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Abstract
As a multi-functional cellular organelle, mitochondrial metabolic reprogramming is well recognized as a hallmark of cancer. 
The center of mitochondrial metabolism is oxidative phosphorylation (OXPHOS), in which cells use enzymes to oxidize 
nutrients, thereby converting the chemical energy to the biological energy currency ATPs. OXPHOS also creates the mito-
chondrial membrane potential and serve as the driving force of other mitochondrial metabolic pathways and experiences 
significant reshape in the different stages of tumor progression. In this minireview, we reviewed the major mitochondrial 
pathways that are connected to OXPHOS and are affected in cancer cells. In addition, we summarized the function of novel 
bio-active molecules targeting mitochondrial metabolic processes such as OXPHOS, mitochondrial membrane potential 
and mitochondrial dynamics. These molecules exhibit intriguing preclinical and clinical results and have been proven to be 
promising antitumor candidates in recent studies.
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Mitochondrial OXPHOS and Its 
Reprogramming in Glioblastoma Cells

Mitochondria are dynamic organelles critical to a diverse 
array of essential metabolic functions, yet their most well 
characterized role is being the cellular “powerhouse”. In the 
presence of O2, the ETC drives the synthesis of ATP from 
ADP through ATP synthase (Complex V) by the mechanism 
of chemiosmotic coupling (Cooper, 2000; Voet et al., 2006) 
(Fig. 1). OXPHOS is integral in a vast number of biochemi-
cal processes including the tricarboxylic acid cycle (TCA, 
or Kreb cycle), generation of reactive oxygen species (ROS), 

maintenance of membrane potential, and regulation of mito-
chondrial morphology (Legros et al., 2002). Mitochondria in 
cells are connected by a dynamic network that can undergo 
structural alterations in a process termed mitochondrial 
dynamics. It is balanced by two highly regulated processes: 
mitochondrial fission and fusion (Mishra & Chan, 2016). 
Three dynamin-related proteins regulate mitochondrial 
fusion: mitofusin-1 (MFN1), mitofusin-2 (MFN2), and optic 
atrophy 1 (OPA1); whereas, two proteins regulate mitochon-
drial fission: dynamin-1-like protein (DRP1) and mitochon-
drial fission 1 protein (FIS1) (Mishra & Chan, 2016). Mito-
chondrial dynamics tightly correlate with OXPHOS activity 
and mitochondrial membrane potential: fusion requires high 
potential and active OXPHOS, while fission is induced by 
uneven mitochondrial membrane potential and damaged 
OXPHOS (Liesa & Shirihai, 2013).

The original description of the Warburg effect (War-
burg et al., 1927) first illustrated the seeming paradoxi-
cal observation that unlike normal tissues, cancer cells 
tend to undergo glycolysis to produce lactate even in the 
presence of O2 in a process termed aerobic glycolysis. 
Compared to oxidative phosphorylation in which pyru-
vate gets completely oxidized into CO2 in the presence of 
O2, aerobic glycolysis produces significantly less ATP per 
glucose molecule. It is paradoxical because in the setting 

Zhihao Wu, WinsonS. Ho and Rongze Lu have contributed equally 
to this work.

 *	 Zhihao Wu 
	 zhihaowu@smu.edu

 *	 Rongze Lu 
	 Rongze.Lu@austin.utexas.edu

1	 Department of Biological Sciences, Dedman College 
of Humanities and Sciences, Southern Methodist University, 
Dallas, TX 75275, USA

2	 Department of Neurosurgery, Dell Medical School, The 
University of Texas at Austin, Austin, TX 78712, USA

http://orcid.org/0000-0003-1600-9299
http://crossmark.crossref.org/dialog/?doi=10.1007/s12017-021-08678-8&domain=pdf


19NeuroMolecular Medicine (2022) 24:18–22	

1 3

of increased cellular proliferation, one would expect can-
cer cells to adopt a more efficient metabolic pathway. In 
glioblastoma (GBM), the most aggressive and prevalent 
form of primary brain tumors (Kanderi & Gupta, 2020), 
it has been shown that as much as 90% of glucose is con-
verted into lactate (DeBerardinis et al., 2007). It is now 
recognized that this reprogramming of metabolic pathway 
provide the advantage of satisfying the substantial require-
ment of biomass production, such as nucleotide, amino 
acids and lipids synthesis, in order to sustain the rapid pro-
liferation of malignant cells (Vander Heiden et al., 2009). 
Glioma stem cells (GSCs), a subpopulation of GBM cells 
is thought to be responsible for tumor initiation, recur-
rence, metastasis and therapeutic resistance; thus, novel 
therapies targeting GSCs are appealing for treatment of 
this currently incurable tumor. Hypoxic condition in GBM 
leads to mitochondrial reprogramming in tumor cells to 
adapt to a hostile microenvironment (Muz et al., 2015). 
The major changes in mitochondrial metabolism of glioma 
cells consist of alterations in OXPHOS and secondary 
metabolic changes related to TCA cycle, mitochondrial 
membrane potential and mitochondrial dynamics (Gun-
tuku et al., 2016; Strickland & Stoll, 2017). In this mini 

review, we will focus on the role of oxidative phosphoryla-
tion (OXPHOS) and related mitochondrial metabolisms in 
pathogenesis and potential therapy for GBM.

Targeting Mitochondrial OXPHOS 
in Treatment for GBM

In GBM cells, not only is the number of mitochondria 
abnormal, but also the mitochondrial morphology is signifi-
cantly altered. In addition, biochemical evidence indicates 
that energy production via OXPHOS is defective in these 
cells (Chinopoulos & Seyfried, 2018; Seyfried & Mukher-
jee, 2005). However, other studies raise the possibility that 
some GBM cells rely on elevated OXPHOS to promote sur-
vival (Janiszewska et al., 2012). Recently, it has been shown 
that GSCs have higher mitochondrial activities and express 
higher level of OXPHOS proteins compared to isogenic dif-
ferentiated glioma cells (Kuramoto et al., 2020). The ration-
ale to inhibit OXPHOS in GBM is therefore twofold: first, in 
cells like GSCs with higher-than-normal OXPHOS require-
ment, inhibition would selectively target these cells and 
deprive them of their metabolic needs; second, in non-GSC 

Fig. 1   A schematic illustration of the inner mitochondrial membrane comprising Complex I–IV of the ETC and ATP synthase. The respective 
inhibitors under investigation targeting each complex is summarized
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glioma cells, the existing OXPHOS defects render them 
more vulnerable to further OXPHOS inhibition.

By pharmacologically inhibiting ETC (Complex I–IV) 
or F1F0 ATP synthase using small molecules inhibitors, 
OXPHOS is reduced leading to decreased ATP produc-
tion. In addition, production of superoxide anion (O2

−) is 
enhanced and mitochondrial permeability is altered lead-
ing to programmed cell death. Various natural and syn-
thetic compounds can inhibit OXPHOS by targeting differ-
ent complexes in the respiratory chain. Many are approved 
by Food and Drug Administration (FDA) for nontumor 
indications and are now being evaluated for application 
in oncology.

Complex I (NADH-ubiquinone oxidoreductase) inhibitors 
have different biochemical structures but similar activities: 
rotenoids, vanilloids and piericidins contain hydroquinone/
quinone motifs, while metformin and biguanides do not; they 
all noncompetitively bind with different sites of the com-
plex and exhibit significant ability to inhibit glioma growth 
(Degli Esposti, 1998). Complex II does not pump protons 
across the inner mitochondrial membrane and contribute to 
the creation of mitochondrial membrane potential (Ralph 
et al., 2011). Complex II (succinate dehydrogenase) inhibi-
tors (e.g., α-tocopheryl succinate, gracillin and atpenins) 
have been reported to increase mitochondrial ROS produc-
tion and sensitize cells to apoptosis. Intriguingly, Complex 
III (cytochrome c reductase) and Complex IV (cytochrome 
c oxidase) appears to be significantly more active than other 
components of ETC (Kuramoto et al., 2020) in GBM. Com-
plex III inhibitors, Licochalcone A and antimycin A, have 
been shown to induce apoptosis and reduce viability of 
GSCs (Kuramoto et al., 2017; Mi-Ichi et al., 2005). Verte-
porfin, an FDA-approved photoactivating drug for macu-
lar degeneration, has been characterized as an OXPHOS 
inhibitor specifically in GSCs but not in differentiated cells 
through high throughput screening (Kuramoto et al., 2020). 
In addition, Atovaquone, an FDA-approved drug used for 
pneumocystis pneumonia and malaria infections, is a com-
petitive inhibitor of Complex III and is reported to be effec-
tive against cancer stem cells (Fiorillo et al., 2016b). There 
are two FDA approved Complex IV inhibitors for cancer 
treatment: mitotane for adrenocortical cancer and arsenic 
trioxide for acute promyelocytic leukemia, the latter showed 
promising preclinical effect in GBM (Fang & Zhang, 2020).

Complex V (F1F0-ATP synthase) plays an important role 
in cancer metabolism including GBM, although its exact 
function remains controversial (Esparza-Moltó & Cuezva, 
2018). Complex V is able to operate in reverse by hydro-
lyzing ATP and pump proton in the opposite direction to 
maintain mitochondrial membrane potential in the absence 
of ETC functionality. This has been demonstrated to be 
is necessary for GBM survival (Chinopoulos & Seyfried, 
2018). Multiple Complex V inhibitors has shown promising 

anticancer potentials in vitro and in vivo. Bedaquiline (a.k.a., 
Sirturo), an FDA-approved antibiotic drug for multidrug-
resistant pulmonary tuberculosis treatment, effectively tar-
gets Complex V, leading to mitochondrial dysfunction and 
decreased proliferation selectively in stem-like cancer cells 
(Fiorillo et al., 2016a). In addition to Bedaquiline, some 
natural and synthetic products such as resveratrol (related 
polyphenols and flavones), aurovertin B, quercetin, bicar-
bonate anion, tenoxin, lecucinostatin, fluro-aluminate, 
dicyclohexyl-carbodimide and azide also have the ability to 
inhibit ATP synthase (Neupane et al., 2019). The potential of 
these molecules in GBM treatment need to be further exam-
ined. Most recently, Gboxin, a compound identified from 
high throughput chemical screening using primary glioma 
stem cells, has been shown to effectively inhibit Complex 
V activity. Even though Gboxin binds nonspecifically to all 
cellular mitochondria, it specifically inhibit proliferation of 
GBM cells but not normal mouse embryonic fibroblasts and 
astrocytes (Shi et al., 2019).

Two other related mitochondrial processes are highly reg-
ulated by OXPHOS: mitochondrial membrane potential and 
mitochondrial dynamics. Despite the impaired OXPHOS in 
most GBM cells, their mitochondrial membrane potential is 
surprisingly hyperpolarized (∆Ψm ≈ − 220 mV vs. normal 
cells ≈ − 140 mV) cells (Shi et al., 2019). The elevated 
mitochondrial membrane potential allows the cancer cell to 
escape apoptosis (Guièze et al., 2019) and cell cycle arrest 
(Ramamoorthy et al., 2018). The mechanisms of how can-
cer cells maintain higher mitochondrial membrane potential 
despite impaired OXPHOS is still a mystery. Nevertheless, 
inhibiting OXPHOS has the additional effect of depolar-
izing the mitochondrial membrane, which can secondarily 
promote programmed cell death. Mitochondrial dynamics 
is emerging as another valuable target for GBM therapy, 
however our current understanding of the process is incom-
plete and controversial. While mitochondrial fusion has 
been shown to require ATP hydrolysis and high mitochon-
drial membrane potential (Bonnay et al., 2020), others have 
shown that mitochondrial fission is frequently observed in 
many cancers including GBM (Wan et al., 2014). Consist-
ent with the latter finding, Mdivi-1, a selective inhibitor of 
DRP1, a dynamin family of large GTPases that control the 
final part of mitochondrial fission, blocks mitochondrial fis-
sion and can significantly slow proliferation of human GBM 
cells (Lee et al., 2013; Xie et al., 2015). The mechanism of 
Drp1 regulation appears to be mediated through a series of 
protein phosphorylation events. Drp1 is selectively activated 
in brain tumor initiating stem cells making it an attractive 
target for GSC specific therapy (Xie et al., 2015).
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Conclusions and Prospects

Inhibitors of mitochondrial OXPHOS alone or in com-
bination with other cancer drugs, have shown significant 
potential against malignant tumors including GBMs in both 
in vitro and in vivo studies. One of the main challenges of 
using OXPHOS inhibitors in cancer treatment is whether 
the degree of mitochondrial dysregulation in tumors is suf-
ficient to confer selectively against tumor cells while spar-
ing normal cells. The existing approved OXPHOS inhibi-
tors have acceptable side effect profile suggesting that it is a 
viable approach. Emerging preclinical data also suggest that 
OXPHOS inhibition may have the benefit of specifically tar-
geting GSC, a particularly elusive subpopulation that resist 
current therapy.

Author Contributions  ZW and RL: Conception and design, Literature 
search, ZW, WH, RL: Manuscript preparation and Final approval.
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