease (Fig. 4) [87–94]. The markers

that are not cleared by the kidney are the resorption marker

Table 1 The definition of CKD-MBD: chronic kidney disease-min-

eral and bone disorder [45]

Definition of chronic kidney disease-mineral and bone disorder

CKD-MBD

A systemic disorder of mineral and bone metabolism due to CKD

manifested by either one or a combination of the following

Abnormalities of calcium, phosphorous, PTH, or vitamin D

metabolism

Abnormalities in bone turnover, mineralization, volume,

linear growth, or strength

Vascular or other soft tissue calcification

Table 2 The differential diagnosis of secondary hyperparathyroidism

(adapted from [68])

Secondary hyperparathyroidism

Low 25 OH D/hypocalcemia

Calcium malabsorption or intake

Hypercalciuria

Chronic kidney disease (and acute renal failure)

Low 1.25 D despite normal 25 OH D

Lithium use

Calcyolytic agents
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tartrate-resistant acid phosphatase (TRAP5b) and the for-

mation markers osteocalcin, bone-specific alkaline phos-

phatase (BSAP), and trimer form of propeptide type I

collagen (PINP). Despite this physiological data on cleared

versus non-cleared bone turnover markers, there is a pau-

city of data on how they correlate to a specific form of

renal bone disease. Nevertheless, using biochemical

markers such as PTH and BSAP to differentiate among the

various forms of renal osteodystrophy do have some value,

though they are insensitive and non-specific [95–100].

Biochemical markers cannot be used to diagnose osteo-

porosis, but PTH and/or BSAP may be able to provide

some help with regard to what type of renal bone disease

may be present. In patients not on agents that inhibit PTH

synthesis, an intact PTH\150 pg/ml is strongly suggestive

and\100 pg/ml highly suggestive of adynamic renal bone

disease. This includes aluminum bone disease where alu-

minum also accumulated in the parathyroid gland, inhib-

iting PTH secretion [44]. An elevated BSAP excludes

adynamic renal bone disease unless there has been a recent

fracture. An elevated BSAP, however, may be due to other

causes of increased BSAP, such as Paget’s disease,

metaststic cancer to bone, hyperparathyroid bone disease,

or osteomalacia. A low normal (lower quartile) BSAP is

suggestive of low bone turnover; however, it does not have

strong positive predictive value for this discrimination as

much as a low PTH does (Fig. 5).

In an attempt to try to add more scientific understanding

to the greater reduction in bone strength across the spectrum

of CKD that is not explained by low BMD by DXA, a great

deal of investigation has used high-resolution peripheral

quantitative computerized tomography (HRpQCT) to

examine the microstructure of bone in patients with and

without CKD [101–105]. HRpQCT has the capacity to

discriminate between cortical and trabecular bone and can

measure at a high resolution (*82 um). Measurements

obtained from HRpQCT include: total volumetric BMD,

total area, cortical area and trabecular area, cortical volu-

metric BMD, trabecular volumetric BMD, cortical thick-

ness, trabecular thickness, and trabecular separation. The

reproducibility (root-mean-square coefficient of variation)

for density measurements at the distal radius is from 0.46 to

0.70%. There are significant differences between cortical

and trabecular microarchitecture between aged-matched

and BMD-matched patients with and without CKD. In

patients with stage 5 CKD on dialysis (stage 5D), cortical

HRpQCT measurements are strongly associated with frac-

tures while no association is seen between BMD by DXA or

HRpQCT trabecular parameters and fracture. However, a

recent study comparing fracture prediction by DXA versus

HRpQCT parameters (cortical thickness and total volu-

metric BMD in a stage 3–5, pre-dialysis population) did not

show any significant discriminatory ability of one technique

over the other [103]. In addition, receiver operator curves

(ROC) in this study demonstrated that either a lower BMD

by DXA or low cortical measures by HRpQCT were

capable of discriminating non-fractured from fractured

patients but that the two techniques were equally robust in

fracture discrimination. These differences in the stage 5D

and 3–5 pre-dialysis populations in HRpQCT discrimina-

tory capacity may reflect the different forms of CKD-MBD

in stage 3–5 pre-dialysis versus 5D populations.

The science is moving forward to measure and define

the aspects of bone quality in people with and without

CKD to explain the approximately 50% of fracture risk that

is not captured by BMD by DXA in the PMO population

without known CKD and even the larger proportion of risk

not captured by DXA in the more severe CKD population.

This does not discount the tremendous value that DXA

provides in the assessment and management of patients

Fig. 4 The available biochemical markers of bone turnover—both

bone resorption and bone formation markers (adapted from [71, 92,

93])
Fig. 5 Comparison of HRpQCT between two age-matched and

BMD-matched patients with and without chronic kidney disease [104]
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with metabolic bone diseases––especially postmenopausal,

male and glucocorticoid-induced osteoporosis [1, 2]. The

issues surrounding DXA that are important in order to use

it competently in patient management are defined below

and include proper quality control and interpretation.

Mistakes Common in the Use of DXA in CKD:

1. Comparing DXA results among different DXA

manufacturers

2. Not using the same region of interest (ROI) even with

the same DXA manufacturer

3. Monitoring patients with DXA without knowing the in

vivo least significant change (LSC) or monitoring

using T-scores rather than absolute BMD

4. Underestimation of fracture risk when calculating risk

using FRAXTM

The International Society of Clinical Densitometry (ISCD.

ORG) was created with the mission of educating both phy-

sicians and technologists in the science and clinical appli-

cations of DXA. The ISCD has developed well-respected

international certification courses in bone mass measure-

ments and published Position Development Conferences

considering variable applications of DXA in various situa-

tions such as use in younger persons, using different refer-

ence population databases for development of T-scores, and

many other clinical and research situations. A multispecialty

organization, ISCD embraces other professional societies

and organizations to try to bring standardization in DXA

performance and interpretation. By doing so ISCD hopes to

proactively mitigate errors in DXA utilization.

While there are many ways that DXA can be misused

leading to incompetent results, diagnosis, and interpretation,

there are 3 that the nephrologists should be cognizant of:

1. Comparing DXA results among different DXA

manufacturers

The 3 DXA manufacturers in the United States are Lunar-

GE (Madison, Wisconsin), Hologic (Boston, Mass), and

Nordland (Ft. Atkinson, Wis). All 3 of these DXA machines

are excellent machines. However, they calibrate even the

same bone ROI differently leading to different results (gram/

cm2) even in the same patient. This fact has to do with many

technological issues that have been well described [106]. The

point is that measuring patients on DXA machines by dif-

ferent manufacturers will lead to different conclusions,

especially when monitoring patients. For example, in the

same patient the average BMD will be *20% higher for the

L1–L4 vertebral bodies on a Lunar-GE than a Hologic

instrument. If one is not cognizant of this issue, patients can

been told that they have lost (or gained) 20% of their BMD,

when in fact it might not have changed at all if measured on

another machine by the same manufacturer. This is just one

of many examples of knowing how to use DXA will lead to

correct management decisions.

2. Not using the same ROI even with the same DXA

manufacturer

The DXA machines have automatic edge detection

systems for defining a particular ROI such as L1–L4,

L1–L2, total hip, or femoral neck, for example. The DXA

technologist can manually move the ROI at will if she/he

does not agree with the automatic computer-generated

ROI. Both approaches are correct, but it is vital that for

proper interpretation of serial BMD measurements that the

exact ROIs be compared. Comparing inconsistent ROIs

leads to incorrect conclusions when monitoring either the

basic biology of changes in bone over time or in response

to pharmacological therapy.

3. Monitoring patients with DXA without knowing the in

vivo LSC or monitoring using T-scores rather than

absolute BMD

In the serial measurements of any biological tests, there

are errors in measurement. In part, these errors are bio-

logical and some are related to assays variability. In the

case of serial measurements of BMD using DXA, the daily

measurement of a phantom is part of the manufacturer-

recommended quality control. In plotting the change in

BMD with phantom scanning, the DXA technologists plot

changes over time to see whether there are trends in pre-

cision errors which might suggest that, for example, the

strength of the photon source is weakening. However,

phantoms do not move and patients do. Therefore, if a

competent DXA facility is to report serial BMD changes

over time in human beings, it must perform in vivo pre-

cision studies. If in vivo precision studies are not done by a

DXA facility, they have no means of knowing whether a

change over time in DXA measurements is significant or

not. There are published instructions on how to perform an

in vivo precision study [18, 19, 28, 29, 107–111]. These

instructions are also available on the ISCD website (ISCD.

ORG). In clinical practice, more management errors are

made in monitoring patients when the in vivo LSC.

4. Underestimation of fracture risk when calculating risk

using FRAXTM

As previously mentioned, the validated risk factors

captured in the 10-year risk model by FRAXTM did not

have an adequate sample size to incorporate CKD into the

risk assessment. From the published population studies, it

appears that fracture risk odds ratios * doubles when GFR

is \60 ml/min. Since BMD measurements are often done

in the elderly population, many of whom may also have
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reduced GFR, it would make sense that the validated

FRAXTM calculations probably underestimate risk in these

patients. While this additional risk may not be capable of

being quantitated, it would seem reasonable to increase the

patients risk to some degree above that risk calculated by

FRAXTM if they also have stage 3 CKD.

Conclusions

Measurements of BMD by DXA have been the single

greatest advancement in the past 25 years that have

allowed clinical decisions to be made in the office setting

for the diagnosis of osteoporosis, assessment of fracture

risk, and monitoring pharmacological response. Knowl-

edge of these applications led to the US government

endorsing population screening using DXA. However,

neither the development of the T-score nor the validation of

FRAXTM for risk assessment included renal function. Since

the populations that develop osteoporosis may also develop

age-related reductions in renal function, it is important that

all physicians, including nephrologists, think about how to

incorporate BMD measurements by DXA. While WHO

criteria and risk assessment can be used similarly between

the PMO and CKD (stage 1–3) populations, it is important

to consider that if patients have biochemical evidence of

CKD-MBD that a different or concomitant metabolic bone

disease, not just osteoporosis, may be present. In addition,

even by stage 3 CKD the risk of fracture seems to be higher

than the fracture risk calculated by FRAXTM alone. Neither

the WHO diagnostic criteria nor risk assessment by DXA

are valid in stage 4–5 CKD. BMD measurements may still

have value in these more severe stages of CKD because

baseline BMD values provide means of measuring change

over time. In order for competent DXA measurements to

provide accurate information to physicians managing

patients with osteoporosis, there are education programs

available that provide skills in performance of DXA mea-

surements for physicians and technologists alike. Scientific

efforts are very active to investigate other noninvasive

means of quantitating the additional and independent bone

quality factors that contribute to the greater risk of fragility

fracture in the CKD population that are not captured by

DXA. HRpQCT is the most advanced of these newer

modalities at the current time.
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