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Abstract Osteoporosis is characterized by the reduced

mass as well as quality of bone, and increased risk of

fragility fracture. Skeletal homeostasis is maintained

through the balanced activities of osteoclasts and osteo-

blasts, and osteoporosis is considered to be a metabolic

disorder caused by an imbalance between bone resorption

and formation. Whereas osteoclasts and osteoblasts have

been the primary targets for elucidating the cell-based

mechanisms underlying the pathophysiology of osteopo-

rosis, much less attention has been paid to the role of

osteocytes. This review focuses on the physiologic function

of osteocytes in the regulation of bone and mineral

metabolism, summarizing the findings from human disease

and mouse genetics, and then extending the discussion to

the pathogenetic roles of osteocytes in skeletal aging.
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Differentiation of Osteocytes from Osteoblasts:

The Gene Expression Signature

The osteocyte is a form of the terminally differentiated

osteoblast [1]. The bone-forming osteoblasts synthesize

collagen matrix and then mineralize it. A sub-population of

osteoblasts, which has not been defined yet, takes on the

cell fate of embedding in the matrix and becoming osteo-

cytes. Osteocytes are postmitotic and quiescent cells, and

unlike osteoblasts and osteoclasts, which are clustered on

the bone surface, they are separated from each other

physically while being connected functionally through gap

junctions at the ends of their cell processes [2–4].

The osteocyte differentiation process has been exten-

sively characterized by gene expression studies [5–7]. The

typical genes expressed in osteoblasts include type I col-

lagen, alkaline phosphatase, osteocalcin and RANKL,

which are involved in bone formation and also the regu-

lation of osteoclastic bone resorption. On the other hand,

dentin matrix protein (DMP)-1, sclerostin, E11/podoplanin

and FGF23 are among the products of osteocytes [8–12].

The differential expression of these genes in osteoblasts

vis-a-vis osteocytes has been analyzed by expression pro-

filing techniques [5, 6, 13]. Using transgenic mice

expressing fluorescent proteins in either osteocytes or

osteoblasts driven by the Dmp1 or Col1a1 promoter,

respectively, Paic et al. showed that Bmp4, Bmp8a, Enpp1

and Ank, as well as Dmp1 and Phex, which are known to be

osteocytic genes, are expressed in osteocytes at higher

levels than in osteoblasts [6]. By comparing the established

cell lines osteoblastic 2T3 versus osteocytic MLO-Y4, it

has been shown that certain transcription factors, such as

Vdr, Tcf7 and Irx5, are predominantly expressed in

osteocytes [13].

Another transcription factor, Dlx3, a gene responsible

for Tricho-dento-osseous syndrome, has also been reported

to be expressed in osteocytes [14]. Sclerostin, an antagonist

of Wnt signaling, is known as a secretory product of

osteocytes, and the expression of Sost, the gene encoding

sclerostin, is regulated by a MEF2 family transcription

factor [15]. It has recently been reported that the expression

of Osterix (Osx), encoded by Sp7, a gene essential for
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osteoblast differentiation, is also highly expressed in

osteocytes and that conditional deletion in postnatal mice

results in down-regulation of Dmp1, Phex, and Sost [16]. In

the conditional Osx KO mice, impaired mineralization and

disorganization of collagen fibers were observed, while the

number of proliferating osteoblasts and the expression of

Runx2 were increased, suggesting that Osx may play a role

in osteocyte maturation and function [16]. Tcf7 and Dlx3

are downstream regulators of the Wnt/b-catenin signaling

pathway [17, 18], and Osx has been reported to inhibit its

signaling [19]. It is conceivable that TCF7, Dlx3, MEF2

and Osx, which are not osteocyte-specific transcription

factors, function co-operatively in the differentiation and

maturation of osteocytes. Further studies are required to

better address the function in osteocyte physiology in vivo

of the transcription network involving these factors.

As osteoblasts terminally differentiate into osteocytes,

the cells become deeply embedded in the bone matrix,

where nutrient and oxygen supplies are considered to be

quite limited. Hirao et al. demonstrated that differentiation

of cultured osteoblasts is accelerated under hypoxic (5%

O2) conditions and that the expression of osteocytic genes,

such as Dmp1, Mepe, and Fgf23, is elevated compared with

that in osteoblasts cultured under normoxic (20% O2)

condition [20]. Intriguingly, osteocytic gene expression

was reported to be upregulated in a three dimensional

culture of osteoblasts. Boukhechba et al. reported that

osteoblasts cultured densely on hydroxyapatite/tricalcium

phosphate biphasic calcium phosphate ceramic particles

exhibit accelerated differentiation, and exhibited an oste-

ocytic gene expression pattern within a week of culture

[21]. Thus, in addition to the intrinsic transcriptional net-

work within osteocytes themselves, environmental cues,

such as the oxygen tension and 3D architecture, are likely

to play critical roles in osteocytogenesis and cell fate.

The Dendritic Morphology of Osteocytes:

An Application of Mouse Genetics

Osteocytes possess a unique morphology with numerous

dendritic processes, which has been implicated in their

function of sensing the mechanical stress and matrix

properties around them [4, 22]. The development and

establishment of the lacuno-canalicular system of osteo-

cytes has been shown to be correlated with bone matrix

maturation [4, 22, 23]. The lacuno-canalicular system can

be visualized by silver staining [23–26], and using this

technique, Hirose et al. reported that in the hindlimb of

very young mice, the alignment of round-shaped osteocytes

and the orientation of cell processes are random and that

along with maturation of the skeleton, the cells become

flattened and regularly aligned at certain intervals [24].

Thus, at 12 weeks of age, most osteocytes exhibit a flat-

tened shape, and their cellular processes are extended both

in parallel and perpendicularly to the longitudinal axis

of the hindlimb toward the cortical bone surface [24].

Osteocytic processes have also been shown to be stained

with phalloidin [27], suggesting that the processes consist

of actin-based cytoskeletons similar to microvilli, which

sense both nutrients and the extracellular fluid flow.

Studies on genetically modified mice have revealed mor-

phological alterations in osteocytes and the lacuno-canalicular

network. Matrix metalloproteinases (MMPs) play critical

roles in the remodeling and maintenance of extracellular

matrix, and mice lacking MT1-MMP, encoded by Mmp14,

exhibit a massive loss of osteocytic dendritic processes in the

cortical bone, concomitantly with diminished collagen

cleavage in the lacuno-canalicular system, suggesting that

cleavage of collagen is required for the development and

maintenance of these osteocytic processes [25].

An autosomal recessive form of multicentric osteolysis

with severe osteoporosis is caused by loss-of-function

mutations in the MMP2 gene [28]. In the calvaria of Mmp2

knockout mice, the proportion of empty lacunae was sig-

nificantly increased, while the number of osteocytic pro-

cesses and their connections were decreased, indicating

that the formation of osteocytic network is impaired in

Mmp2 KO mice [29]. Since the impairment of the osteo-

cytic network evidently preceded osteocytic death, it is

inferred that such network formation is crucial for osteo-

cyte survival.

A disorganized lacuno-canalicular system is also a fea-

ture of Dmp1 knockout mice [30]. Osteocytic lacunae in

Dmp1KO mice were much larger than those of wild-type

mice, with a decreased number and chaotic orientation

[30]. The cell surface of the mutant osteocytes was frizzy,

and the osteocytic processes were abnormal [30].

An altered osteocyte morphology was also noted in Osx

KO mice [16], and like the case with the Dmp1KO mice,

the number of dendritic processes was decreased. Taken

together with the finding that Dmp1 expression is signifi-

cantly reduced in Osx-deficient osteocytes, it is suggested

that the Osx-DMP1 axis is required for the normal mor-

phology and function of osteocytes.

Another extracellular matrix component, perlecan, a

large heparan sulfate proteoglycan, has been implicated in

the physiology of the lacuno-canalicular system [31, 32].

The pericellular matrix of osteocytes is thought to consist

of polysaccharide moieties, forming the so-called glyco-

calyx [33–35]. The heparan sulfate proteoglycan perlecan

possesses a large amount of sulfated glycosaminoglycans,

the proposed functions of which include acting as a res-

ervoir for growth factors and their regulators, cell adhesion

and ionic filtering in the basement membrane [36, 37].

Mice lacking Hspg2, encoding perlecan, died in utero or
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perinatally due to defects in the integrity of the basement

membrane during the course of heart and brain develop-

ment [38]. Mice carrying a hypomorphic mutation in

Hspg2 gene exhibited a less severe phenotype, exhibiting

dwarfism and skeletal defects [39] which resembled the

phenotype of type 1 Schwartz-Jampel syndrome, in which

mutations in the HSPG2 gene have been found [39, 40].

Thompson et al. have recently reported that perlecan is

localized in the pericellular space of the lacuno-canalicular

system and that Hspg2 hypomorphic mice displayed sig-

nificant decreases in the area and size of the osteocytic

canaliculi [41]. How the alterations in the canalicular

system affect osteocyte function in terms of mineral

metabolism and mechanotransduction has not been

described in detail as yet, and further information on the

morphology-function relationship is much anticipated.

Osteocytes in Mineral Homeostasis

Osteocytic genes, such as Phex, Fgf23, and Dmp1, have

been implicated in phosphate metabolism [42, 43]. PHEX

was identified as a candidate gene for X-linked hypo-

phosphatemia (XLH) through positional cloning approach

[44]. Hyp mice with spontaneous hypophosphatemia and

osteomalacia carry a loss-of-function mutation in the Phex

gene. Phex encodes a type II membrane protein which is

homologous to a Zn-dependent protease [44]. In Phex

mutants, the osteocytic expression of FGF23 is elevated,

which is suggested to be responsible for the hypophos-

phatemic phenotype [12]. Yuan et al. [45] demonstrated

that conditional knockout mice for Phex in the osteoblast

lineage driven by the osteocalcin promoter exhibited a

hypophosphatemia phenotype and that the phenotype in

hyp mice was rescued by osteoblast-specific expression of

wild-type Phex. These results are consistent with the notion

that the Phex expressed in the osteoblast-osteocyte lineage

plays a key role in phosphate homeostasis.

FGF23 is a member of the FGF19 subfamily of the FGF

superfamily that exerts systemic and endocrine modes of

activity [46, 47]. Mutations of the FGF23 gene have been

identified in patients with autosomal dominant hypophos-

phatemic rickets (ADHR), who exhibit enhanced FGF23

activity in a gain-of-function manner due to resistance to

the proteolytic cleavage of the molecule [48]. Although the

PHEX protein possesses proteolytic activity, the cleavage

of FGF23 has not been demonstrated [49]. FGF23 acts on

target cells through the conventional FGF receptors

(FGFRs), and a co-receptor, a-klotho, that has been iden-

tified as a gene mutated in a premature-aging mouse, klotho

[50, 51]. Both klotho mice and Fgf23 KO mice exhibit

hyperphosphatemia, with a high serum concentration of

vitamin D, and a premature-aging phenotype [52].

DMP1 has been identified as one of the genes respon-

sible for autosomal recessive hypophosphatemic rickets

(ARHR) [30, 53]. ARHR, characterized by renal phosphate

wasting, altered regulation of 1a-hydroxylase activity and

rickets/osteomalacia, resembles XLH and ADHR [54]. In

Dmp1 KO mice, which exhibit hypophosphatemic rickets

[30], both the serum FGF23 levels and osteocytic Fgf23

expression are elevated, similar to Phex-deficient mice.

Aberrant expression of Col1a1 and elevated Podoplanin/

E11, a marker of early osteocytes, were observed in the

osteocytes of the Dmp1 KO mice, suggesting that DMP1 is

involved in osteocyte maturation [30].

Matrix extracellular phosphoglycoprotein (MEPE), also

known as OF45, was identified as a gene upregulated in the

tumors of oncogenic osteomalacia patients [55, 56],

although its in vivo function in phosphate metabolism is

not known [57]. MEPE is highly expressed in osteocytes

and, together with DMP1 and osteopontin, which is enco-

ded by Spp1, belongs to the family of small integrin-

binding ligand, N-linked glycoproteins (SIBLINGs) [58].

These SIBLING genes are clustered in a region of chro-

mosome 4q21 and are thought to have derived from an

ancestor gene by duplications [59, 60]. It is reported that

proteolytically cleaved peptides derived from MEPE inhi-

bit matrix mineralization [55, 61].

Loss-of-function mutations of the ENPP1 gene, which is

reportedly expressed in osteocytes, have been found in

patients with ARHR [62, 63]. ENPP1 encodes ecto-

nucleotide pyrophosphatase/phosphodiesterase, which

generates inorganic pyrophosphate, an inhibitor of miner-

alization [64]. Mutations of the gene in humans and mice

cause ectopic calcification, such as generalized arterial

calcification in infancy and ossification of the posterior

longitudinal ligament of the spine [65, 66]. ARHR patients

with an ENPP1 mutation presented with normal levels of

FGF23, PTH and vitamin D metabolites [62, 63], sug-

gesting that ENPP1 may function locally in matrix min-

eralization. How the loss of Enpp1 activity specifically

causes under-mineralization in bone, vis-a-vis the ectopic

calcification phenotype in extra-skeletal tissues, remains to

be elucidated.

In summary, although the kidney is considered to be the

main player in phosphate homeostasis, osteocytes never-

theless do play a key role. Osteocytes produce two pro-

teins, Phex and FGF23, with opposite actions in phosphate

metabolism, as evidenced by the hypo- or hyper-phospha-

temia caused by loss of the respective gene [45, 67]. The

causative role of FGF23 in the Phex mutant has been

demonstrated by showing that hyp phenotype was revers-

ible by crossing with Fgf23 KO mice [68] or by the

administration of FGF23 blocking antibodies [69]. Thus,

osteocytes deploy two methods of coupling and balancing

the processes of phosphate metabolism and matrix
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mineralization. First, they produce proteins with opposite

biological activities, FGF23 and Phex; second, they utilize

a local as well as systemic (i.e. communicating with the

kidney via FGF23) mode of regulation. It is worth noting

that these methods are very well adapted to maintaining

these cells, allowing a fine-tuning of the matrix stiffness

and/or quality surrounding them.

PTH Activity in Osteocytes

The calcitrophic hormone PTH is a central regulator of

bone metabolism. Intermittent administration of PTH

increases bone mass through robust stimulation of bone

formation and currently is the only anabolic therapy for

osteoporotic patients [70, 71]. The molecular and cellular

basis underling PTH-mediated activation of osteoblastic

function has not been fully elucidated. Recently, osteocytes

have received attention as one of the primary targets of

PTH action in bone, as the receptor for PTH, PTHR1, is

highly expressed in them. O’Brien et al. generated a

transgenic mouse model expressing constitutively active

PTHR1 specifically in osteocytes and have presented evi-

dence that the mice exhibit accelerated bone turnover and

increased bone mass [72].

It has been reported that osteocytic expression of two

Wnt antagonists, sclerostin and Dkk1, is significantly

reduced by PTH treatment [73–75], suggesting that PTH

stimulates bone formation via down-regulation of the Wnt

antagonists and therefore, facilitated Wnt signaling. Fur-

thermore, PTH induces stabilization of b-catenin, which

mimics the canonical pathway of Wnt signaling through

the activation of PTHR1 and PKA [76, 77]. Since the Wnt

canonical pathway is known to activate cell proliferation,

e.g. through the induction of cyclin D1 [78], it was

expected at first to stimulate bone formation. In fact,

ectopic expression of constitutively stabilized b-catenin in

osteoblasts did result in a high bone mass phenotype.

However, this turned out to be caused not by stimulation of

bone formation but by reduced bone resorption through up-

regulation of OPG, an antagonist of RANKL [79]. Holmen

et al. [80] analyzed conditional KO mice for b-catenin or

Apc, a negative regulator of b-catenin, in osteoblasts using

an osteocalcin-Cre deletor, and demonstrated that the Wnt

canonical signaling increases Opg expression, while

decreasing Rankl expression. Although osteoblasts from

Apc-conditional KO mice exhibited normal differentiation

ex vivo, those from b-catenin conditional KO mice

exhibited retarded differentiation [80], suggesting that

b-catenin also has certain cell autonomous functions in

osteoblasts.

Recently, Kramer et al. [81] reported the development of

osteocyte-specific b-catenin knockout mice driven by

Dmp1 promoter. The mice exhibited mild postnatal growth

retardation and premature lethality with early-onset and

progressive bone loss along with accelerated osteoclastic

bone resorption, whereas the parameters for osteoblasts and

osteocytes were normal [81]. The increased bone resorp-

tion was ascribed to a reduction in Opg expression, which

is consistent with the notion that b-catenin signaling in

osteocytes plays a role in the control of bone resorption via

the regulation of Opg expression [81]. In contrast, it is

widely recognized that the PKA pathway activated by

PTH-PTHR1 signaling up-regulates RANKL expression in

osteoblasts [82–84] and suppresses the osteocytic expres-

sion of Sost via MEF2 [15], thereby leading to the stimu-

lation of both the resorption and formation of bone. Further

studies are required to clarify the relevance of the signaling

pathway involving PTH-R, PKA, b-catenin and RANKL/

OPG in osteocyte function to better understand the

molecular basis of the anabolic signaling of PTH in

osteocytes.

Osteocytic Osteolysis

While bone resorption by osteoclasts is believed to be a

major force driving the mobilization of minerals from

bone, there has been a long-standing hypothesis that

osteocytes themselves elute minerals from the peri-lacunar

matrix, a phenomenon called ‘‘osteocytic osteolysis’’

[85, 86]. This concept is supported by both the ontology of

osteocytes in bone and a number of experimental obser-

vations. Osteocytes are the most abundant cell type in bone

and, as mentioned previously, extend numerous and long

cell processes through canaliculi. As a result, the cell sur-

face area facing the bone matrix far exceeds that of oste-

oblasts and osteoclasts. Thus, osteocytes, forming an

extensive network throughout the skeleton, are best suited

to monitor and maintain bone matrix quality. Conceivably,

the ontology of osteocytes enables an efficient mobilization

of calcium, with a minimum amount of mineral dissolution

on an individual cell basis, and without provoking a

resorption cavity and concomitant alteration in bone

structure accompanying bona fide bone resorption by

osteoclasts.

Experimentally, the phenomenon of osteocytic osteoly-

sis has been reported in relation to PTH action on calcium

metabolism. Talmage et al., based on the observations that

PTH administration to thyroparathyroidectomized rats

induced a rapid release of calcium into the plasma, pro-

posed that the acute change they observed in the plasma

calcium level resulted from an increase in calcium trans-

port through the osteocyte-lining cell complex, rather than

osteoclastic bone resorption [87]. Krempien et al. observed

changes in the morphology of osteocytes as well as the
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distribution of intracellular organelles, with osteolysis of

their lacunar walls, following chronic administration of

PTH in rats [88]. Tazawa et al. have shown that continuous

administration of PTH into 8-month-old rats caused

enlargement of osteocytic lacunae and up-regulation of

acid phosphatase activity in osteocytes [89]. Thus,

although the concept remains to be proven experimentally,

it is tempting to speculate that osteocytes have the potential

to mobilize minerals through an as yet undefined mecha-

nism and serve important physiologic functions, especially

in the case of the need for calcium.

Osteocytes in Osteoporosis

Osteocytes produce sclerostin and Dkk1, both of which are

antagonists of Wnt signaling, and major regulators of bone

accrual and osteoblast differentiation. Thus, a negative

feedback loop is envisioned in which osteoblasts differen-

tiate into osteocytes, which in turn suppress the differenti-

ation of osteoblasts by antagonizing Wnt signaling.

Osteocytes are also supposed to generate a repellent signal

against osteoclasts in light of the observations that osteo-

clastic bone resorption is targeted toward damaged or empty

lacunae in which osteocytes are dying [90, 91]. These lines

of evidence are compatible with the working hypothesis that

osteocytes keep both osteoblastic and osteoclastic activities

in check, thereby regulating the net balance of bone

remodeling (Fig. 1). According to this model, it would

follow that a loss of osteocytic control alone could manifest

as an imbalance between bone formation and resorption, a

metabolic hallmark of osteoporosis.

Tatsumi et al. [92] developed a transgenic mouse model

expressing the receptor for diphtheria toxin (DT), a human-

specific toxin, specifically in osteocytes, using the Dmp1-

promoter. Whereas the transgenic mouse itself displayed

apparently normal bone development and metabolism, a

single injection of DT induced a massive loss of osteocytes

within 2–3 days [92]. The ablation of osteocytes in these

mice caused an acute increase in bone resorption along

with an upregulation of RANKL expression [92], which

findings are consistent with the concept that osteocytes

normally function to keep osteoclasts from aberrant acti-

vation (Fig. 1).

The osteocyte-less model provides a suitable experi-

mental system for addressing the role of osteocytes in

mechanotransduction in an intact animal [92]. Unloading

on hindlimbs by tail suspension usually induces acute and

profound bone loss due to the activation of osteoclastic

bone resorption, while osteocyte-ablated mice were resis-

tant to the unloading-induced bone loss as well as the

activation of osteoclasts. The osteocyte-less mice respon-

ded normally, however, to re-loading (following tail sus-

pension), and bone mass lost during unloading was restored

just as in control mice with intact osteocytes. Collectively,

these data were interpreted to suggest that osteocytes play

an essential role in sensing and/or transducing mechano-

signals, at least during the catabolic phase of unloading,

whereas the intact osteocytic network is not an absolute

requirement for the robust anabolic response following the

catabolic phase.

Another intriguing finding of the osteocyte ablation

model was the occurrence, even in young animals, of

microfractures in the cortical bone reminiscent of the

microcracks observed in human subjects with aging [92],

implying that osteocytes may be active in the detection

and/or repair of microdamage. Inversely, microcracks have

been reported to trigger osteocytic death by disrupting the

lacuno-canalicular system [93, 94]. Thus, a loss of osteo-

cytes could be either a cause or a result of microdamage

propagation, depending on the extent of the damage.

Estrogen is an essential hormone for the growth and

maintenance of the skeleton, and postmenopausal estrogen

deficiency causes bone loss. Tomkinson et al. reported that

Fig. 1 Osteocytic control of BMU activity: the ‘metabolostat’

concept. 1 In the resting state of the basic multicelluar unit (BMU),

osteocytes keep the activities of osteoclasts and osteoblasts in check

by sending them ‘cytostatic’ signals. 2 When osteocytes are damaged

or lost, the ‘cytostatic’ signals to both osteoblasts and osteoclasts are

eliminated. 3 As a net result, osteoclastic activation and bone

resorption prevail, according to the observations in the osteocyte

ablation model [92]. 4 Following a reversal phase, osteoblasts start to

be recruited to the resorbed cavity. 5 As osteoblasts synthesize bone

matrix, some of them become embedded in the newly formed matrix

and undergo terminal differentiation into osteocytes. During this

process, osteoid osteocytes may be active in matrix mineralization.

6 Upon completion of BMU renewal, fully differentiated mature

osteocytes regain the ‘cytostatic’ control over osteoblasts and

osteoclasts
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in cases of estrogen withdrawal following the treatment of

women with a gonadotropin-releasing hormone analogue,

osteocyte viability was reduced due to increased apoptosis

[95]. Regarding the relationship between osteocytes and

aging, Vashishth et al. reported that a reduced density of

osteocyte lacunae in human cortical bone is associated with

an accumulation of microcracks in aging [96]. Qiu et al.

reported the osteocyte density in human cancellous bone is

reduced in osteoporotic patients with vertebral fracture,

compared with non-fracture healthy controls [97]. They

also noted that the osteocyte density in iliac bone biopsies

declines with aging [98]. Taken together with the findings

in the osteocyte ablation model [92], although an acutely

massive cell loss does not occur physiologically, or even in

the usual pathological cases, these clinical observations

imply that osteocytes serve an important physiologic

function in the maintenance of skeletal health. Further-

more, a decline in their viability and/or activity could be a

substantial risk, predisposing to bone fragility and fracture.

Glucocorticoid excess is recognized as a secondary

aspect of osteoporosis and a major cause of fracture. The

glucocorticoid receptor is expressed in human osteocytes

and osteoblasts [99]. Weinstein et al. reported that osteo-

cyte apoptosis is increased in patients with glucocorticoid-

induced osteonecrosis of the hip [100]. They demonstrated

experimentally that glucocorticoid administration causes

apoptosis of osteocytes as well as osteoblasts [101]. Thus,

glucocorticoid activity in the osteoblast-osteocyte lineage

may play an etiologically causal role in the development of

bone fragility.

Currently, osteoporosis is most often treated with bis-

phosphonates (BPs), which are known as anti-resorptive

drugs. It has been reported that BPs promote survival of

osteocytes [102] and that labeled BP was found to be present

in osteocytic lacunae [103], raising the intriguing possibility

that BPs protect bone by modulating osteocytic function.

Conclusion: The ‘metabolostat’ Hypothesis

Accumulating evidence points to important roles for

osteocytes in bone and mineral homeostasis. In view of the

findings that osteocytes produce the Wnt antagonists,

sclerostin and Dkk1, to suppress bone formation and that

loss of osteocytes leads to accelerated bone resorption, it is

suggested that osteocytes play primarily a ‘‘regulatory’’

role in bone remodeling by acting as a ‘metabolostat’

(Fig. 1). According to this model, osteocytes send ‘cyto-

static’ signals to both osteoblasts and osteoclasts in order to

keep their functions in proper check (Fig. 1).

Mechanical and hormonal signals are sensed by osteo-

cytes and modulate the ‘metabolostat’ function (Fig. 2).

Aging, mechanical overload or glucocorticoid excess as

well as decreased blood supply causes osteocytic loss and/

or dysfunction, ultimately leading to bone fragility. Oste-

ocyte function depends on the integrity of the lacuno-

canalicular network, which senses mechanical stress,

regulates surrounding matrix properties, and under certain

circumstances sends information to osteoblasts and bone-

lining cells at the bone surface. Osteocytes have often been

introduced as ‘the third cell’ of bone, but in fact they

represent the principal cell type controlling bone remod-

eling, coordinately regulating the activities of two effector

cells, osteoblasts and osteoclasts, in response to mechanical

and hormonal stimuli (Figs. 1, 2).
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