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Abstract Diabetes increases the likelihood of suffering a

fracture, and in the case of type 2 diabetes mellitus (T2D),

low bone mass does not explain this loss in fracture

resistance. Insulin contributes to the accrual of bone mass.

As such, the elevated fracture risk among those with type 1

diabetes (T1D) could be due to a deficit in bone structure,

especially if the diabetes is poorly controlled. Clinical

studies involving computed tomography scans do suggest

that low moment of inertia and low cross-sectional area of

cortical bone accompany T1D. However, low bone mass

does not typically accompany T2D, and fracture resistance

arises from all the hierarchical levels comprising the

organization of bone’s constituents. One consequence of

diabetes, hyperglycemia, causes an increase in non-enzy-

matic collagen crosslinks, also known as advanced glyca-

tion end products (AGEs). Increases in AGEs within the

bone matrix are strongly correlated with the age-related

decrease in the ability of bone to dissipate energy during

failure (toughness and fracture toughness). While elevated

AGEs are associated with higher incidence of fracture, the

mechanism by which non-enzymatic crosslinking lowers

fracture resistance is not fully delineated. The general

concept is that increases in AGEs within the matrix cause

the collagen phase to become brittle, reducing the capacity

of the tissue to resist the formation and propagation of

microdamage. While certainly more research into the dia-

betic effects on fracture resistance is necessary before clear

therapeutic options are identified, diabetes should be con-

sidered a problem of bone brittleness, not just one of low

bone strength.
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Introduction

Both type 1 diabetes (T1D) and type 2 diabetes (T2D)

increase the risk of experiencing a bone fracture [1–5]. In

general, bone fractures are a widespread and costly prob-

lem [6, 7]. The expectation is that these costs will increase

as the aging population grows [8] and the prevalence of

diabetes increases [9], especially since diabetes impairs

bone regeneration [10] and is associated with costly com-

plications (e.g., non-unions). In addition to medical costs,

fractures deleteriously impact the quality of life. For

example, a third of Veterans treated for a hip fracture did

not live beyond 1 year: an adjusted mortality rate of 29.8%

[11, 12]. The cause for the disproportionate increase in

fracture risk among diabetics is not well understood, but

herein is a summary of what is currently known about the

origins of fracture resistance and how diabetes potentially

lowers fracture resistance.
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Measured by the primary assessment tool of osteopo-

rosis, dual energy X-ray absorptiometry (DXA) at the hip,

areal bone mineral density (aBMD) was found to be lower

in subjects with T1D than in age-matched control subjects

[13], and in statistical models accounting for gender, race,

menopausal status, and disease duration, low aBMD was

associated with poor glycemic control [14]. Since aBMD is

directly proportional to bone strength as determined from

whole bone tests of cadaveric tissue (hip [15], radius [16],

and spine [17]), this low aBMD could explain the higher

risk of fracture among individuals with diabetes. On the

other hand, T2D patients do not necessarily have low

aBMD [18, 19], and in some reports, aBMD was actually

higher in diabetics [20–22]. One possible cause then for the

elevated fracture risk is the greater propensity for diabetics

to fall compared to non-diabetics [23, 24]. Yet, in the

clinical studies that accounted for history of falls and

related risk factors (e.g., impaired vision), the association

between T2D and increased fracture risk persisted [25–27].

Moreover, a meta-analysis of clinical studies concluded

that people with T2D are at a higher-than-expected risk of a

hip fracture than those who did not have the disease [4].

With regard to non-diabetics, the probability of suffer-

ing a fracture increases with age, and this increase is

independent of the age-related decrease in aBMD [28, 29].

Why this occurs is presently unclear, though the limitations

of DXA (e.g., projection method and insensitive to colla-

gen) certainly play a role. To improve the ability of aBMD

to predict fracture risk, an online risk assessment tool

called FRAX was developed by the World Heath Organi-

zation. Based on certain risk factors and aBMD, it calcu-

lates the 10-year probability of suffering a major fracture

and the 10-year probability of a hip fracture. Despite some

improvement in predicting osteoporotic fractures with

FRAX [30], T2D patients still have a higher fracture risk

than individuals without diabetes for a given FRAX score

[31]. In other words, diabetes likely increases fracture risk

independent of the risk factors such as aBMD and age,

which contribute to the FRAX scores [32]. Taken together,

these observations point to the strong likelihood that dia-

betes affects bone in ways beyond changes in bone mass or

density.

Hierarchical Organization of Bone

Bone of course has many interesting features that facilitate

its function of sustaining loads. The primary constituents—

type 1 collagen, mineral, and water—are organized in a

hierarchical fashion with the resistance to fracture arising

from each of the length scales (Fig. 1 and described by

others [33–35]). At the level of the whole bone (macro-

structure), resistance to bending by the femoral neck is

dictated by the distribution of tissue about the centroid of

the neck region. The quantification of this distribution is

called the moment of inertia (aka second moment of area)

in which periosteal perimeter has a greater contribution

than endosteal perimeter to stiffness and strength [36].

Moving to a smaller length scale (microstructure), intra-

cortical porosity or apparent bone density primarily deter-

mines the material strength of bone [37]. Material strength

is independent of bone size or structure and is typically

measured by destructive tests on machined, uniform

specimens of bone (40 mm 9 4 mm 9 2 mm). In the case

of the apparent strength of trabecular bone (typically 8 mm

diameter cores), the volume of bone within the given total

volume under loading (bone volume fraction or BV/TV) is

the primary determinant with contributions from the

architecture and morphology of the trabeculae [38, 39]. In

particular, more plate-like trabeculae aligned with the axis

of loading confer greater strength than more rod-like tra-

beculae aligned orthogonal to loading [40, 41].

The origins of strength also exist at the tissue level

(nano-structure to ultra-structure). With respect to the

mineral phase, increases in the degree of mineralization

through secondary mineralization are thought to be one-

way bisphosphonate therapy, which lowers remodeling

activity, increases fracture resistance [42]. Direct correla-

tions between crystallinity and material strength of human

bone have been reported [43], but mineral is not neces-

sarily the sole determinant of whether bone can sustain

high stress ([125 MPa). Collagen also can influence

strength of cortical bone. For example, collagen fibrils

oriented in the longitudinal direction tend to confer greater

axial strength than those oriented in the transverse direction

[44]. Also, disruption of enzymatic collagen crosslinking

can lower bone strength independent of any effects on

mineral density [45].

An Engineering Perspective of Bone’s Resistance

to Fracture

With multiple length scales contributing to fracture resis-

tance, diabetes conceivably increases fracture risk in

numerous ways from possibly disrupting cortical micro-

structure to altering the organic matrix. Complicating

matters is that a decrease in bone strength is likely not the

only effect of diabetes on fracture resistance. From an

engineering perspective, material failure during service

often involves fatigue-generated microcracks and the

propagation of such cracks or flaws to a critical size upon

which fracture occurs. As such, in addition to monotonic

load-to-failure tests that measure modulus (linear slope of

stress vs. strain curve), strength (peak stress), and tough-

ness (area under the stress vs. strain curve) [36], there are
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other mechanical tests to characterize the ability of a

material or bone to resist fracture such as fatigue (e.g.,

number of loading cycles to failure) and fracture toughness

testing (e.g., resistance to crack propagation). Daily loads

on the skeleton generate microdamage in bone with a stress

fracture being the clinical manifestation of a fatigue-

induced fracture [46, 47]. These fatigue fractures are one

possible cause for the bone destruction that occurs with

Charcot arthropathy, a common problem among diabetics

[48, 49].

Unlike engineering materials, bone in vivo does have a

repair mechanism for fatigue microdamage since bone

remodeling can be activated to remove microcracks [50]

and resorption sites are preferentially associated with mi-

crocracks [51]. Nonetheless, microdamage in bone tends to

increase with age [52–54] and is inversely related to bone

toughness [55]. Thus, how well the bone matrix can resist

crack propagation is important to whether bone breaks, and

moreover, this resistance is a function of osteonal density,

porosity, compositional heterogeneity, collagen integrity,

and other factors existing at each hierarchical level of

bone’s organization [56–59]. At present, there is dearth of

information on how diabetes affects many of these factors

that influence microdamage initiation and resistance and

ultimately the fracture resistance of bone.

Traditionally, osteoporosis is viewed as a problem of

low bone mass causing reduced bone strength, and to some

extent, elevated fracture risk with diabetes has been inter-

preted as an osteoporosis problem [60, 61]. Nonetheless,

studies involving the mechanical testing of cadaveric bone

have consistently found that aging affects the ability of

bone to dissipate energy during failure (bone toughness) to

a greater extent than it does the material strength of bone

(Fig. 2) [62–65]. Basically, an older bone does not stretch

(strain measured in change of length per original length) as

far as a younger bone (Fig. 3), and this is related to an

inability of the tissue to handle damage that forms during

fracture. There are several engineering methods for quan-

tifying the ability of bone to resist crack propagation

(damage); and whether measuring the critical stress inten-

sity factor [66] or the strain energy release rate [56], bone’s

resistance to crack propagation (i.e., its fracture toughness)

decreases with an increase in age. Moreover, the ability of

bone tissue to demand greater energy to propagate a crack

as the crack grows in length (i.e., R-curve behavior) is lost

or reduced with aging [67, 68].

Fatigue testing involves subjecting the specimen to

repeated or cyclic loads that eventually cause failure,

despite the service loads being much lower than the yield

force of the material. Such loading of human tissue sam-

ples has found that aging affects the fatigue life of cortical

bone in bending (compression and tension modes) [69, 70]

as well as the fatigue strength in the shear mode [71]. The

early studies on the fatigue properties of bone examined

Fig. 1 The hierarchical arrangement of bone. Each length scale from mineralized collagen fibrils to the structure of the femoral neck confers

resistance to fracture
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variables such as frequency of the applied cyclical load,

specimen geometry, loading mode, and species [72], but

certain determinants were identified. For example, Haver-

sian porosity was inversely related to fatigue life [73]. The

expectation is that diabetes like aging would affect the

fatigue life of human cortical bone, but this is currently an

untested hypothesis.

Possible Effect of Diabetes on Mechanical Properties

of Bone

Since access to bone of sufficient size from humans with

diabetes is extremely limited, little is still known about the

full effect of diabetes on many of the mechanical properties

of human bone. In two studies investigating bone from

humans with diabetes, mechanical properties of bone were

not different between middle-aged diabetics and elderly non-

diabetics [74, 75]. Specifically, the modulus and strength of

the metatarsals—acquired from foot amputations or an

allograft bank—were not different between non-diabetic

(72.3 ± 10 years old) and diabetic (51.3 ± 8 years old)

donors as assessed by three-point bending [75]. In the sub-

sequent study, Fleischli and co-workers tested machined,

beam specimens from the tibia with the diabetic donors being

between 46 and 61 years old and the non-diabetic donors

being between 67 and 85 years old. There were no differ-

ences in material strength and fracture toughness suggesting

that the effect of diabetes on the fracture resistance of human

is akin to accelerated aging, but without age-match controls,

this is only a supposition. In one other study investigating the

mechanical behavior of cadaveric cortical bone from donors

of varying age including one male, 74 years old donor with

diabetes, the crack growth toughness was 14% less and crack

initiation toughness was 40% less for the diabetic bone than

for healthy young bone samples [68]. These percent differ-

ences were slightly greater (i.e., worse) than the percent

differences between young and aged healthy bone. Given

that an age-related decline in collagen integrity is associated

with decreasing fracture resistance, diabetes could be a

problem of bone brittleness, not just a loss of bone strength.

Clinical Observations of Diabetic Effects on Bone

Structure

There is evidence that individuals lacking the ability to

properly generate insulin may develop smaller bones. Using

peripheral quantitative computed tomography (pQCT),

Saha et al. [76] found that the radius and tibia of T1D

adolescents, especially boys, had a smaller cross-sectional

area (CSA) than did these bones of appropriately matched

non-diabetic adolescents. A smaller CSA translates to

weaker bones assuming no difference in inherent tissue

quality. Another pQCT study by Bechtold et al. [77] indi-

cated that as T1D adolescents reached 14 and 15 years of

age, their cortical CSA normalized, becoming equivalent to

the cortical CSA of non-diabetics at the same age.

Fig. 2 Mechanical properties as function of donor age. Whether

measured using tensile tests (a) [61] or bending tests, the toughness of

cortical bone decreases with aging to a greater extent the material

strength (mean ± SD)

Fig. 3 Aging differences in bone deformation. Aging reduces by half

the degree of failure strain (left) and permanent strain (right) that bone

can endure (mean ± SD)
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Structural deficits in bone are not necessarily apparent in

individuals with T2D. In one study, pQCT-derived cortical

thickness (Ct.Th) and CSA were similar between T2D

subjects and non-diabetic controls [78], but in another

study with a larger cohort, cortical CSA was smaller in the

T2D subjects, albeit this was offset by a higher volumetric

BMD, than for the controls [79]. Assessing trabecular bone

of the spine, a QCT study reported that differences in

volumetric BMD between T2D and non-diabetic women

and men were not independent of differences in body mass

index [80]. As for postmenopausal women, those with T2D

did not develop bones with a markedly different structure

compared to non-diabetics other than a smaller cortical

area at the distal tibia as measured by high-resolution (HR)

pQCT [81]. For another relatively small cohort of elderly

women in which bones were assessed by HR-pQCT,

Burghardt et al. [82] observed greater cortical porosity in

the distal radius of T2D subjects compared to bones of

otherwise healthy women. In all likelihood, poorly con-

trolled diabetes can increase fracture risk of T1D patients

through structural changes and affect T2D patients through

reductions in the ratio of structural strength to body weight,

which is typically elevated with diabetes.

Potential Effects of Diabetes on Bone Tissue

At the nano-length scale, non-enzymatic collagen cross-

links or advanced glycation end products (AGEs) have

been implicated in the diabetes-related decrease in fracture

resistance. As animals age, AGEs accumulate in a variety

of connective tissues [83, 84]—including bone [85–87]—

even though bone undergoes turnover throughout life. The

formation of these crosslinks involves the Maillard reac-

tion with sugars resulting in less soluble collagen [88]. As

such, hyperglycemia promotes glycation-mediated cross-

linking in the tissues of individuals with poorly controlled

diabetes. Such excessive crosslinking of the organic

matrix could potentially increase fracture risk [89]. In a

prospective study of 432 elderly Japanese women, urinary

pentosidine (a biomarker for AGEs) was a significant

predictor of vertebral fracture in addition to traditional

risk factors such as aging and areal BMD [90]. In a

French cohort of 396 postmenopausal women, fracture

risk was higher for women with high urinary pentosidine,

but this biomarker was not independent of the other

osteoporosis risk factors [91]. Moreover, two different

research groups report that a high level of pentosidine in

urine or serum was associated with greater fracture risk in

patients with T2D [92, 93]. Lastly, bone taken from hip

fracture patients was found to have higher concentration

of pentosidine in the tissue than bone of age-matched,

postmortem controls [94].

Given these clinical observations, the question arises of

whether AGEs mechanistically reduce bone’s resistance to

fracture. Mechanical tests of cadaveric tissue consistently

find that the age-related decrease in both bone toughness

and bone fracture toughness correlate with an increase in

pentosidine [65, 85, 95]. Moreover, inducing non-enzy-

matic crosslinking by incubating cortical or trabecular bone

in high concentrations of sugar in vitro reduced fracture

properties related to post-yield energy dissipation mecha-

nisms [87, 96], but not strength [97]. This glycation process

increases the stiffness of the collagen phase (i.e., demin-

eralized bone) [98] and affects the ability of the collagen to

dissipate energy [87]. In vivo, the non-enzymatic cross-

linking could occur while mineralization is still an active

process, and unlike enzymatic crosslinks that facilitate

fibrillation and mineralization [65], these AGEs could

potentially disrupt proper collagen–mineral interactions.

The nature of such disruptions is presently unknown.

Hypothetically, AGEs cause the collagen to behave in a

brittle fashion (i.e., fail at low strain, though resistant to

stress) reducing energy dissipation by collagen fibril

stretching and sliding within the mineral phase. With the

loss of energy dissipation at the local tissue level, micro-

cracks more readily propagate through bone tissue with

higher concentration of AGEs. Several studies provide

supporting evidence of this hypothesis: collagen fibrils

undergo more deformation than mineral crystals at the

same apparent tissue strain before and after the yield point

of bone (onset of damage) [99, 100], this collagen fibril

strain is lower in aged bone with higher AGEs than in

young cortical bone [101], and the local tissue strain

immediately surrounding a propagating crack is lower in

aged bone than young cortical bone such that the extent of

crack deflection at lamellar interfaces is reduced with aging

[102]. Since crosslinking is likely affecting the contribution

of collagen to energy dissipation mechanisms, diabetes

likely affects fracture resistance through time-dependent

changes to the organic matrix.

Diabetic Effects on Rodent Bone

As with many preclinical studies of disease, rodents have

been widely used to study the effects of diabetes on bone

(recent findings summarized in Table 1). Starting in 1952,

diabetes (induced by alloxan) was found to affect bone

structure in rats [103]. Consistently since then, the loss of

insulin production (more commonly induced by strepto-

zotocin or STZ) causes a reduction in the structural

strength of rodent long bones (mice [104] and rats [105–

109]). That is, bones from T1D rodents are narrower with a

thinner cortex (Fig. 4), and therefore, break at a lower force

or torque than bones from control rodents. There is also a
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loss of trabecular bone with diabetes [104, 110]. Incon-

sistently, STZ-induced diabetes decreased the degree of

mineralization of cortical bone in male mice [104] and

female Wistar rats [111] but did not affect the minerali-

zation density of the cortical tissue (Ct.TMD) in male

Fischer 344 and Sprague–Dawley rats [109]. In addition,

T1D has not always affected material strength or toughness

across studies (Table 1), and the loss in fatigue life was

related to the diabetic effect on bone structure, not tissue

quality [109]. Variations in the duration of T1D among

studies may explain these observed differences in the dia-

betic effects on the biomechanical properties of bone. We

recently found that with increasing duration of T1D, the

strength vs. structure relationship (i.e., peak force vs.

Table 1 Summary of the recent literature showing percent differences in cortical bone properties, as determined by primarily three-point

bending tests and DXA or CT analysis of the long bones, between diabetic and non-diabetic rodents

Model Strain Age at start

of diabetes

(week)

Duration of

diabetes

(week)

Bone Difference in

structural

strength (%)

Difference in

material

strength (%)

Difference in

work-to-

failure (%)

Difference in

TMD or

aBMD (%)

Ref

T1D Fischer 344 13–14 12 Ulna -23 -8.2 N.S. N.S. [109]

T1D Fischer 344 13–14 12 Femur -40 –a N.S. N.S. [109]

T1D Sprague–

Dawley

13–14 12 Ulna -32 N.S. 40 N.S. [109]

T1D Sprague–

Dawley

13–14 12 Femur -29 – N.S. N.S. [109]

T1Dd Sprague–

Dawley

11 5 Femur -30 – -17 -9.6 [108]

T1D Wistarb 39–42 12 Femur N.R. -17c N.S. Less dense

mineral

[111]

T1D Sprague–

Dawley

10 7 Femur -45 – -39 – [107]

T1D Sprague–

Dawley

10 7 Tibia -35 – -28 – [107]

T1D DBA/2J

mice

11 18 Femur -40 N.S. -87 -1.6 [104]

T2D Zucker

diabetic

fatty

21 12 Femur -36 N.S. -45 -2.9 [113]

T2D Zucker

diabetic

Sprague–

Dawley

15–21 12–18 Femur -22 N.S. N.S. -1.6 [113]

T2D Goto-

Kakizaki

versus

Wistar

Birth 26 Femur -24 – -35 -31 [121]

T2D Zucker

diabetic

fatty

7 13 Femur -21 N.S. – -1.8 [112]

T2D Zucker

diabetic

fatty

7 13 Tibia -25 N.S. – -1.6 [112]

T2D WBN/Kob

versus

Wistar

48–52 22–26 Femur -28 – -46 N.S. [115]

T2D MKR mice 7–8 8–9 Femure -16 – – N.S. [122]

Negative value indicates that the property was less for the bones from diabetic than from control rodents. Note that all but one study used male

rodents, and the biomechanical testing conditions such as load rate varied. DXA values are italicized

N.S. not statistically significant
a – Not reported; b female rats were analyzed; c moment of inertia was calculated assuming elliptical cross-section, not derived by the CT

analysis; d alloxan induced the diabetic condition, whereas all other T1D studies used streptozotocin; and e four point bending was used
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moment of inertia) changes from that of normal mice, and

bones exhibit less post-yield work-to-failure, a measure of

brittleness (Fig. 5) [104].

There are a variety of rat models of T2D including the

Zucker Diabetic Fatty (ZDF) [112, 113], the Zucker Dia-

betic Sprague–Dawley (ZDSD) [113], Goto-Kakizaki

[114], and the WBN/Kob [115], and each exhibits a dif-

ference in various bone parameters compared to non-dia-

betic controls (Table 1). The long bones of the ZDF male

rats, which become hyperglycemic by 13 weeks of age,

have similarities to those of STZ-treated rats in that they

are shorter and narrower with a lower structural strength

than controls [109, 112, 113]. This is also the case for male

ZDSD rats, though the impairment in growth was reported

to be less [113]. The cortical and trabecular bone tissue

also have lower mineralization density (mgHA/cm3, as

measured by peripheral or pQCT) in these diabetic rats

relative to controls. Interestingly, when accounting for

structural differences using the moment of inertia (also

measured by pQCT), the estimated material strength of

long bones was not different between ZDF or ZDSD rats

and respective controls [112, 113]. The cause of this dis-

sociation between BMD and material strength is not

known, but likely involves heretofore unmeasured changes

in the collagen phase of bone interacting with changes in

the tissue mineral density. A study involving obese and

non-obese T2D rats by Reinwald et al. [113] reported that

the post-yield energy to failure, as determined by a three-

point bending test of the femur, was markedly lower for the

ZDF rats at 33 weeks of age than for the age-matched

controls. Increases in AGEs within the bone tissue have

been documented for STZ-treated rats [109] and the WBN/

KoB rats [115], and it is likely that a similar increase

occurs in the ZDF and other T2D rats and mice.

Clinical Directions

While diabetes increases the risk of suffering a fracture, the

therapeutic options for preventing a fracture are limited.

There is no definitive evidence that bisphosphonates are an

effective treatment for individuals with diabetes. None-

theless, a retrospective review of fracture cases in Denmark

investigated the use of bisphosphonates in the context of

diabetes and found that T1D or T2D did not appear to

affect the ability of bisphosphonates to lower fracture risk

[116]. With regard to other diabetic complications

involving bone, anti-resorptive therapy has had some suc-

cess in alleviating the symptoms of Charcot neuroar-

thropathy [117, 118], although recent studies found no

beneficial effects of bisphosphonates on time to resolution

or total immobilization time [119, 120]. Since the higher-

than-expected fracture incidence among those with T2D is

not associated with low BMD, there is no clear rationale to

treat T2D patients with a bisphosphonate if the patient’s

BMD values are not low. There is however a clear rationale

for investigating how diabetes lowers bone’s resistance to

fracture. Doing so could lead to effective therapeutic

options for lowering the fracture risk of diabetics.
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