
Vol:.(1234567890)

NeuroMolecular Medicine (2021) 23:68–85
https://doi.org/10.1007/s12017-020-08630-2

1 3

REVIEW PAPER

Lysophosphatidic Acid Signalling in Nervous System Development 
and Function

Eric Birgbauer1 

Received: 12 August 2020 / Accepted: 30 October 2020 / Published online: 5 November 2020 
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
One class of molecules that are now coming to be recognized as essential for our understanding of the nervous system are 
the lysophospholipids. One of the major signaling lysophospholipids is lysophosphatidic acid, also known as LPA. LPA 
activates a variety of G protein-coupled receptors (GPCRs) leading to a multitude of physiological responses. In this review, 
I describe our current understanding of the role of LPA and LPA receptor signaling in the development and function of the 
nervous system, especially the central nervous system (CNS). In addition, I highlight how aberrant LPA receptor signaling 
may underlie neuropathological conditions, with important clinical application.
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Introduction

The human brain is an incredibly complex organ, with 
almost 100 billion neurons making a 100 trillion connec-
tions and an almost equal number of glial cells (Azevedo 
et al. 2009). Furthermore, the brain is not a static organ, but 
is undergoing cellular remodeling and synaptic modulation, 
which is the basis of our complex learning and memory. 
Even more amazing is that the brain develops de novo in 
every organism, ultimately from a single cell, the fertilized 
egg. The process of brain development and function requires 
the complex role of a large molecular repertoire. However, 
one signaling molecule that we are just beginning to learn 
its role, and which our understanding of that role is rap-
idly expanding, is the bioactive lipid lysophosphatidic acid 
(LPA).

Lysophosphatidic acid (LPA), also known as mono-
acyl-sn-glycerol-3-phosphate, is a lysophospholipid that 
has a phosphoglycerol head group with a single fatty acid 
moiety. It is not a single chemical entity but represents a 
class of biological molecules with different fatty acid chain 
length and degrees of saturation. A variety of these different 
molecules are expressed biologically at different levels in 

different tissues, including brain (Sugiura et al. 1999; Yung 
et al. 2014), but one of the most abundant species is 18:1 
oleoyl-LPA (1-acyl-2-hydroxy-sn-glycero-3-phosphate), 
which is also the primary species in laboratory use. The 
highest levels of LPA are produced by platelets during clot-
ting (Eichholtz et al. 1993), which can reach 10–15 µM in 
serum (Yung et al. 2014). However, levels in plasma are 
lower, generally less than 1 µM, and even lower in cerebro-
spinal fluid (CSF); furthermore, tissue levels of LPA under 
normal physiological conditions are generally quite low, 
in the nanomolar to tens or low hundreds nanomolar range 
(Yung et al. 2014).

LPA is produced enzymatically primarily by two path-
ways, although there may be other biological mechanisms 
(Aoki et al. 2008, 2002; Pages et al. 2001). LPA can be 
produced from phosphatidic acid (PA) by phospholipase A 
(PLA)-type enzymes (Aoki et al. 2008). However, the major-
ity of LPA is produced from lysophosphatidylcholine (LPC) 
by the action of the enzyme autotaxin, a secreted lysophos-
pholipase D (Dennis et al. 2005; Perrakis and Moolenaar 
2014; Herr et al. 2020), which is encoded by the ectonucle-
otide pyrophosphatase/phosphodiesterase 2 (Enpp2) gene. 
Mice heterozygous for Enpp2 (autotaxin) produce half the 
levels of LPA indicating that autotaxin activity is the major 
pathway of LPA production (van Meeteren et al. 2006; Foto-
poulou et al. 2010). LPA production by autotaxin is essential 
in development as shown by early embryonic lethality of 
Enpp2/autotaxin null mice with major vascular and neural 
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tube closure defects (Tanaka et al. 2006; van Meeteren et al. 
2006). However, interestingly, autotaxin appears to be dis-
pensable in adult as conditional genetic deletion of autotaxin 
in adult mice yielded animals that were viable without major 
complications, although LPA levels were reduced by 80% 
(Katsifa et al. 2015). The mechanism of action of autotaxin, 
as well as its role in development, physiology, and disease, 
including the CNS, has been reviewed elsewhere (Herr 
et al. 2020; Perrakis and Moolenaar 2014; van Meeteren 
and Moolenaar 2007).

LPA mediates its effects primarily by activating six 
known G protein-coupled receptors (GPCRs), with the pro-
tein products named  LPA1 to  LPA6 and with gene names 
LPAR1 to LPAR6 in humans and Lpar1 to Lpar6 in other 
species (Kihara et al. 2014), although historically other 
names have been used (see Table 1). LPA binds to and acti-
vates its receptors with high affinity, with binding constants 
and functional measurements in the nanomolar range, with 
the exception of  LPA6 in which a higher functional activa-
tion (and no measurable binding constant) has been reported 
(Table 2). Furthermore, the different LPA receptors have 
different preferences among the different LPA types (chain-
length and saturation) for binding as well as functional 

activation (Bandoh et al. 2000; Yanagida et al. 2009; Ray 
et al. 2020).

LPA receptors are classic seven-transmembrane GPCRs 
that activate heterotrimeric G proteins to transduce signals 
intracellularly. LPA receptors activate all four major classes 
of G alpha G protein subunits: pertussis-toxin sensitive  Gi/o, 
 Gs activation of adenylyl cyclase,  Gq and intracellular cal-
cium increase, and  G12/13 mediated Rho/ROCK activation 
(Choi et al. 2010; Kihara et al. 2014; Yung et al. 2014). 
However, although the different LPA receptors activate 
multiple pathways, they do not each activate all pathways 
and the pathways are differentially activated by the different 
receptors (see Table 2).

Much of the initial work determining the physiological 
role of LPA has been done in vitro in cell culture systems, 
with a wide range of LPA concentrations, although some 
concentrations may not be physiological. Note that cell 
culture experiments can be complicated by the fact that 
there are high levels of LPA in serum, and many cells 
are cultured in 10% fetal bovine serum. More recently, 
there are now genetic null knockout mice for each of the 
LPA receptors. These have been valuable tools, as all are 
viable, although Lpar1 and Lpar4 null mice show partially 

Table 1  Known LPA receptors and their knockout mouse phenotypes

Gene name refers to the murine gene nomenclature

LPA receptor Gene name Other names Knockout mouse major phenotype References for knockout mouse

LPA1 Lpar1 vzg1, Edg2,  LPA1 Impaired suckling in neonatal pups leading to ~ 50% perinatal 
death, craniofacial abnormalities

Contos et al. (2000)

LPA2 Lpar2 Edg4,  LPA2 No obvious abnormalities Contos et al. (2002)
LPA3 Lpar3 Edg7,  LPA3 Embryo implantation defects in mothers Ye et al. (2005)
LPA4 Lpar4 GPR23,  p2y9 Embryonic vascular defects Sumida et al. (2010)
LPA5 Lpar5 GPR92 No obvious abnormalities Lin et al. (2012)
LPA6 Lpar6 p2y5 Mouse phenotype has not been reported, but hair loss with a 

mutation in humans
Pasternack et al. (2008), 

Nahum et al. (2011)

Table 2  Binding affinities and signaling pathways for LPA receptors

Reported  Kd for LPA binding for the validated LPA receptors as well as the Gα G protein pathways that have been demonstrated to be activated 
by each receptor. For  LPA1, radioligand methods yielded a  Kd of 69 nM (Yanagida et al. 2009), but new free-solution interferometric methods 
have provided a  Kd of 0.87–2 nM (Mizuno et al. 2019; Ray et al. 2020)
*For  LPA6, binding was insufficient to obtain a binding  Kd, so the reported number is the  EC50 for LPA in a functional assay

LPA receptor Kd for LPA binding predominant signal-
ing pathways

References

LPA1 0.87–69 nM† Gi/o,  Gq,  G12/13 Hecht et al. (1996), Ishii et al. (2000), Yanagida et al. (2009), Mizuno 
et al. (2019) and Ray et al. (2020)

LPA2 64 nM Gi/o,  Gq,  G12/13 An et al. (1998), Ishii et al. (2000) and Yanagida et al. (2009)
LPA3 Gi/o,  Gq Bandoh et al. (1999) and Ishii et al. (2000)
LPA4 45–100 nM Gs,  Gq,  G12/13 Noguchi et al. (2003), Lee et al. (2007) and Yanagida et al. (2007, 2009)
LPA5 6–89 nM Gq,  G12/13 Kotarsky et al. (2006), Lee et al. (2006) and Yanagida et al. (2009)
LPA6 500–1000 nM* Gs,  G12/13 Yanagida et al. (2009)
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penetrant lethality (Table 1). Furthermore, pharmacolog-
ical antagonists of LPA receptors have been developed 
(see Archbold et al. 2014; Herr et al. 2020; Yung et al. 
2014), although there are issues of specificity and aqueous 
solubility. Some of these have been very useful tools; the 
antagonist Ki16425, which blocks both receptors  LPA1 
and  LPA3 (Ohta et al. 2003), has been used extensively, 
and a new  LPA1-specific antagonist, AM095 (Swaney 
et al. 2011), is now also being used.

In addition to these validated and well-characterized LPA 
receptors, other GPCRs have been reported to respond to 
LPA (Tabata et al. 2007; Murakami et al. 2008; Kaya et al. 
2020), although they have not been independently validated. 
Interestingly, LPA has been shown to bind to the TRPV1 
channel and activate it (Nieto-Posadas et al. 2012; Canul-
Sanchez et al. 2018). In addition, there are a family of puta-
tive LPA-interacting proteins, the Plasticity-Related Gene 
(PRG) family that appear to have a role in LPA signaling, 
although that role has not been clearly delineated (Brauer 
et al. 2003; Trimbuch et al. 2009; Strauss and Brauer 2013; 
Cheng et al. 2016; Vogt et al. 2016). There are five known 
PRG genes, PRG-1 to PRG-5, and by homology they are 
members of the lipid phosphate phosphatase (LPP) super-
family. Phosphatase activity toward LPA has been demon-
strated for PRG-1 (Brauer et al. 2003), although less than 
other LPPs (Strauss and Brauer 2013); however, it is not 
clear if this phosphatase activity is essential to their func-
tion, although mutations in this domain can affect function. 
Interestingly, the effects of a PRG-1 null mutation were 
reversed by an Lpar2 null mutation (Trimbuch et al. 2009), 
and inhibition of the LPA producing enzyme autotaxin has 
been shown to correct the defects seen in PRG-1 heterozy-
gous mice (Vogt et al. 2016). Thus, PRGs may have an effect 
on LPA signaling, including at the synapse, but that role is 
not well defined and may not be direct (Brosig et al. 2019; 
Strauss and Brauer 2013).

LPA and LPA receptor signaling have now been found to 
be connected with a wide variety of physiological and patho-
physiological conditions, and this review does not attempt 
to cover them all. One major area of focus that will not be 
covered has been oncology, where LPA has been shown to 
promote cancer cell proliferation and migration (Benesch 
et al. 2018; Tigyi et al. 2019; Xu 2019; Lee et al. 2020). 
This review will focus on the roles of LPA and LPA receptor 
signaling in the development and function of the brain and 
central nervous system (CNS) as well as highlighting LPA’s 
role in neuropathological conditions. The physiological and 
pathophysiological role of LPA in a variety of other systems 
is beyond this review, and the reader is referred to other 
recent reviews (Choi et al. 2010; Choi and Chun 2013; Yung 
et al. 2014, 2015; Herr et al. 2020).

Brain Development

The importance of LPA in development (see Fig. 1) is most 
clearly delineated by targeted deletions in the autotaxin 
(Enpp2) gene, which eliminates most LPA production. 
Autotaxin null mice die during early embryonic devel-
opment primarily due to vascular defects (van Meeteren 
et al. 2006; Fotopoulou et al. 2010; Koike et al. 2011). In 
addition, though, these autotaxin deficient mouse embryos 
fail to close the cranial neural tube, which forms the future 
brain, as well as possessing an abnormal “kinky” neu-
ral tube phenotype with increased neural tube apoptosis 
and decreased mitosis (van Meeteren et al. 2006; Foto-
poulou et al. 2010; Koike et al. 2011). Examination of 
genetic markers further shows a requirement for autotaxin 
in establishing the midbrain-hindbrain boundary (Koike 
et al. 2011). This is similar to experiments using RNAi 
against autotaxin in chick in which autotaxin is required 
for proper formation of the diencephalon-mesencephalon 
boundary, with its loss perturbing regional identity genes 
(Ohuchi et al. 2010). Autotaxin is expressed in a variety of 
regions of the developing neural tube (Ohuchi et al. 2007; 
Fotopoulou et al. 2010), suggesting even further require-
ments for LPA in brain development that may not be seen 
in the knockout embryos due to early death.

As might be expected, various LPA receptors are 
expressed in the developing as well as adult brain, and 
research is beginning to delineate some of their roles. The 
receptors  LPA1,  LPA2,  LPA4, and  LPA5 have been shown 
to be expressed in the early neural tube by in situ hybridi-
zation (Ohuchi et al. 2008). As specific brain regions form, 
 LPA1,  LPA2,  LPA4, and  LPA6 are found in developing 
and adult mouse neocortex, hippocampus, cerebellum, 
as well as the olfactory bulb (Suckau et al. 2019). The 
multiple receptors seem to have redundant functions, as 
genetic deletions of individual receptors do not show the 
severe early neural tube developmental defects that auto-
taxin deletion does. However, early perturbation of Lpar6 
expression in Xenopus leads to defects in forebrain devel-
opment, including reduced expression of telencephalon 
genes (Geach et al. 2014).

Neural Progenitors and Cortical Development

Based on known properties of LPA for cell proliferation 
and migration, roles of LPA have been found in neural 
progenitor proliferation, survival, and differentiation dur-
ing early brain formation, especially the cortex. Much of 
the work has used LPA for in vitro treatment of cells. LPA 
induces changes in morphology of neuroblasts in culture 
(Fukushima et al. 2000, 2002). LPA has also been shown 
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to increase rosette size from human neuroepithelial stem 
cells (Medelnik et al. 2018). In murine neurosphere cul-
tures, LPA treatment leads to increased neuronal differen-
tiation, which is blocked by the  LPA1/3 antagonist Ki16425 
(Fukushima et al. 2007). One of the more intriguing effects 
of LPA on cortical development is seen in ex vivo cortical 
cultures where LPA treatment leads to a thicker cortex and 
increased folding similar to gyri (Kingsbury et al. 2003). 
The thicker cortex was due to higher cell numbers that 
were related to reduced ventricular zone apoptosis, indi-
cating greater survival of the neural progenitor cells, as 
well as increased mitosis and cell cycle exit, suggesting 
greater differentiation and migration.

The evidence for LPA signaling in neural progenitor 
cells in cortical development has been further strengthened 
by analysis of the LPA receptors, especially  LPA1. Indeed, 
the first receptor to be identified as an LPA receptor,  LPA1, 
was originally named vzg-1 as it was isolated from a ven-
tricular zone neuroblast cell line (Hecht et al. 1996).  LPA1 
was found to be highly expressed in the ventricular zone of 
the cortex where the neural stem cells reside before differ-
entiation and migration to the various cortical layers. The 
LPA-induced thickening of the cortex in the ex vivo cul-
tures is blocked if the cultures are obtained from embryos 
with deletions in both Lpar1 and Lpar2 (Kingsbury et al. 

Fig. 1  Neurodevelopmental roles of LPA. Various aspects of CNS 
development are likely to be involved in LPA signaling through LPA 
receptors. a Based on autotaxin genetic null mice, LPA signaling is 
required for cranial neural tube closure. This involves multiple LPA 
receptors, with no specific LPA receptor null mice recapitulating this 
phenotype. Additionally, regionalization of the neural tube at the mid-
brain/hindbrain border requires LPA, but again the receptors have 
not yet been identified. b Various experiments demonstrate that LPA 
signaling through  LPA1 and  LPA2 are involved in cortical layer for-
mation. Initial studies suggest that  LPA1 is important for neuropro-
genitor survival in the ventricular zone (VZ) and  LPA2 later in their 
differentiation. Furthermore,  LPA4 may also be involved in the migra-
tion of early cortical neurons to the layers of the cortical plate. c LPA 

has properties suggesting it could be guiding axons to their correct 
targets during development. LPA is repulsive to axonal growth cones 
and can cause them to collapse through a  G12/13-Rho-ROCK pathway. 
However, the LPA receptors mediating these growth cone responses 
have not been elucidated. d Studies from genetic null mice, espe-
cially Lpar1 null animals, indicates a role for LPA in proper synaptic 
transmission, especially for glutamatergic synapses, and that could 
be developmental in origin. Lpar1 null mice show changes in gluta-
mate, serotonin and GABA and a deficit in prepulse inhibition. Hip-
pocampal CA1 pyramidal cells have more immature dendritic spines 
and reduced MMP-9 in Lpar1 null mice. LPA and  LPA1 appear to be 
involved both presynaptically and postsynaptically
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2003), demonstrating the importance of these receptors in 
mediating the LPA response.

However, the in vivo role of LPA receptors in cortical 
neural progenitor development and differentiation is less 
clear. In the original Lpar1 knockout and Lpar1/Lpar2 dou-
ble knockout mice, there were no obvious differences in cor-
tical development, including cortical thickness, cell counts, 
and proliferation (Contos et al. 2000, 2002). However, in a 
spontaneously derived variant of the original Lpar1 knock-
out line, termed the “Mãlaga variant” (or  maLPA1-null), 
which had negligible perinatal lethality, cortical abnormali-
ties were seen (Estivill-Torrus et al. 2008). Loss of LPA 
signaling through  LPA1 in this mouse showed reduced cor-
tical layers due to increased apoptosis and reduced neural 
progenitor cell proliferation due to early and aberrant dif-
ferentiation of these progenitors. Intriguingly, in this same 
 maLPA1-null mouse, in adult there is reduced neurogenesis 
in the hippocampus, especially when adult neurogenesis is 
enhanced through exercise and an enriched environment 
(Matas-Rico et al. 2008). However, the hippocampal den-
tate gyrus appears normal in these mice, suggesting that any 
developmental defect in the hippocampus was compensated. 
These studies indicate that LPA signaling through  LPA1 can 
play an important role in neurogenesis, but there are other 
mechanisms that can compensate for loss of  LPA1 in dif-
ferent strains or conditions. In addition, a potential role for 
 LPA4 has been found in cortical neuron cultures treated with 
a Lpar4 shRNA that showed impaired transition to the bipo-
lar morphology and disrupted radial glial migration (Kura-
bayashi et al. 2018).

Axon Outgrowth and Guidance

There is also a possible role for LPA in neural develop-
ment in the processes of axon outgrowth and guidance 
to the proper targets. One of the earliest known effects 
of LPA on neurons is the demonstration that LPA, when 
applied uniformly to cultured neurons, causes a collapse 
of the growing tip of the axon, the growth cone, and then 
neurite retraction. This growth cone collapse and neur-
ite retraction was seen in neuroblastoma and PC12 cell 
lines (Jalink et al. 1993; Tigyi et al. 1996a) as well as a 
variety of primary neuron cultures (Saito 1997; Campbell 
and Holt 2001; Sayas et al. 2002; Birgbauer and Chun 
2010; Fincher et al. 2014). The effects of LPA have been 
demonstrated to proceed through signaling of Gα12/13 via 
Rho and ROCK to activate changes in the growth cone 
microfilament cytoskeleton (Jalink et al. 1994; Tigyi et al. 
1996b; Kozma et al. 1997; Hirose et al. 1998; Kranenburg 
et al. 1999; Bito et al. 2000; Sayas et al. 2002; Yamazaki 
et al. 2008; Fincher et al. 2014), which also appears to 
involve a requirement for the proteasome (Campbell and 
Holt 2001, 2003). The roles of specific LPA receptors, 

however, have not been delineated. Analysis of retinal 
neuron cultures from Lpar1, Lpar2, and Lpar3 triple-null 
mice still showed a similar growth cone collapse response 
to LPA (Birgbauer and Chun 2010), suggesting extensive 
redundancy.

This property of LPA to cause growth cone collapse 
is intriguing as validated repulsive axon guidance cues 
were initially discovered by causing growth cone col-
lapse in vitro, including the ephrins, semaphorins, etc. 
(see Kolodkin and Tessier-Lavigne 2011; Stoeckli 2017; 
Herrera et al. 2019). Indeed, this growth cone collapse 
in vitro, when confronted with a uniform pulse of a cue, is 
a simple assay for an axon guidance molecule (Kapfham-
mer and Raper 1987; Cox et al. 1990; Davies et al. 1990; 
Raper and Kapfhammer 1990; Luo et al. 1993); although 
artificial, this in vitro assay may mimic the in vivo encoun-
ter of a repulsive guidance cue on one edge of the growth 
cone, causing that edge to collapse and the growth cone to 
turn away from that region (Kapfhammer and Raper 1987; 
Fan and Raper 1995). However, growth cone collapse in 
this in vitro system does not define axon guidance, and 
further validation needs to be done in vivo. In this area, 
significant work is yet required to demonstrate that LPA 
serves as an axon guidance cue. This has been hindered by 
LPA receptor redundancy (as illustrated above) and viabil-
ity of autotaxin null mice.

However, there are some suggestions that lysophospho-
lipids, including LPA, may be involved in axon guidance. 
In Xenopus, the related signaling lysophospholipid S1P 
has been shown to be involved in retinal axon growth into 
the tectum. In an exposed brain preparation, application 
of S1P receptor agonists or antagonists perturbed entry of 
retinal ganglion cell axons into the tectum (Strochlic et al. 
2008). Furthermore, another study suggests that LPA may be 
involved in guidance of thalamic axons to the cortex based 
on analysis of PRG-2 null mice (Cheng et al. 2016). In this 
study, embryonic thalamic axons grew aberrantly into the 
cortical plate in PRG-2 null animals, which was mimicked 
by autotaxin inhibitor treatment of the cortical plate. This 
led to imprecise innervation of the whisker barrels seen in 
adult animals. PRG-2 is a member by homology of the lipid 
phosphate phosphatase (LPP) superfamily, but the exact 
mechanism and relationship to LPA is not clear, and may 
not be direct (Brosig et al. 2019). In addition, other studies 
suggest the PRG genes PRG-1, PRG-3, and PRG-5 may be 
involved in axonal growth and retraction (Brauer et al. 2003; 
Broggini et al. 2010, 2016), although they may not be spe-
cific for LPA effects (Broggini et al. 2010, 2016).

Although much work has suggested that LPA inhibits 
axon outgrowth, there is a suggestion that LPA could induce 
neurite branching through  LPA3, which is the one LPA 
receptor that does not signal through Rho/ROCK, and may 
signal through the novel GTPase Rnd2 (Furuta et al. 2012).
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Glial Cells

In addition to effects on neurons and neural precursors, LPA 
may have effects on glial cell development. Oligodendro-
cytes, the myelinating cells of the CNS, and their precursor 
cells have been shown to express LPA receptors, especially 
 LPA1, both in vitro and in vivo (Weiner et al. 1998; Handford 
et al. 2001; Cervera et al. 2002; Stankoff et al. 2002); they 
also respond to LPA in vitro (Moller et al. 1999; Yu et al. 
2004). In general, no morphological effects on oligodendro-
cyte differentiation in vitro have been observed (Stankoff 
et al. 2002), but if endogenous autotaxin is inhibited, then 
LPA stimulates oligodendrocyte differentiation and myelin 
formation (Nogaroli et al. 2009). There are also changes in 
oligodendrocyte gene expression upon autotaxin inhibition, 
which appear to be mediated by the activity of histone dea-
cetylases (Wheeler et al. 2015). In vivo, the effects of LPA 
signaling are less well characterized. None of the LPA recep-
tor null mice show obvious oligodendrocyte or myelination 
defects under normal developmental conditions. However, 
in zebrafish, knockdown of autotaxin delayed or inhibited 
the differentiation of oligodendrocyte precursor cells in the 
hindbrain as determined by genetic markers (Yuelling et al. 
2012).

In the PNS, Schwann cells are responsible for myelina-
tion, and they too express LPA receptors and are affected by 
LPA. Early experiments demonstrated that LPA enhances 
Schwann cell survival in vitro (Weiner and Chun 1999) and 
affects Schwann cell morphology (Weiner et al. 2001). In the 
Lpar1 null mouse, there was increased apoptosis of Schwann 
cells in the sciatic nerve, but no gross myelination defects 
with a majority of Schwann cells still intact (Contos et al. 
2000). However, further analysis of the Lpar1 null mouse 
found thinner myelin around the sciatic nerve, and in cul-
ture these Lpar1 null Schwann cells had reduced migration 
in response to LPA (Anliker et al. 2013). Furthermore, in 
adult, analogous to a nerve injury model, LPA causes demy-
elination of the spinal dorsal root, which is myelinated by 
Schwann cells, in an Lpar1-dependent manner (Inoue et al. 
2004; Nagai et al. 2010; Tsukahara and Ueda 2016).

Astrocytes also respond to LPA with a variety of sign-
aling effects, including inhibition of glutamate uptake, 
although some of these responses vary depending on source 
and culture conditions (see Steiner et al. 2002). Astrocytes 
express LPA receptors  LPA1 through  LPA5, although  LPA5 
is barely detectable, and in vitro differentiation by DBcAMP 
changes the expression levels (Shano et al. 2008). Interest-
ingly, LPA treatment of astrocytes in vitro produces a con-
ditioned medium that promotes cortical neuron differentia-
tion and neurite outgrowth (de Sampaio e Spohr et al. 2008, 
2011). One of the components of this conditioned medium 
is laminin (de Sampaio e Spohr et al. 2011), which is well 
known to promote neurite outgrowth. This LPA effect on 

astrocytes is mediated by  LPA1 and  LPA2 on the astrocytes 
(de Sampaio e Spohr et al. 2008).

Microglial cells are the immune cells of the CNS and are 
responsible for clearance of debris and foreign material as 
well as mediating inflammation. Just as LPA and LPA recep-
tors are significant in the immune system (Benesch et al. 
2018; Choi et al. 2010; Herr et al. 2020), LPA and LPA 
receptors are important in microglial cell activation. Various 
LPA receptors are expressed on microglial cells, especially 
 LPA1,  LPA3, and  LPA5, but the exact repertoire of these 
receptors varies with microglial source, culture conditions, 
and activation (Moller et al. 2001; Tham et al. 2003; Fujita 
et al. 2008; Plastira et al. 2016).

Neurodevelopmental Deficits

There are a number of deficits discovered in LPA recep-
tor null animals that likely result from neurodevelopmental 
abnormalities and suggest roles for LPA and LPA receptor 
signaling in brain development. Many of these are related 
to glutamate signaling, an important brain signaling mecha-
nism, especially for learning and memory (see Roza et al. 
2019).

A series of studies demonstrate that Lpar1 null mice show 
abnormalities related to schizophrenia. These include the 
classic deficit in prepulse inhibition (Harrison et al. 2003) 
and changes in serotonin, glutamate, and GABA (Harrison 
et al. 2003; Roberts et al. 2005) as well as changes in hip-
pocampal CaMKII and presynaptic SNARE complexes 
(Musazzi et al. 2011). Other behavioral characteristics simi-
lar to schizophrenia have also been noted in Lpar1 null mice 
(Castilla-Ortega et al. 2010). Interestingly, and seemingly 
contradictory, prenatal exposure of mice to LPA by intraven-
tricular administration produced schizophrenia-like behav-
ior such as prepulse inhibition, increased anxiety, reduced 
locomotor activity, and changes in genetic markers, which 
could be blocked in Lpar1 null mice or by co-administering 
the  LPA1/3 antagonist Ki16425 (Mirendil et al. 2015). As 
schizophrenia is considered to be a neurodevelopmental 
disorder (Birnbaum and Weinberger 2017; Jaaro-Peled and 
Sawa 2020), these studies suggest deficits in LPA signaling 
through  LPA1 lead to abnormalities of brain development. 
However, in a ketamine model of schizophrenia, direct treat-
ment with autotaxin inhibitors reversed the schizophrenia-
like symptoms, suggesting an acute role for LPA in this ani-
mal model (Thalman et al. 2018).

There is also evidence that LPA and LPA receptor sign-
aling are required for development of mature synaptic con-
nections, especially glutamatergic synapses (see Roza et al. 
2019). Overexpression of  LPA1 in cultured hippocampal 
neurons results in altered, likely more immature, dendritic 
spines, although it was independent of LPA signaling (Pilpel 
and Segal 2006). In Lpar1 null mice, there is a reduction 
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of the major glutaminase isoform, KGA, in the prefrontal 
and motor cortex, which reduced total glutaminase activity, 
although there is likely compensation, as the levels of glu-
tamate were similar to wild type (Penalver et al. 2017). Fur-
thermore, in the hippocampus, genetic loss of Lpar1 results 
in more immature dendritic spines of CA1 pyramidal cells 
and also reduced matrix metalloproteinase 9 (MMP-9) in 
the hippocampus (Penalver et al. 2017), and MMP-9 has 
been shown to be involved in modulating synaptic plastic-
ity (Dziembowska and Wlodarczyk 2012; Reinhard et al. 
2015; Beroun et al. 2019). Since the hippocampus has a 
primary role in learning and memory, this suggests that LPA 
signaling through  LPA1 may have significant neurodevelop-
mental impacts on synaptic transmission related to learn-
ing and memory. Indeed, analysis of Lpar1 null mice have 
found a variety of behavioral issues, including deficits in 
spatial learning and memory (Castilla-Ortega et al. 2010; 
Santin et al. 2009). Interestingly, LPA signaling may also 
have an acute effect on memory, as injection of LPA into the 
rat hippocampus after water maze training increased long-
term memory as seen 48 h later (Dash et al. 2004). Molecu-
larly, in a hippocampal progenitor cell line, LPA treatment 
stimulated CREB phosphorylation (Rhee et al. 2006), and 
CREB phosphorylation is involved in learning and memory, 
although also important in other physiological and develop-
mental aspects.

Furthermore, Lpar1 null mice show increased anxiety 
in some, but not all, tests of anxiety (Castilla-Ortega et al. 
2010; Santin et al. 2009; Tabbai et al. 2019), suggesting 
a possible role of LPA signaling in anxiety, although not 
conclusive and it could be a developmental deficit that is 
manifested in certain anxiety tests. Alternately, it could be a 
specific type of anxiety associated with depression (Moreno-
Fernandez et al. 2017, 2018). There have also been other 
behavioral anomalies discovered in Lpar1 null mice, which 
could be developmental in origin (Santin et al. 2009; Cas-
tilla-Ortega et al. 2010; Roza et al. 2019). In addition, in 
zebrafish, genetic deletion of Lpar3 produced a variety of 
behavioral deficits, including increased anxiety and reduced 
short-term memory (Lin et al. 2020).

Although these deficits could be the result of acute 
requirement for LPA signaling, they could also be devel-
opmental in origin. With appropriate pharmacological rea-
gents, the acute versus developmental role of LPA should 
be further explored, and has been in some instances. Lpar1 
null mice display a mixed anxiety-depression phenotype 
(Moreno-Fernandez et al. 2017, 2018), but that phenotype 
is only partially recapitulated with intracerebroventricular 
injection of the  LPA1/3 antagonist (Moreno-Fernandez et al. 
2018). Although this could be due to partial antagonism, it 
also suggests anxiety-depression is partially due to devel-
opmental defects associated with loss of  LPA1 and partially 
due to acute inhibition of  LPA1. This may be relevant to 

human depression, as the levels of the enzyme autotaxin 
were reduced in human patients with major depressive dis-
order and were linked to depression severity (Itagaki et al. 
2019), although the absolute levels of autotaxin enzyme may 
not be the rate limiting factor for LPA production in this 
case, as measurements of LPA levels did not show any dif-
ference in human patients with major depressive disorder 
(Gotoh et al. 2019) and thus did not correlate with reported 
changes in autotaxin levels. Thus, the lower levels of auto-
taxin may relate to reduced glial cells in depression (Wang 
et al. 2017), which could even be a developmental deficit. 
On the other hand, some studies have demonstrated direct 
effects of LPA on synaptic modulation. In CA1 pyramidal 
hippocampal neurons, LPA enhanced NMDA-evoked cur-
rents (Lu et al. 1999). In the hypoglossal motor system, LPA 
treatment led to depression of glutamate synaptic transmis-
sion as well as GABAergic transmission (Garcia-Morales 
et al. 2015).

Finally, studies of mice with genetic deletion of PRG-1 
suggest a role for LPA signaling at excitatory glutamatergic 
synapses. PRG-1 null mice (Trimbuch et al. 2009) as well as 
heterozygous mice (Vogt et al. 2016) have deficits in excita-
tory synaptic transmission, and these are rescued by a Lpar2 
homozygous null mutation or autotaxin inhibitors (Trimbuch 
et al. 2009; Vogt et al. 2016; Thalman et al. 2018).

LPA Signaling in Neuropathological 
Conditions

Neuropathic Pain

One of the best understood involvement of LPA and LPA 
receptor signaling is in the pathological condition of neu-
ropathic pain (for other recent reviews, see Ueda 2019; 
Roza et al. 2019; Velasco et al. 2017; Herr et al. 2020). 
Neuropathic pain is characterized by an increased sensitiv-
ity to pain, which is manifest as hyperalgesia, whereby a 
mildly painful stimulus produces strong pain, and allodynia, 
whereby a normally nonpainful stimulus produces pain. 
Neuropathic pain is often long-lasting and involves a cen-
tral sensitization. Neuropathic pain can be caused by nerve 
damage by injury or disease, including cancer and certain 
chemotherapy treatments. There are many animal models of 
different types of neuropathic pain (Jaggi et al. 2011), but 
one common model is the partial sciatic nerve ligation, or 
PSNL, which causes mechanical and thermal hyperalgesia 
and allodynia (Seltzer et al. 1990).

The role of LPA receptors in neuropathic pain has been 
defined by the lack of hyperalgesia and allodynia after par-
tial sciatic nerve ligation in Lpar1 or Lpar3 null mice (Inoue 
et al. 2004; Ma et al. 2009). This effect was shown to involve 
acute LPA signaling and not a developmental defect through 
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the use of an siRNA to Lpar1 (Inoue et al. 2004) as well as 
the  LPA1/3 antagonist Ki16425 (Ueda et al. 2018). Further-
more, in autotaxin heterozygous mice, which have a 50% 
reduction in LPA production, the hyperalgesia and allodynia 
after PSNL was partially blocked (Inoue et al. 2008a, 2008c; 
Ma et al. 2009).

There has been significant work on the mechanism of LPA 
in neuropathic pain and the major players (Fig. 2), although 
some details are still not determined. The dorsal spinal cord 
is innervated by two types of pain-signaling fibers in the 
sciatic nerve: glutamatergic Aδ-fibers and Substance P 
secreting C-fibers. Intense stimulation of both is required to 
initiate the neuropathic pain state as inhibition of both the 
glutaminergic NMDA receptor and Substance P interacting 
Neurokinin-1 (NK-1) receptors, but neither alone, blocks 
hyperalgesia and allodynia (Inoue et al. 2008b; Ma et al. 
2013; Nagai and Ueda 2011). This intense stimulation acts 
to produce LPA locally by a feed-forward mechanism involv-
ing microglia (Ma et al. 2010a), which results in stimula-
tion of the phospholipase enzymes cytosolic phospholipase 
A(2), cPLA2, and calcium-independent phospholipase A(2), 
iPLA2, to produce increased lysophosphatidylcholine (LPC) 
(Ma et al. 2013, 2010a, 2010b, 2009). The LPC is acted 
upon by autotaxin (ATX) in the cerebrospinal fluid (CSF) 

to produce LPA locally that appears to be transported back 
along the dorsal root (Ma et al. 2013; Ueda 2019). This LPA 
in the dorsal root leads to demyelination in the dorsal root 
as well as upregulation of the α2δ1 subunit of the voltage-
gated calcium channel in the dorsal root (Inoue et al. 2004; 
Fujita et al. 2007; Nagai et al. 2010; Xie et al. 2010; Tsuka-
hara and Ueda 2016; Szepanowski et al. 2018). Centrally, 
protein kinase C γ-isoform (PKCγ) is upregulated and there 
appears to be neuronal sprouting in the spinal cord dorsal 
horn (Inoue et al. 2004). The end result is sensitization to 
pain that could be due to central sensitization from the neu-
ronal sprouting with increased innervation and/or crosstalk 
(ephapses) between the demyelinated, and thus not insulated, 
fibers in the dorsal root (Ueda et al. 2013; Ueda 2019; Xie 
et al. 2008, 2010; Inoue et al. 2004; Fujita et al. 2007; Nagai 
et al. 2010; Tsukahara and Ueda 2016; Szepanowski et al. 
2018; Ohsawa et al. 2013).

Intriguingly, this mechanism, including the hyperalgesia 
and allodynia, can be recapitulated by intrathecal injection 
of LPA or LPC into the spinal cord, which also requires 
microglia and a feed-forward mechanism of increased LPC 
and LPA production through activation of cPLA2 and iPLA2 
and autotaxin, with a requirement for the 18:1 species of 
LPA (Ma et  al. 2009, 2010b, 2013). This LPA-induced 

Fig. 2  Model for the role of LPA in neuropathic pain. In a, the initia-
tion events leading to LPA production are described, while b summa-
rizes the responses to LPA and involvement of LPA in maintenance 
of the neuropathic pain response. Neuropathic pain development 
is thought to be initiated by an intense pain response that results in 
both Aδ fibers releasing glutamate (Glu) to activate NMDA recep-
tors (NMDAR) and C fibers releasing Substance P (SP) to activate 
Neurokinin-1 (NK-1) receptors in the spinal cord. This may lead to 
activation of cytosolic phospholipase A(2), cPLA2, and calcium-
independent phospholipase A(2), iPLA2, to catalyze the production 
of lysophosphatidylcholine (LPC) extracellularly which is converted 
to LPA by autotaxin (ATX) in the CSF. This LPA may bind to micro-
glia, either through  LPA1 or  LPA3 receptors, which activate the 
microglia for a feed-forward production of additional LPA, possibly 
through microglial secretion of Interleukin-1β (IL-1β). In addition, 

LPA is transported to the dorsal root where it binds to LPA receptors 
on Schwann cells. As noted in b, LPA activation of Schwann cells 
causes demyelination in the dorsal root. Furthermore, the α2δ1 subu-
nit of the voltage-gated calcium channel is upregulated in the dorsal 
root as well as protein kinase C γ-isoform (PKCγ) in the spinal cord. 
There is proposed to be cross-talk between Aβ and Aδ fibers that 
result in the severe pain response to innocuous stimuli; in addition, 
possible sprouting of Aβ and Aδ fibers in the spinal cord could lead 
to more intense stimulation. Furthermore, there is evidence of the 
involvement of  LPA5 as well as astrocytes and microglia late in the 
maintenance of the neuropathic pain state. Finally, note that although 
this model is based on experimental evidence, some aspects, such as 
cellular locations of LPA receptors, have not been precisely deter-
mined yet
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neuropathic pain and feed-forward mechanism requires both 
 LPA1 and  LPA3 since it is blocked in Lpar1 null mice and in 
Lpar3 null mice (Ma et al. 2009, 2013). Microglia are essen-
tial for this feed-forward mechanism, as well as activation of 
cPLA2 and iPLA2 to produce LPC for conversion to LPA 
by autotaxin (Ma et al. 2009, 2013). Production of LPC by 
cPLA2 and iPLA2 activation appears to occur in the spinal 
cord dorsal horn neurons since expression is highest there 
(Ma et al. 2013), but other possibilities cannot be ruled out. 
Furthermore, although microglia are required, their activa-
tion and signaling are not clear. Microglia do possess LPA 
receptors, although the specific repertoire is not clear.  LPA1 
has been shown to be expressed on rat microglia, while 
 LPA3 has been shown to be expressed on mouse microglia 
(Moller et al. 2001; Tham et al. 2003; Fujita et al. 2008). 
Furthermore, culture conditions and activation can change 
microglial LPA receptor expression (Tham et al. 2003), so 
it could change in vivo too. Nonetheless, both  LPA1 and 
 LPA3 are required in the mouse model based on knockout 
mice studies, but which cell type requires them has not been 
determined. In addition, how microglia are involved is not 
yet known. Microglia produce various cytokines, includ-
ing Interleukin-1β (IL-1β), and antibodies against IL-1β 
reduce neuropathic pain (Yano et al. 2013), which leads to 
the logical, but not yet proven, hypothesis that microglial 
IL-1β release induces the feed-forward LPA production and 
neuropathic pain.

There are other aspects to this pathway that we have 
gained insights into, but whose mechanism has not yet been 
defined. In initial experiments, the role of microglia was 
determined to be required early because early minocycline 
treatment, but not late (days 2–5) minocycline treatment, 
blocked the neuropathic pain response (Ma et al. 2010a). 
However, removal of microglia late, at days 8–12 by the 
microglial toxin Mac-1 saponin, did block the neuropathic 
pain (Ueda et al. 2018). Thus, there could be two windows 
for the requirement of microglia, or these two reagents that 
target microglia in different ways may have exposed two 
different requirements. There also appears to be an effect 
of astrocytes in neuropathic pain development late in the 
process since treatment with the astrocyte toxin L-AA on 
days 1–2 after PSNL partially, but significantly, reversed 
the hyperalgesia, but not the feed-forward LPA produc-
tion (Ueda et al. 2018). This astrocyte activation appears 
to depend on LPA receptor signaling, as astrocyte cytokine 
upregulation and release is inhibited by the  LPA1/3 antag-
onist Ki16425 (Ueda et al. 2018). Interestingly, although 
initial experiments confirmed the requirement of LPA recep-
tors early in the development of neuropathic pain, repeated 
injections of the  LPA1/3 antagonist Ki16425 late, at days 
8–14, but not a single injection, reduced the neuropathic 
pain, although possibly not completely blocked by this late 
treatment (Ueda et al. 2018).

There has also been a role demonstrated for  LPA5 in neu-
ropathic pain, although the mechanism appears to be differ-
ent. Lpar5 null mice do not develop mechanical allodynia 
after PSNL (Lin et al. 2012). However, unlike Lpar1 null 
and Lpar3 null mice, Lpar5 mice still showed demyelina-
tion of the dorsal root and upregulation of α2δ1 subunit of 
the voltage-gated calcium channel and astrocyte activation 
after PSNL (Lin et al. 2012). Lpar5 null mice did, though, 
show reduced phosphorylated CREB, indicative of a differ-
ent pathway. Furthermore, in other models of neuropathic 
pain, Lpar5 null mice showed reduced cold allodynia in an 
acetone challenge test after a chronic constriction injury 
(CCI), but not mechanical allodynia, nor did they show any 
difference in a spared nerve injury (SNI) neuropathic pain 
model (Callaerts-Vegh et al. 2012). These data suggest that 
 LPA5 is also involved in neuropathic pain, but in a quite 
distinct mechanism from  LPA1 and  LPA3.

Although much of the work on the mechanism of LPA 
and LPA receptor signaling in neuropathic pain has been 
done on the PSNL model, that is not the only model of neu-
ropathic pain (Jaggi et al. 2011), and human neuropathic 
pain has many etiologies. Recent work has highlighted the 
role of LPA and LPA receptors in other neuropathic pain 
models.  LPA1 and  LPA3 are required in a late tissue plasmi-
nogen activator-induced central poststroke pain (Ueda et al. 
2019). Human patients with osteoarthritis show elevated 
LPA levels, and blocking  LPA1 and  LPA3 with the antagonist 
Ki16425 reduced the pain and nerve damage in an animal 
model of osteoarthritis (McDougall et al. 2017). There is 
also evidence of  LPA1 involvement in an animal model for 
fibromyalgia-like pain (Ueda 2019). In addition, in a clini-
cally important chemotherapy model of paclitaxel-induced 
neuropathic pain, the allodynia was blocked in Lpar1 null 
and Lpar3 null mice, demonstrating a similar role in chemi-
cally induced neuropathic pain (Uchida et al. 2014). Even 
in an inflammatory orofacial pain model, Lpar1 null mice 
or treatment with the  LPA1 antagonist AM095 reduced the 
pain, although it did not completely block it (Srikanth et al. 
2018). Furthermore, demonstrating the clinical relevance of 
LPA in neuropathic pain, there was an association of higher 
LPA levels in CSF from human patients with neuropathic 
pain, and the level correlated with pain intensity (Kuwajima 
et al. 2018); however, there was no increase in autotaxin 
levels, again suggesting that autotaxin levels may not be the 
determining factor. Thus, in a variety of models and correla-
tions in human patients, LPA and LPA receptor signaling are 
mechanistically involved in neuropathic pain.

Brain and Spinal Cord Injury

Recent work has implicated LPA in traumatic brain injury 
and spinal cord injury, both scenarios where the blood–brain 
barrier is damaged that could lead to a flood of LPA from 
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serum. After traumatic brain injury in rat, autotaxin levels 
are highly upregulated after 2 days (Savaskan et al. 2007). 
However, in human patients, no difference in autotaxin or 
LPA receptor expression was seen immediately after trau-
matic brain injury, although there was reduced autotaxin 
levels later as well as increased LPAR2 expression (Frugier 
et al. 2011). On the other hand, LPA levels increased dra-
matically in human patients within the first 24 h after injury 
(Crack et al. 2014). Even more exciting, in a mouse model 
of mild traumatic brain injury, treatment with a monoclonal 
antibody against LPA (Lpathomab) significantly reduced 
lesion volume and cytokine levels and led to improved 
behavioral outcome (Crack et al. 2014).

Spinal cord injury is another significant medical problem 
with minimal treatment options, and recent results suggest 
a role for LPA signaling in this situation. Lpar2 and Lpar3 
expression were upregulated in a mouse model of spinal 
cord injury (Goldshmit et al. 2010). Similar to neuropathic 
pain, spinal cord injury leads to demyelination, and LPA 
injection also induces demyelination (Santos-Nogueira et al. 
2015). This demyelination is partially blocked in Lpar1 null 
mice or by application of the  LPA1 antagonist AM095 (San-
tos-Nogueira et al. 2015). The  LPA1 antagonist also has a 
small, but significant, effect on prevention of demyelination 
and recovery of function after spinal cord injury.  LPA2 has 
also been implicated, as demyelination is partially reduced 
in Lpar2 null mice, which also show slightly improved func-
tional recovery (Lopez-Serrano et al. 2019). These results 
have been partially linked to microglia, as LPA-activated 
microglia released ATP leading to oligodendrocyte death 
(Santos-Nogueira et al. 2015; Lopez-Serrano et al. 2019). 
Furthermore, in a different model, treatment with a  LPA1 
antagonist led to enhanced corticospinal tract sprouting after 
spinal cord injury (Fink et al. 2017), again suggesting a role 
for LPA and LPA receptors in spinal cord injury.

Stroke and Cerebral Ischemia

There is evidence supporting a role for LPA and LPA recep-
tors in neuroinflammation following stroke and cerebral 
ischemia. Levels of LPA are increased in the plasma of 
human stroke patients (Li et al. 2008, 2010), most likely due 
to platelet activation from thrombosis seen in stroke (Fisher 
and Francis 1990). Reperfusion after stroke would then 
lead to high levels of LPA in the brain at the ischemic site. 
Recent work shows that the rodent model of stroke, a tran-
sient middle cerebral artery occlusion (tMCAO), which pro-
duces a transient focal cerebral ischemia, leads to increased 
brain levels of LPA (Wang et al. 2018; Zeng et al. 2020), 
and this is mostly blocked by an autotaxin inhibitor (Wang 
et al. 2018; Zeng et al. 2020). High levels of LPA have been 
shown to induce apoptosis in cortical neurons in vitro (Wang 
et al. 2018), although an effect of high lipids was not ruled 

out. In rats, intracerebroventricular injection of LPA leads 
to neurological damage (Zeng et al. 2020). In the tMCAO 
model, addition of exogenous LPA leads to a greater infarct 
size after reperfusion (Chi et al. 2020; Weiss et al. 2020). 
Significantly, the infarct size and apoptosis after tMCAO 
(without exogenous LPA added) was reduced (although not 
eliminated) by an autotaxin inhibitor (Wang et al. 2018; 
Zeng et al. 2020), suggesting an important role for LPA in 
cerebral ischemia and reperfusion. Both  LPA1 and  LPA5 
appear to be involved, as treatment with the LPA antagonist 
AM095 or an shRNA against  LPA1 (Gaire et al. 2019), or 
the  LPA5 antagonist TCLPA5 (Sapkota et al. 2020), at the 
time of reperfusion significantly reduced damage, including 
infarct size, apoptosis, and neurological deficit, although the 
specificity of TCLPA5 does not appear to have been exten-
sively tested (Kozian et al. 2012). Significantly, even treat-
ment with TCLPA5 three hours after reperfusion reduced 
damage (Sapkota et al. 2020), suggesting important clinical 
application.

The role of LPA in cerebral ischemia appears to be related 
to neuroinflammation. LPA is known to activate microglia 
to a proinflammatory state (Ma et al. 2010a; Fujita et al. 
2008; Plastira et al. 2016, 2017) Multiple LPA receptors 
are expressed in microglia (Tham et al. 2003; Fujita et al. 
2008; Plastira et al. 2016) and may be involved. For instance, 
inhibition of  LPA5 by TCLPA5 reduced various aspects of 
microglia activation by LPA (Plastira et al. 2016, 2017; Sap-
kota et al. 2020). In cerebral ischemia and reperfusion, there 
is significant neuroinflammation as seen by microglial acti-
vation and well as astrogliosis. After tMCAO, administration 
of an autotaxin inhibitor reduced microglial activation and 
release of proinflammatory cytokines (Zeng et al. 2020). 
Furthermore, inhibition of  LPA1 by AM095 or shRNA treat-
ment also reduced microglial activation and proinflamma-
tory cytokines as well as astrogliosis (Gaire et al. 2019). In 
addition,  LPA5 appears to be involved, as TCLPA5 treatment 
also reduced microglial activation and proinflammatory 
cytokines, although astrogliosis was not examined (Sapkota 
et al. 2020). Thus, LPA through  LPA1 and  LPA5 appears to 
be a major player in neuroinflammation produced by cer-
ebral ischemia, and modulation of LPA or LPA receptors 
could be a promising treatment for stroke.

Multiple Sclerosis and Other Disorders

There are other neuropathological disorders that could be 
related to LPA. In multiple sclerosis (MS), it is thought that 
an autoimmune response leads to demyelination and even-
tually axonal damage. As mentioned above, LPA can cause 
demyelination, including oligodendrocyte death indirectly. 
Interestingly, LPA levels were reduced in serum, but not 
CSF, of multiple sclerosis patients as well as in experimen-
tal autoimmune encephalomyelitis (EAE), a mouse model 
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of MS (Schmitz et al. 2017). Furthermore, Lpar2 null mice 
have worse symptoms in EAE, while an  LPA2 agonist 
improved outcomes from EAE in wild type mice (Schmitz 
et al. 2017); however, these effects were most likely related 
to the immune system and T-cell homing. In another neuro-
pathological disorder, in a model of posthemorrhagic hydro-
cephalus, injection of LPA into the ventricle of embryonic 
mice kills ependymal cells and results in hydrocephalus, 
which is partially reduced in Lpar1 null animals as well as 
with  LPA1 antagonist treatment (Lummis et al. 2019). There 
is also the suggestion that LPA and LPA receptor signaling 
may be involved in the pathogenesis of Alzheimer’s Disease 
based upon the evidence cited above on synaptic transmis-
sion and activation of microglia and astrocytes (for reviews, 
see Ramesh et al. 2018; Hao et al. 2020).

Glaucoma and Diabetic Retinopathy

Another important CNS region is the retina, with vision 
being a major medical issue. It has been estimated that in 
2015, 36 million people worldwide were blind, with 216 
million people having moderate to severe visual impairment 
(Bourne et al. 2017). One major medical problem is glau-
coma in which elevated ocular pressure can lead to damage 
of the optic nerve, and increases in LPA, LPC, and autotaxin 
have been observed in human glaucoma patients (Honjo 
et al. 2018; Ho et al. 2020). In an elevated ocular pressure 
model in rat, the receptors  LPA1 and  LPA2 are upregulated 
with increased ocular pressure, and treatment with an LPA 
receptor agonist reduces the histological damage and leads 
to improvements in retinal electrophysiology (Savitz et al. 
2006). Furthermore, in an in vitro model, an autotaxin 
inhibitor has been shown to block the fibrosis formed in the 
trabecular meshwork and to increase the aqueous outflow, 
which would reduce the intraocular pressure that builds up 
in glaucoma (Ho et al. 2020). Another major retinal dis-
ease is diabetic retinopathy, which often results in retinal 
ischemia and cell death. The levels of LPA are higher in 
retinal vitreous samples from diabetic retinopathy patients 
(Abu El-Asrar et al. 2013). In an oxygen-induced retinopathy 
model in rats, a shRNA directed to Lpar1 prevented retinal 
ganglion cell (RGC) loss (Yang et al. 2009). Other older 
studies found effects of LPA on ion currents in retinal glia 
and pigmented epithelium (Thoreson et al. 1997; Kusaka 
et al. 1998).

Conclusion

LPA and LPA receptor signaling have a vast influence 
on CNS development and physiology, including disease, 
with many of these effects still being worked out. One of 
the major tools for these studies are knockout mice for the 

different LPA receptors, which have been extremely useful, 
although developmental effects cannot be distinguished from 
acute requirements. To investigate acute effects, we need 
pharmacological agents, which are beginning to be devel-
oped more extensively. A number of compounds have been 
developed (see Archbold et al. 2014; Herr et al. 2020; Yung 
et al. 2014), but due to the lipid nature of LPA, it has been 
difficult to obtain water-soluble reagents that have receptor 
specificity and good in vivo pharmacology. There have been 
a couple of compounds that have been used experimentally, 
but others are needed. Much of the experimental work has 
used the  LPA1/3 antagonist Ki16425, although it is not spe-
cific for a single LPA receptor (Ohta et al. 2003). A newer 
 LPA1 antagonist, AM095, is now being used more in studies 
(Swaney et al. 2011). There are additional compounds in 
various stages of development. Due to the medical impor-
tance of LPA in various pathological states, some of these 
compounds are progressing to the clinic. For instance, Bris-
tol-Meyers Squibb has a compound that has gone through 
phase 2 trials with efficacy for idiopathic pulmonary fibrosis 
(Palmer et al. 2018; Tager et al. 2008). As research goes 
forward, we will better understand the roles LPA and LPA 
receptor signaling have on the brain and its development and 
function, and how clinically this information can be used to 
advance medical treatment.
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