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Abstract
Pericytes surrounding endothelial cells in the capillaries are emerging as an attractive cell resource, which can show a large 
variety of functions in ischemic stroke, including preservation of the blood–brain barrier, regulation of immune function, and 
support for cerebral vasculature. These functions have been fully elucidated in previous studies. However, in recent years, 
increasing evidence has shown that pericytes play an important role in neurological recovery after ischemic stroke due to 
their regenerative function which can be summarized in two aspects according to current discoveries, one is that pericytes 
are thought to be multipotential themselves, and the other is that pericytes can promote the differentiation of oligodendro-
cyte progenitor cells (OPCs). Considering the neuroprotective treatment for stroke has not been much progressed in recent 
years, new therapies targeting pericytes may be a future direction. Here, we will review the beneficial effects of pericytes in 
ischemic stroke from two directions: the barrier and vascular functions and the regenerative functions of pericytes.
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Introduction

Globally, stroke is the second-leading cause of death and the 
third leading cause of death and disability combined in 2019 
(GBD 2019 Stroke Collaborators, 2021). Ischemic stroke is 
the most common subtype of stroke. In 2019, approximately 
73% of stroke cases are ischemic strokes in China (Ma et al., 
2021), compared to 62% worldwide (GBD 2019 Stroke Col-
laborators, 2021). Although multiple innovative approaches 
to improve the prognosis of ischemic stroke (e.g., reperfu-
sion therapy (Albers et al., 2018; Hacke et al., 2008; Ma 
et al., 2019; National Institute of Neurological Disorders 
& Stroke rt-PA Stroke Study Group, 1995; Nogueira et al., 
2018; Suzuki et al., 2019; Thomalla et al., 2018; Yang et al., 
2020), and neuroprotective therapy (Hill et al., 2020; Xu 

et al., 2021)) have flourished over the past few decades (Her-
pich & Rincon, 2020), the treatment of ischemic stroke has 
now reached a plateau. We have intensely and often been 
hindered in the translation of preclinical studies into suc-
cessful clinical studies (Lyden, 2021), particularly in neu-
roprotective therapy (Paul & Candelario-Jalil, 2021). At the 
2017 Stroke Treatment Academic Industry Roundtable X 
(STAIR X), the concept of Brain Cytoprotection was first 
proposed because stroke affects not only neurons but also 
the entire neurovascular unit and white matter (Savitz et al., 
2019).

The Neurovascular Unit (NVU) was formalized in 2001 
and has drawn attention to the interdependence between 
brain cells and cerebral blood vessels (Iadecola, 2017). The 
NVU consists of vascular components (pericytes, smooth 
muscle cells, endothelial cells), glial cells (astrocytes, 
oligodendrocytes, microglia), and neurons (Harder et al., 
2002; Lo & Rosenberg, 2009; Lo et al., 2003). Interestingly, 
almost every neuron in the human brain has its own capil-
laries which account for more than 90% of the total blood 
vascular volume in the brain (Zlokovic, 2008). Therefore, 
impaired perfusion of the microvasculature after recanali-
zation therapy can lead to lower-than-expected clinical out-
comes (Ames et al., 1968; Goyal et al., 2016). As a member 
of the vascular part in the NVU, pericytes are present in 
small cerebral vessels including capillaries, pre-capillary 

Shuqi Hu and Bingjie Yang have contributed equally to this work 
and share first authorship.

 * Hao Zhang 
 syzhanghao@zju.edu.cn

1 Department of Neurology, Affiliated Hangzhou First 
People’s Hospital, Zhejiang University School of Medicine, 
Hangzhou 310006, Zhejiang, China

2 Department of Neurology, The Fourth Clinical School 
of Medicine, Zhejiang Chinese Medical University, 
Hangzhou 310053, Zhejiang, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s12017-023-08748-z&domain=pdf


458 NeuroMolecular Medicine (2023) 25:457–470

1 3

arterioles, and post-capillary venules (Winkler et al., 2011). 
Multiple studies have highlighted the important role of peri-
cytes in the NVU (Sweeney et al., 2016), such as regulating 
Blood–Brain Barrier (BBB) permeability (Zlokovic, 2011), 
neuroinflammation (Rustenhoven et al., 2017), and cerebral 
blood flow (CBF) (Hall et al., 2014). While these studies 
focused on the barrier and vascular functions of pericytes, 
more recent studies have shifted attention to the pluripotent 
stem cell potential (Sakuma et al., 2016) and the promotion 
of white matter functions (Shibahara et al., 2020a).

Data show that in previous randomized trials, about 70% 
of patients treated with reperfusion successfully (modified 
Thrombolysis in Cerebral Infarction (mTICI) scale score 
2b or 3), but only 27% of these patients were disability-
free at 90 days (Goyal et al., 2016). This may be partly due 
to the irreversible injury of brain tissue before reperfusion 
occurred. Therefore, if pericytes have the ability to trans-
form into other neurovascular unit components or promote 
white matter differentiation, then treatment of pericytes will 
play a key role in the recovery of motor, sensory, and emo-
tional impairment after stroke.

In this review, we will start with the morphological struc-
ture and the vascular homeostatic functions of pericytes and 
then focus on the latest research on regenerative character-
istics of pericytes which will provide new directions for the 
treatment of ischemic stroke.

Pericytes in Central Nervous System (CNS)

Since the pericytes were first discovered by Eberth (1871), 
described by Rouget (1873) as a cluster of contractible cells 
surrounding endothelial cells, and eventually named “peri-
cytes” by Zimmermann (1923), the studies of pericytes have 
become increasingly popular in the last 50 years, especially 
in the brain due to the development of electron microscopy 
(Caporali et al., 2017). In vertebrates, pericytes are found in 
almost all tissues and located on the abluminal side of the 
endothelium in both continuous and fenestrated microvessels 
(Díaz-Flores et al., 2009). The morphology of pericytes is 
largely related to location (Joyce et al., 1984) and type of 
vessels (Armulik et al., 2011). In terms of the location of the 
pericytes, they can be divided into three types: precapillary, 
capillary, and postcapillary (Zimmermann, 1923). Usually, 
pericytes display an elongated, stellate morphology contain-
ing a cell body, nuclear region, or perinucleus, and produce 
a highly branched structure consisting of longitudinal and 
circumferential branching systems that wrap the endothe-
lium. The primary (longitudinal) processes parallel to the 
long axis of the vessel, with smaller ones (circumferential) 
proportionally encircling the vessel wall (Díaz-Flores et al., 
2009; Takahashi et al., 1997). Using Cre-recombinase driver 
mouse lines, Hartmann et al. identified that pericytes can be 

distinguished as helical pericytes and mesh pericytes in cap-
illaries based on the morphology of the trunk and branches. 
The helical pericyte is the simplest form, with the primary 
trunk and branches being thin singular strands, approxi-
mately 2  µm in diameter, and the secondary processes 
branching off from the thin single strands, often present in 
pairs, forming a helical structure. As for its most complex 
form, is more commonly found in larger diameter microves-
sels (6–10 µm). The primary trunk of it shapes a mesh-like 
structure surrounding the entire vessel, hence comes the 
name mesh pericyte (Hartmann et al., 2015) (Fig. 1). Peri-
cytes of the CNS and retina have the highest coverage ratio 
(Daneman et al., 2010). Using Electron Microscopy and 
3D Reconstruction, Mathiisen TM et.al demonstrated that 
pericytes and their protrusions covered 37% of the endothe-
lial tube circumference (Mathiisen et al., 2010), which can 
partially explain the important role of pericytes in the BBB 
permeability (Daneman et al., 2010). The ratio of pericytes 
to endothelial cells and the area of pericytes covering the 
endothelium are related to the tightness of the junctions 
between the endothelium, that is, the higher the number of 
pericytes and their coverage is, the better the microvascular 
barrier integrity works (Shepro & Morel, 1993).

The Temporal Dynamics of Pericyte 
Functions in Ischemic Stroke

In the acute phase of ischemic stroke, pericytes mainly 
exhibit the function of constricting blood vessels (Korte 
et al., 2022), which may further aggravate the injury of cere-
bral infarction and cause no-reflow phenomenon after reper-
fusion (Yemisci et al., 2009). Immediately after performing 
the vasoconstrictive function, pericytes die or separate from 
blood vessels (Hall et al., 2014), resulting in decreased peri-
cyte coverage and increased BBB permeability in the acute 
phase. The function of mediating neuroinflammation also 
manifests after BBB disruption (Rustenhoven et al., 2017). 
72 h after ischemic stroke, the coverage of pericytes recovers 
(Zhou et al., 2018a) and simultaneously exerts the protective 
effect of the BBB and the function of angiogenesis (Zhang 
et al., 2022). In the late recovery phase of ischemic stroke, 
the regenerative function of pericytes gradually appeared 
(Yang et al., 2017) (Fig. 2).

Barrier and Vascular Functions of Pericytes

Maintaining BBB Integrity

Pericytes share a basement membrane (BM) with endothe-
lial cells and are also covered by a BM continuous with the 
BM of endothelial cells (Ayloo et al., 2022). This allows for 
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sophisticated cell-to-cell interactions between two cells. In 
areas where the direct connection is absent, interdigitations 
of pericyte and endothelial cell membranes form peg-and-
socket contacts (Sims, 1991) which contain tight-, gap-, 
and adherence junctions (Armulik et al., 2005). Although 
endothelial cells perform most of the properties of the BBB 
(Daneman, 2012), their presence alone does not keep the 
BBB functioning properly (Ayloo et al., 2022). The intri-
cate connection between pericytes and endothelial cells 
determines the important role of pericytes in BBB. Also, 
previous studies have demonstrated that pericytes help regu-
late the BBB from embryogenesis (Armulik et al., 2010; 
Daneman et al., 2010). Platelet-derived growth factor-BB/
platelet-derived growth factor receptor-beta (PDGF-BB/
PDGFRβ) signaling and Angiopoietin (Ang)/Tie2 system 
have a critical role in BBB stabilization throughout growth 
and development (Sweeney et al., 2016). Lack of endothe-
lial-secreted PDGF-BB or loss of pericyte PDGFRβ can lead 
to disruption of BBB integrity (Winkler et al., 2010), result-
ing in embryonic lethality or various neurological disorders. 
Angiopoietin-1 (Ang-1) has been shown to be constitutively 
expressed in pericytes and activates the Tie2 receptor in 
endothelial cells to prevent vascular leakage (Gurnik et al., 
2016). While endothelial cell-derived angiopoietin-2 (Ang-
2) is reported to increase both the paracellular and the tran-
scellular permeability at the BBB in a mouse stroke model 
(Gurnik et al., 2016). N-cadherin plays a significant role 
in endothelial cell-pericyte interactions mediated by brain 
endothelial cells Smad4 and is thought to be an initial signal 
for BBB development and increases in angiogenic vessels 
(Li et al., 2011). Pericyte-endothelial cell interactions may 
not be unique. Ando et al. found that a pericyte contacts 
multiple endothelial cells and can extend to more than one 
capillary (Ando et al., 1999), which means it integrates sig-
nals along the length of one vessel and also communicates 
with other vessels (Bergers & Song, 2005).

In addition to maintaining the BBB through signal-
ing with endothelial cells, the existence of pericytes can 
also reduce the transmembrane transport of endothelial 
cells.  Mfsd2a−/− mice exhibit a sharp increase in vesicular 
transport under electron microscopy without variation of 
endothelial tight junctions, leading to leakage of BBB from 
embryonic to adult periods (Ben-Zvi et al., 2014). A recent 
study demonstrates that vitronectin-integrin α5 signaling 
from pericytes to endothelial cells maintains barrier integrity 
by actively inhibiting transcytosis in endothelial cells (Ayloo 
et al., 2022). A single-cell RNA analysis of pericytes-func-
tion-loss mice found that hotspot sites were hallmarked by 
low Mfsd2a and low Ang-2 expression (Mäe et al., 2021) 
(Fig. 3). Studies related to the interaction between pericytes 
and endothelial cells in ischemic stroke are also emerging. 
In oxygen deprivation models, pericytes have a stronger abil-
ity to maintain blood–brain barrier integrity than astrocytes 

Fig. 1  Two types of pericytes and NVU. According to the morphology of the 
trunk and branches, pericytes can be distinguished as helical pericytes and 
mesh pericytes in capillaries. a The helical pericyte: the primary trunk and 
branches are thin singular strands, and the secondary processes branch off from 
the thin single strands, forming a helical structure. b The mesh pericyte: the 
primary trunk shapes a mesh-like structure surrounding the entire vessel, and 
is more commonly found in larger diameter microvessels (6–10 µm). c NVU: 
The NVU is composed of vascular components, glial cells, and neurons
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Fig. 2  The temporal dynamics of pericyte functions in ischemic 
stroke. Pericytes mainly exhibit the function of constricting blood 
vessels and increasing BBB permeability in the acute phase. Follow-
ing vasoconstrictive action, pericytes die or separate immediately 
from blood vessels. The function of mediating neuroinflammation 

also manifests after BBB disruption and lasts a long time. In the sub-
acute phase, pericytes exert the protective effect of the BBB and the 
function of angiogenesis. In the late chronic phase of ischemic stroke, 
the regenerative function of pericytes appeared

Fig. 3  Cell-to-cell interactions between pericytes and endothelial 
cells. Pericytes share a BM with endothelial cells and are also cov-
ered by a BM. PDGF-BB/PDGFRβ signaling and Ang/Tie2 system 
are the basis for maintaining the stability of the BBB. Cell-to-cell 
interactions between two cells keep the BBB functioning properly. In 

areas where the BM is absent, pericytes and endothelial cells mem-
branes form peg-and-socket contacts. The transmembrane transport in 
endothelial cells can be reduced by the existence of pericytes through 
Mfsd2a and vitronectin-integrin α5 signaling
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during severe and prolonged hypoxic conditions (Abbott, 
2002; Al Ahmad et al., 2009). Fernández-Klett F el at. found 
that early pericyte death (within 24 h) preceded endothelial 
cell degeneration (after day 5) in the MCAO model (Fernán-
dez-Klett et al., 2013).

The crosstalk between pericytes and astrocytes also plays 
an important role in maintaining BBB integrity. Astrocytic 
end-feet express the water channel protein aquaporin-4 
(AQP4), which plays a vital role in the integrity of the BBB 
(Abbott et al., 2006). Under normal conditions, pericytes 
regulate the distribution of AQP4 in the end-feet of astro-
cytes (Armulik et al., 2010; Gundersen et al., 2014). When 
pericytes are injured in ischemic stroke, the regulator of 
G-protein signaling 5 (RGS5) is upregulated before they 
detach from the blood vessels (Özen et al., 2014). And in 
a subsequent study, it was proved that the loss of RGS5 in 
pericytes contributes to the retention of AQP4 in the astro-
cyte end-feet and plays a neurovascular protective role (Özen 
et al., 2018). Similarly, astrocytes also help pericytes main-
tain BBB stability by secreting laminin (Yao et al., 2014). In 
contrast, semaphorin 4D (Sema4D) from astrocytes binds to 
PlexinB1 in pericytes and disrupts BBB integrity after stroke 
in rats (Zhou et al., 2018b.

Putting aside the association between pericytes and 
neighboring cells, only the pericytes themselves were taken 
out. Pericytes are an important source of extracellular matrix 
(ECM) in the BM (Xu et al., 2019). There are four major 
ECM proteins in the BM: collagen IV, laminin, nidogen, 
and perlecan (Yurchenco, 2011). Pericyte-derived laminin is 
associated with the maintenance of BBB permeability (Gau-
tam et al., 2016). However, the effect of laminin on BBB 
is controversial in relation to the type of BBB. Lamininα5 
and lamininα4 derived from mural cells may attenuate BBB 
damage during intracerebral hemorrhage by reducing tran-
scytosis (Gautam et al., 2020). On the contrary, lamininα5 
was demonstrated to play a negative role in ischemic stroke, 
and lamininα5-PKO mice exhibited milder neuronal injury 
and attenuated vascular damage, suggesting that inhibition 
of that signaling may have a neuroprotective effect (Nirwane 
et al., 2019). Also, it was found that endothelial cell-derived 
perlecan is upregulated in the BM, a process critical to the 
repair of BBB functions after ischemic stroke (Nakamura 
et al., 2019). Although current studies on pericyte-associated 
BM modifications after stroke mainly focus on laminin and 
perlecan, perhaps BM-targeted therapy is a path forward 
(Kang & Yao, 2020). HIF-1 once thought to be a protective 
factor, is produced under hypoxic conditions in the cardio-
vascular system (Bishop & Ratcliffe, 2015). However, HIF-1 
loss-of-function in a model of cerebral ischemia shows less 
pericyte death, resulting in broader vascular coverage and 
better integrity in BBB. Therefore, that reduces the degree 
of infarction and cerebral edema post-stroke (Tsao et al., 
2021). From a perspective other than molecular, Tunneling 

Nanotubes (TNT), open membranous channels for cell-to-
cell communication (Rustom et al., 2004), were thought 
to show a functional role in the crosstalk among BBB. 
Ischemia-induced astrocyte apoptosis is reduced by TNT-
mediated mitochondrial transfer of pericytes (Pisani et al., 
2022), which allows for repair of the BBB after ischemic 
injury.

Recently, increasing studies have found pericytes to 
be heterogeneous (Dias Moura Park et al., 2016; Prazeres 
et al., 2017), implying that pericytes may exhibit differ-
ent features after stroke. Type-1 pericytes are considered 
to be physiological capillary PCs, while type-2 pericytes 
are pathological. Type-2 pericytes were first described in 
skeletal muscle using Nestin-GFP/NG2-DsRed transgenic 
mice (Birbrair et al., 2013). And then they were claimed 
to be recruited during tumor angiogenesis (Birbrair et al., 
2014). In the brain, PDGFRB + /SMA + /MYH11- (type-2) 
pericytes may be a cellular biomarker associated with the 
degree of BBB disruption, not limited to the disease state 
(Bohannon et al., 2020).

It has been proved that imperfect BBB recovery post-
stroke may increase the risk of aftermath events and cog-
nitive impairment (Taheri et al., 2011). Cerebral pericytes 
are integral components of the neurovascular unit, which 
governs the BBB (Ding et al., 2021). They are indispensable 
for BBB, so the opinion that maintaining pericytes function 
contributes to stroke recovery is increasingly reinforced.

Regulating Cerebral Blood Flow

Pericytes surround around blood vessels and constrict capil-
laries, leading to a decrease in CBF (Fernández-Klett et al., 
2010; Peppiatt et al., 2006). In addition to the constrict abil-
ity, pericytes can be relaxed by neuronal activity and the 
neurotransmitter glutamate to dilate capillaries (Hall et al., 
2014). However, the function of regulating CBF is unclear 
due to the difficulties in distinguishing pericytes from vascu-
lar smooth muscle cells (SMCs). What is clear is that SMCs 
on arterioles and ensheathing pericytes on pre-capillary arte-
rioles (pre-capillary SMCs) control blood flow (Hill et al., 
2015). To precisely identify these two types of cells, many 
markers have been studied in recent years and have been well 
reviewed (Bohannon et al., 2021; Grant et al., 2019; Zheng 
et al., 2020). Meanwhile, a technology to label pericytes in 
live models without marking SMCs was developed in 2017 
(Damisah et al., 2017). In addition to difficulties in iden-
tification, the intrinsic connectivity of the cerebrovascular 
system hinders the certainty of pericyte regulation of CBF 
function of pericytes. Recently, the optical ablation of single 
capillary pericytes was used to isolate the effect of pericyte 
loss on local blood flow. The results suggest that capillary 
pericytes can modulate capillary diameter, influence blood 
flow in vivo, and establish basal capillary flow resistance 
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(Hartmann et al., 2021). Bohannon et al. demonstrated that 
pericytes first constrict the capillaries and then end up with 
death when capillaries are exposed to ischemia (Hall et al., 
2014). After stroke, preventing pericytes from shrinking and 
dying may reduce long-term blood flow to injured neurons. 
Nonetheless, novel methods are needed to further study the 
role of pericytes in regulating blood flow.

Mediating Neuroinflammation

Neuroinflammation is involved in the pathophysiology of 
almost all neurological diseases (Rustenhoven et al., 2017). 
In ischemic stroke, this process probably includes oxidative 
stress, increased matrix metalloproteinase (MMP) produc-
tion, infiltration of peripheral immune cells, and activation 
of microglia and astrocytes (Candelario-Jalil et al., 2022).

The role of pericytes in neuroinflammation has been stud-
ied for decades (Rustenhoven et al., 2017). Pericytes of the 
central nervous system were thought to have the ability to 
present antigens to T-lymphocytes (Balabanov et al., 1999). 
Then in vitro experiments which were stimulated with tumor 
necrosis factor (TNF) or lipopolysaccharide (LPS) demon-
strated pericytes have the ability to detect inflammation 
because they have pattern recognition receptors (Guijarro-
Muñoz et al., 2014; Stark et al., 2013). These studies reveal 
the active role of pericytes in innate immune responses, con-
cluded to support immune surveillance.

Furthermore, in the experimental autoimmune encepha-
lomyelitis (EAE) models, the infiltration of leukocytes into 
the CNS was negatively correlated with the coverage of peri-
cytes in the vasculature (Török et al., 2021). However, it is 
not entirely clear whether CNS pericytes exhibit a pro- or 
anti-inflammatory profile (Rustenhoven et al., 2016). The 
polarity of pericytes may be similar to that of microglia in 
neuroinflammation under an ischemic environment (Ma 
et al., 2017). Therefore, more studies are needed to demon-
strate the role of pericytes in neuroinflammation in ischemic 
stroke.

Promoting Angiogenesis

New blood vessels are formed through angiogenesis, a multi-
factory process requiring synchrony between endothelial 
cells and pericytes (Mastrullo et al., 2020). Angiogenesis 
after stroke can mitigate hypoxia-induced damage caused 
by ischemia (Ergul et al., 2012). And in theory, angiogenic 
therapy can save the ischemic border zone (Ergul et al., 
2012). However, given the notion that treatments that pro-
mote angiogenesis may exacerbate stroke outcomes since 
new angiogenesis-induced vessels are more permeable than 
usual (Yang & Torbey, 2020). Accordingly, we speculate 
that the synergy of pericytes especially the function of pro-
moting vascular maturation is important in this process.

In a newly formed blood vessel, pericytes are recruited 
through communication with endothelial cells, resulting in 
the formation of a new BM (Stratman et al., 2009). And 
PDGF-BB/PDGFRβ signal was thought to lead to pericyte 
recruitment and then stabilize the blood vessel (Gaengel 
et al., 2009). Also, angiogenesis and vascular integrity in the 
ischemic brain are partially modulated by pericyte-specific 
expression of vascular endothelial growth factor receptor 1 
(VEGFR1) (Zechariah et al., 2013). When VEGF is present, 
Ang2/Tie2 signals make the system highly plastic, forming 
new vessels continuously (Ghori et al., 2022).

Regenerative Functions of Pericytes

Acting as Multipotent Stem Cells

The regenerative potential of pericytes has been discussed 
in various organs in addition to CNS. Since the discovery 
of the transformation of pericytes into microglia with the 
help of astrocytes in the cat cerebral cortex (Barón & Gal-
lego, 1972), the debate on the potential of cerebral pericyte 
pluripotent stem cells has begun (Table 1).

Using cell markers, nestin/NG2-positive pericytes are 
considered to be a source of adult stem cells in vitro (Dore-
Duffy et  al., 2006). Under hypoxic conditions in vitro, 
human brain-derived pericytes were found to upregulate 
the expression of activated microglial mRNA, implying that 
they acquire a microglial cell phenotype (Özen et al., 2014). 
Furthermore, they showed that pericytes express microglia 
markers not only in vitro but also in human post-stroke 
brain tissue. In these observations, ischemia/hypoxia might 
enhance stem-like activity in brain pericytes, but we do not 
know which exact mechanisms are essential for their induc-
tion (Nakagomi et al., 2011). Reprogramming is reckoned 
as a pivotal process in transformation following the indica-
tions that after ischemia or hypoxia pericyte marker expres-
sion was downregulated, while stem cell-like marker was 
upregulated. Under oxygen/glucose deprivation, pericytes 
acquire the capacity of multipotential stem cells and can 
differentiate into major the BBB/neurovascular unit compo-
nents because of reprogramming (Sakuma et al., 2016). This 
strategy could be used to induce pluripotency in pericytes 
to promote regeneration (Karow et al., 2018). Another pos-
sible mechanism was recently explained. Oxidative stress 
after ischemia with the expression of Nrf2 may trigger peri-
cytes to acquire stemness (Sakuma et al., 2022). Similarly, in 
2016, Sakuma R et al. revealed that pericytes show multipo-
tent activity in MCAO models indicating that pericytes may 
be a novel source of microglia after ischemic stroke (Sakuma 
et al., 2016). Ischemia-induced multipotent stem cells (iSCs) 
in the human post-stroke brain were first isolated in 2017, 
and they are likely pericyte derivatives. More importantly, 
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they may help neural repair or regeneration in patients with 
ischemic stroke (Tatebayashi et al., 2017). The anti-ischemic 
effect of pericytes due to their multipotency has been used 
for limb ischemia (Yoshida et al., 2020). Recently, the line-
age-tracing technique was used to trace pericyte fates after 
ischemic stroke. They found that  SMAlow/undetectable pericytes 
differentiated into both microglia and macrophages after the 
acute period of ischemic stroke (Nirwane & Yao, 2022). In 
conclusion, these studies suggest that pericytes not only have 
a strong migratory and proliferative response to ischemic 
brain injury but also serve as a source of neural lineage cells. 
While lineage-tracing experiments utilizing an inducible 
Tbx18-CreERT2 line insist that pericytes as well as vascular 
smooth muscle cells fail to contribute to other cell lineages, 
it is noteworthy that this study did not use an ischemia model 
(Guimarães-Camboa et al., 2017).

Furthermore, apart from transforming into neural line-
age cells, pericytes are also revealed to be fibrotic activity. 
Type A pericytes were first proposed in models of spinal 
cord injury (Göritz et al., 2011). Blocking the proliferation 
of such cells will result in the inability to seal the damaged 
tissue. Interestingly, single-cell analyses later challenged this 
result suggesting such cells refer to fibroblast-like rather than 
pericytes (Vanlandewijck et al., 2018). Same to the previous 
work, Roth M et al. illustrated that the fibrotic ECM is not 
major coming from pericytes, so targeting pericytes to scar 
formation after stroke may be useless (Roth et al., 2020). 
However, type A pericytes were once again shown to be 
the source of fibrotic ECM, and this result is not limited to 
ischemic injury but is conserved across diverse central nerv-
ous system diseases (Dias et al., 2021). To further prove this 

idea, a single-cell RNA sequencing analysis was performed 
revealing that pathways related to fibrosis were enriched 
in pericytes of cardiac and cerebral ischemic injury (Pham 
et al., 2021).

The controversy over the presence of pluripotent stem cell 
potential in pericytes is mainly due to the lack of an appro-
priate marker for pericytes as well as multipotent pericytes 
if they existent (Yoshida et al., 2020). Further studies on this 
area need to be conducted.

Promoting OPCs Differentiation

It has been previously illustrated that more than two of 
third patients suffered disability after ischemic stroke even 
if they were successfully treated with reperfusion (Goyal 
et al., 2016). Cerebral white matter (WM) is particularly 
vulnerable to vascular occlusion. Numerous studies have 
demonstrated that WM damage after stroke is associated 
with long-term sensorimotor deficits and cognitive decline 
(Arai, 2020; Matute et al., 2013).

The WM is mainly composed of myelinated axons and 
glial cells. Multiple myelin sheaths produced by oligoden-
drocytes wrap the axons. Oligodendrocytes as important 
WM components are originally from OPCs (Bercury & 
Macklin, 2015). Myelin repair and oligodendrocyte forma-
tion in the adult brain are determined by OPCs (Menn et al., 
2006) which comprise 5–8% of all the cells in the adult brain 
and are abundant in both grey and white matter areas (Daw-
son et al., 2000). Demyelination causes oligodendrocytes to 
split and differentiate, replacing lost oligodendrocytes with 
new ones (Levine et al., 2001). Therefore, targeting OPCs 

Table 1  Studies of the multipotency of pericytes in cerebral ischemia

MCAO middle cerebral artery occlusion, iNSPCs ischemia-induced neural stem/progenitor cells, iPCs pericytes following ischemia, VSC vascu-
lar stem cells, OGD oxygen–glucose deprivation, PCs-OGD pericytes cultured under oxygen–glucose deprivation

Year Study type Pericytic identity Materials Phenotype acquired References

2011 In vitro Circulating PDGFRβ ( +) cells The venous blood of stroke 
patients

Neural or vascular cell lineage Jung et al. (2011)

2011 In vitro PDGFRβ ( +) MCAO mice Pial nestin-positive iNSPCs Nakagomi et al. (2011)
2014 (1) In vivo

(2) Ex vivo
Rgs5( +) (1) MCAO  Rgs5gfp/+ mice

(2) Post-stroke human brain 
tissues

microglial Özen et al. (2014)

2015 Ex vivo Nestin/PDGFRβ/NG2 ( +)
CD31 (-)

(1) iPCs from MCAO mice 
brains

(2) Human PCs-OGD

Neural and vascular cell lineage Nakagomi et al. (2015)

2016 Ex vivo PDGFRβ( +) (1) iPCs from MCAO mice 
brains

(2) mice PCs-OGD

Microglial and multipotent 
VSC activity

Sakuma et al. (2016)

2017 Ex vivo αSMA/NG2/PDGFRβ ( +) Post-stroke human brain tissues Neural and vascular cell lineage Tatebayashi et al. (2017)
2022 In vivo PDGFRβ ( +)

SMAlow/undetectable
MCAO mice Microglia-like and mac-

rophage-like cells
Nirwane and Yao (2022)

2022 In vitro αSMA/PDGFRβ/NG2 ( +)
CD31 (−)

MCAO mice Neural cell lineage Sakuma et al. (2022)
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to repair WM after ischemic stroke may promote functional 
recovery. Although there is a vast body of related research 
on glial cells such as microglia (Shi et al., 2021) and astro-
cytes (Miyamoto et al., 2015), it mostly falls into pericytes 
in this section.

It has been reported that in the perivascular region of 
cerebral WM, pericytes and OPCs may attach and support 
each other (Maki et al., 2015). Using pericyte-deficient mice, 
pericyte degeneration was found to disrupt WM microcir-
culation, which results in an accumulation of toxic blood-
derived fibrinogen deposits leading to a loss of myelin, 
axons, and oligodendrocytes (Montagne et al., 2018). A 
variety of molecules secreted by pericytes may be required 
for OPC-to-oligodendrocyte renewal. A-Kinase Anchor Pro-
tein 12 (AKAP12) is thought to mainly express on pericytes 
and is necessary for OPCs function to keep WM homeosta-
sis (Maki et al., 2018). Lama2 has also been identified as a 
pericyte-derived factor that promotes OPCs differentiation 
in multiple sclerosis (MS) (De La Fuente et al., 2017). It is 
shown to support OPCs differentiation into oligodendrocytes 
without affecting remyelination from OPCs in vivo. Besides 
functioning in demyelinating diseases, pericytes may pro-
mote peri-infarct oligodendrogenesis after ischemic stroke 
resulting in functional recovery (Shibahara et al., 2020a). 
The crosstalk between pericytes and macrophages may be 
critical for this procession in poststroke tissue repair (Shiba-
hara et al., 2020b). However, the origin of pericytes in the 
infarct area should be further validated.

It is important to note that neurological disorders asso-
ciated with cognitive dysfunction, cerebrovascular dys-
function, and WM lesions are characterized by a loss of 
pericyte coverage (Ding et al., 2020). Thus, the functional 
role of pericytes is not limited to vascular homeostasis but 
also includes modulating the progenitor cells of adult CNS 
regeneration.

Conclusions

We summarize the functions of pericytes after stroke as 
maintaining BBB, regulating CBF, mediating immune 
responses, promoting angiogenesis, acting as pluripotent 
stem cells, and promoting OPCs differentiation. Accord-
ingly, pericytes are a promising source of cells for cell 
therapy and tissue engineering. In the acute phase, inhibit-
ing the contractile function of pericytes and enhancing the 
function of protecting the BBB may help reduce the occur-
rence of hypoperfusion, edema, and increased infarct size 
after ischemic stroke. In subacute and late phases, focusing 
on the regenerative function of pericytes may contribute to 
neurological recovery. However, there is still much contro-
versy surrounding the studies of pericytes. Firstly, accurate 
cellular markers for pericytes need to be identified so that 

the function of pericytes can be distinguished from vascular 
smooth muscle cells. Secondly, whether there is the hetero-
geneity of pericytes in the pathological process after stroke 
should be further studied. If pericytes, like microglia, are 
polarized, then drugs that target the polarization of pericytes 
may be effective in the treatment of stroke. Single-cell stud-
ies on pericyte heterogeneity are now available (Vanlandewi-
jck et al., 2018). This may be the way forward as single-cell 
studies have the ability to differentiate between cell sub-
populations (Liu & Zhang, 2022; Qiu et al., 2021). Finally, 
Research on pericytes after ischemic stroke is more limited 
to in vitro studies. In vivo, it remains unclear whether they 
differentiate into neural lineage cells. There is still a long 
way from clinical trials, so more attention should be paid to 
pericytes in ischemic stroke. Overall, based on the proper-
ties and functions that have been identified so far, further 
research on pericytes may provide new directions for the 
treatment of neurological recovery after stroke.
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