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Abstract
Stroke is the second largest cause of death worldwide. Angiotensin converting enzyme (ACE) gene has emerged as an 
important player in the pathogenesis of hypertension and consequently stroke. It encodes ACE enzyme that converts the 
inactive decapeptide angiotensin I to active octapeptide, angiotensin II (Ang II). Dysregulation in the expression of ACE 
gene, on account of genetic variants or regulation by miRNAs, alters the levels of ACE in the circulation. Variable expression 
of ACE affects the levels of Ang II. Ang II acts through different signal transduction pathways via various tyrosine kinases 
(receptor/non-receptor) and protein serine/threonine kinases, initiating a downstream cascade of molecular events. In turn 
these activated molecular pathways might lead to hypertension and inflammation thereby resulting in cardiovascular and 
cerebrovascular diseases including stroke. In order to regulate the overexpression of ACE, many ACE inhibitors and blockers 
have been developed, some of which are still under clinical trials.
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Introduction

Stroke is the second largest cause of death worldwide (Ben-
jamin et al. 2017). It is defined as the focal dysfunction of 
brain, spinal cord, and retina, lasting more than 24 h or till 
death, demonstrated from objective evidence of imaging and 
pathological signs confirming ischemic injury (Sacco et al. 
2013). Pathogenic alterations in various genes involved in 
different physiological pathways, predispose individuals 
to stroke (Munshi and Kaul 2010; Kaul and Munshi 2012; 
Munshi et al. 2015). Demographic and clinical studies have 
established hypertension to be a major risk factor in the 
development of ischemic stroke. The blood pressure in the 
circulation is maintained by the orchestration between the 
various components of renin–angiotensin–aldosterone sys-
tem (RAAS) pathway. RAAS is a complex system for regu-
lation of blood pressure and fluid hemostasis. Angiotensin 
converting enzyme-1 (ACE) gene plays a significant role 
in the regulation of vascular tone and smooth muscle cell 
proliferation resulting in the development of hypertension 

and cerebrovascular diseases including stroke (Jacob et al. 
1991; Villard and Soubrier 1996; Das et al. 2015). In circula-
tion (Endocrine or classical RAAS), systemic hypotension 
induces juxtaglomerular cells in kidneys to secrete renin, 
which further hydrolyses angiotensinogen to angiotensin I 
(Ang I). ACE is a key player in the RAAS, where it catalyzes 
the conversion of Angiotensin I to Angiotensin II (Weir and 
Dzau 1999). In addition to circulatory RAAS, local synthe-
sis of Ang II comprising tissue RAAS system also exists in 
other organs like kidney and brain. Endocrine RAAS and 
functional interaction between various tissue RAAS along 
with counter regulatory peptides on multiple levels adds to 
the inherent complexity of the RAAS system. Ang II ini-
tiates the signaling cascade of proinflammatory molecules 
and is a potent vasoconstrictor leading to increased blood 
pressure. It acts on transmembrane angiotensin II receptor 
type 1 (AT1R) which through certain signal transduction 
pathways, including kinases and Gq/PLC, promote events 
like release of aldosterone from adrenal glands, sodium and 
water reabsorption from kidneys leading to increased blood 
flow and hypertension, a major risk factor for stroke. ACE 
inhibitors and blockers are given to patients with vascular 
disorders for the regulation of hypertension so as to prevent 
a secondary ischemic stroke.
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The genetic alterations in the ACE gene that influence the 
level of circulating ACE enzyme and thereby increase the 
risk of ischemic stroke have been studied in different ethnic 
groups. These studies have provided compelling evidence of 
the involvement of ACE gene variants especially Insertion/
Deletion (I/D) polymorphism in intron 16, with the activ-
ity of ACE enzyme as well as development of stroke (Mar-
tínez-Rodríguez et al. 2013; Kumar et al. 2014; Malueka 
et al. 2018). We have already established the association 
of ACE I/D polymorphism with susceptibility to ischemic 
stroke and also found that higher levels of circulating ACE 
result in increased risk of ischemic and hemorrhagic stroke 
in patients from Andhra Pradesh (South India) (Das et al. 
2015).

Besides the standard components of RAAS like renin, 
angiotensin I, angiotensin II, ACE and the two receptors 
(AT1&AT2), some novel players including peptides like 
Ang (1–7), heptapeptide ACE2 enzyme and receptor of Ang 
(1–7) and Mas have also been included in the RAAS (San-
tos et al. 2003). ACE2 converts angiotensin I to Ang (1–9) 
and Ang II to antagonist Ang(1–7). However, this arm of 
RAAS pathway has been demonstrated to play a protective 
role in animal models of ischemic stroke. ACE2 exerts the 
protective effects by the production of Ang (1–7) which in 
turn stimulates the Mas receptor. In brain, the ACE2/angio-
tensin (1–7)/Mas receptor axis induces the protective effect 
independent of hypertension (Peña-Silva and Heistad 2015). 
This axis was reported to be associated with oxidative stress 
and neuroinflammation by downregulating malondialde-
hyde (MDA), nicotinamide adenine dinucleotide phosphate 
(NADPH), and upregulating super oxide dismutase (SOD) 
which reduces the brain damage after stroke. This axis has 
a stimulatory effect on the production of prostaglandin and 
NO, which are potent vasodilators thus has antithrombotic 
and anti-proliferative effects (Ferrario et al. 2011; Jiang et al. 
2013).

In humans, ACE gene is located on the short arm of chro-
mosome 17 (17q23.3), spanning 21 kilobases, and bears 26 
exons and 25 introns. It encodes ACE which is chemically a 
dipeptidyl carboxypeptidase and a member of zinc metallo-
peptidase family. (Hubert et al. 1991). The somatic ACE pro-
tein (1306 residue) is transcribed from a promoter, upstream 
of a tandem duplication. This results in incorporation of 
two active domains i.e., N domain and C domain within 
the ACE protein. Both of these domains are functional, but 
exhibit different biochemical properties. Specific inhibitors 
for specific domains exist revealing that the inhibitor affinity 
profiles of both the domains vary. The functional elements 
in both domains consist of a M2-type zinc metallopepti-
dase motif, an HisGluxxHis with a Glu-positioned 23–24 
residues. The two histidines and the downstream glutamate 
are ligands for the zinc cofactor, required for the peptidase 
catalytic activity (Dive et al. 1999).

Previous studies have established that different variants 
in this gene that alter the ACE levels are risk factors in the 
development of stroke (Munshi et al. 2008; Das et al. 2015). 
Dysregulation in expression of ACE gene affects the levels 
of ACE in the circulation which in turn leads to altered lev-
els of Ang II. Ang II acts through two G protein-coupled 
receptors (GPCRs), AT1 and AT2. Under normal conditions, 
Ang II maintains sodium–potassium balance, and fluid vol-
ume to modulate blood pressure (Frauman et al. 2001). How-
ever, under pathophysiological conditions, overexpression of 
Ang II and enhanced signaling of its type1 receptor induces 
vascular remodeling leading to the proliferation of vascular 
smooth muscle cells and vasoconstriction, which gets trans-
lated in increased oxidative stress, inflammation, migration, 
hyperplasia, hypertrophy, hypertension, restenosis, and ath-
erosclerosis (Lyle and Griendling 2006; Higuchi et al. 2007; 
Lassègue and Griendling 2010). ACE is also involved in 
the break down or inactivation of bradykinin, which plays a 
role in inducing vasodilation through prostacyclin and nitric 
oxide. The inactivation of bradykinin results in vasoconstric-
tion (Pera et al. 2006; Taddei and Bortolotto 2016).

The present review has been complied with an aim to give 
an overview of the factors especially genetic variation and 
microRNAs (miRNAs) regulating the levels of ACE and 
other components of RAAS pathway leading to dysregu-
lation of Ang II, in the pathogenesis of hypertension and 
consequently ischemic stroke. In addition, the role of Ang II 
in promoting stroke pathogenesis and therapeutic strategies 
centered on targeting ACE have also been reviewed.

ACE Gene Variants

National Center for Biotechnology Information (NCBI) 
records > 160 polymorphisms in ACE gene. Most of these 
are single nucleotide polymorphisms. Thirty-four single 
nucleotide polymorphisms (SNPs) have been documented 
in the coding region of the gene, and two quantitative trait 
loci (QTLs) in the 3′ region, affecting the ACE levels have 
also been well defined (Villard et al. 1996; Sayed-Tabata-
baei et al. 2006; Mengesha et al. 2019). Different studies 
have evaluated variation in ACE gene in association with 
development of the ischemic stroke, its subtypes as well as 
hemorrhagic stroke in various ethnic groups. Although the 
functional significance of some of these variants has not 
been reported, there are some variants found to affect ACE 
levels. Among the various reported variants of ACE gene, 
only the functional outcome in terms of its affect on ACE 
expression/activity of some variants is known (Tables 1, 2). 
In addition, certain missense variants affecting the struc-
tural and functional aspects of ACE protein have also been 
associated with the development of ischemic stroke. How-
ever, the mechanism by which the intronic and synonym 
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variants affect the disease development without affecting 
ACE expression are not understood well. The association 
studies of ACE variants with hypertension have not been 
included in this section as it has been reviewed previously 
by other authors (Mengesha et al. 2019).

Ischemic Stroke

Based on the results of various association studies carried 
out in ischemic stroke patients, it has been found that some 
variants had a protective effect in certain populations while 
in other cohorts these variants contribute to the pathogenesis 
of the disease. These studies have evaluated different vari-
ants (I/D polymorphism, haplotypes, quantitative trait loci, 
and several other SNPs) of ACE gene. ACE I/D variant is 
the major functional variant of ACE gene which has been 
widely explored. The results of some previous studies have 
reported a positive association of D allele with ischemic 
stroke (Munshi et al. 2008; Wei et al. 2017). D allele of ACE 
gene is not only associated with the risk of ischemic stroke 
in a Polish population but also subsequent case–control stud-
ies conducted on Greece and Turkish community by Tuncer 
et al. 2006 and Karagiannisa et al. confirmed similar findings 
(Celiker et al. 2009). The increase in ACE level due to DD 
genotype leads to an enhanced level of Ang II that eventually 
add up to the infarct size and increases the oxidative stress 
and inflammation worsening the brain damage and also the 
functional outcome of ischemic stroke (Ferrari 2004). In a 
study including eighteen thousand two hundred fifty-eight 
multiethnic cases, Zhao et al. (2014) reported the increased 
risk of ischemic stroke among Asians bearing I/D polymor-
phism. Significant heterogeneity was observed among all 
genetic samples considering the whole of the population, the 
increased risk was hypothesized due to interaction with other 
risk factors like intercellular adhesion molecule 1 (ICAM) 
and monocyte chemo attractant protein-1 (MCP-1) (Zhao 
et al. 2014). On the contrary, in a study conducted to assess 
the association of ACE haplotypes and I/D polymorphism 
with the disease, no interdependence of D allele with other 
polymorphism was found (Tascilar et al. 2009). Minimal 
number of studies have also speculated the role of ACE gene 
polymorphism in males and females. One such study was 
conducted by Markoula et al. (2011) involving 176 North-
west Greece cases, and reported the greater risk of lacunar 
and large artery atherosclerosis in females due to the effect 
of gonadal steroids, testosterone, and estrogen, on the levels 
on ACE and Ang II (Markoula et al. 2011). Various other 
variants that have been explored in different ethnic groups 
include rs4295, rs4353, rs4309, rs12451328, rs4968591, 
NG011648, rs4290, rs1800764, rs4646994, rs4329, rs4333, 
and rs4353 (Table 1).

Studies evaluating association of ACE I/D polymor-
phism with different stroke subtype have also been carried 

out. Kumar et al. (2014) including an equal number of cases 
and controls found that D allele is a risk factor for the small 
vessel disease (SVD) in North Indians. Increased level of 
ACE accelerates vasoconstriction that supplements fibrinoid 
necrosis is reported to be involved in the etiology of SVD. In 
our previous study carried out in a South Indian population 
we have found an association of ACE I/D polymorphism 
with intracranial large artery atherosclerosis (Munshi et al. 
2008). A meta-analysis by Zhang et al. (2014) involving 
10,070 cases of different ethnicity reported D allele as a low 
susceptibility penetrance marker, and found its association 
with 37% higher risk of SVD in Asians and just a borderline 
significance in Europeans (Zhang et al. 2012). Contrary to 
the above findings, a study conducted on 200 South Indian 
cases outlined a positive association of II allele with large 
vessel disease (LVD).

Hemorrhagic Stroke

The studies focussing on the association of ACE I/D poly-
morphism with hemorrhagic stroke has not been carried out 
at length. However, few studies evaluating this association 
have showed conflicting results. Some of the studies have 
established a strong association of ACE I/D with hemor-
rhagic stroke. Apart from increasing ACE serum levels that 
promotes hypertension [a significant risk factor for intracer-
ebral hemorrhage (ICH)], DD genotype is also manifested in 
inflammatory vasculitides of blood vessel. Sun et al. (2014) 
found that Asians are at higher risk of developing primary 
intracerebral hemorrhage (PICH) comparison to Caucasians, 
which may be attributed to different genetic backgrounds 
and environmental factors (Sun et al. 2014). In Asians, DD 
genotype has been reported to be hemorrhagic stroke pro-
moting (Das et al. 2015). In addition, increased ACE lev-
els were found to promote early arteriolar proliferation of 
smooth muscle cells which consequently lead to death of 
these cells resulting in hemorrhagic stroke (Chen et al. 2018; 
Sun et al. 2014). Kumar et al. (2014) reported an increased 
risk of ICH in Asians (North Indians) bearing the D allele 
(Kumar et al. 2014).

In a study carried out in a European population [East 
Anglian and Polish], the reduced ACE level (I allele and 
II genotype) were found to be associated with intracra-
nial aneurysm leading to subarachnoid hemorrhage (Ker-
amatipour et al. 2000; Slowik et al. 2004). A meta-analy-
sis conducted on 6359 cases and 13,805 healthy controls 
belonging to multiethnicity found I allele to be a risk fac-
tor for the developmental of all subtypes of hemorrhagic 
stroke (Peck et al. 2008). Three other case–control studies 
conducted on Caucasians reported no significant associa-
tion between ACE variants including tag SNPs and the I/D 
polymorphism and risk of developing haemorrhagic stroke 
(Pannu et al. 2005; Dardiotis et al. 2011; Staalsø et al. 2011).
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Domingues-Montenari conducted a study on 60 Spanish 
hemorrhagic stroke patients and reported that five variants 
[rs4311 (T), rs1799752 (D), rs4295 (G), rs4461142 (T), 
rs8066114 (G)] had a positive association with cerebral 
amyloid angiopathy (CAA)-related primary lobar ICH recur-
rence. Association of specific haplotypes and D allele was 
also reported to be in association with primary lobar intrac-
erebral hemorrhage (Domingues-Montanari et al. 2010). The 
information about genetic variation reported in ACE gene 
along with molecular consequences and functional outcomes 
implicated in the pathogenesis of ischemic and hemorrhagic 
stroke have been summed up in Tables 1, 2 and Fig. 1. There 
are some variants that alter the ACE level thereby promoting 
the development of stroke (Table 1). On the contrary, certain 
variants altering ACE levels did not show any significant 
association with the development of the disease (Table 2). 
These variants need to be explored further for their func-
tional validation before coming to a conclusion.

miRNAs Regulating Components of ACE 
Pathway

miRNAs are ~ 22 nucleotide long single stranded non-coding 
RNAs which regulate heterogeneous biological processes 
by RNA-mediated gene silencing mechanisms (Kim 2005; 
Bátkai and Thum 2012). They regulate the expression of 
protein-coding genes through a cascade of reticulated molec-
ular events (Lee et al. 2004). Different miRNAs have been 
reported which target RAAS components or get regulated by 
different players involved in RAAS pathway. Many of these 

miRNAs affect the different pathophysiological processes 
like hypertension, hypertrophy, and inflammation thereby 
leading to stroke. Details about the functional implication, 
targeted and targeting molecules of different miRNAs have 
been summed up in Tables 3, 4 and Fig. 2.

Understanding Mechanistic Pathways of Ang 
II Using Different Model Systems

The ACE levels get altered on account of various factors as 
discussed previously. This in turn influences the levels of 
Ang II affecting the downstream signal transduction path-
ways in neurons, glial cells, and vascular smooth muscle 
cells (VSMCs) and thereby resulting in the development of 
hypertension and inflammation, the two major risk factors 
for stroke (Saavedra 2005).

Neurons

Ang II contributes to the development of neurogenic 
hypertension through several pathways including NADPH 
oxidase/ROS (Braga et al. 2011; Biancardi et al. 2017), 
ERK1/2-RSK-nNOS signaling (Sharma and Patel 2017), 
MAPK-AP1/NFκB pathway (Biancardi et al. 2017), COX-
1-derived PGE2 and EP1R signal pathway (Sriramula et al. 
2015), and BDNF/TrkB-UCP2 signaling pathway (Carmi-
chael and Wainford 2015). The signaling cascade varies in 
neurons from different regions of the brain e.g., unique path-
ways have been reported in neurons from nucleus tractus 

Fig. 1  Genetic variants affecting ACE levels in ischemic and hemorrhagic stroke
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solitarius (NTS), catecholaminergic (CATH.a) neuron, and 
neurons of paraventricular nucleus (PVN).

Ang II induces the prohypertensive condition in neu-
rons by nuclear translocation of nuclear factor kappa-B 
(NFkB) which further acts to regulate transcription of sev-
eral genes resulting in the overexpression of proinflamma-
tory cytokines, reactive oxygen species (ROS), superoxide, 
peroxynitrite, and circulating norepinephrine and decreased 
neuronal nitric oxide synthase (nNOS) and thereby leading 
to hypertension and in turn stroke (Allen 2002; Barnes and 
Karin 1997; Campese et al. 2005; Cardinale et al. 2012; 
Kang et al. 2009). Increased superoxide levels convert the 
intrACEllular nitric oxide to peroxynitrite, and modify the 
 Na+ and  K+ ion channels of the cell membrane. Calcium/
calmodulin kinase II (CaMKII), a redox-sensitive kinase, 
activated by superoxide also acts on these ion channels 
(Yin et al. 2010). Affected ion channels trigger an altered 
neuronal firing that enhances the sympathetic nerve activ-
ity leading to increased hypertension (Chengzhi et  al. 
2012). All these mechanisms have been discussed in detail 
in previous publications (Agarwal et al. 2013; Braga et al. 
2011; Cheng et al. 2010; Chengzhi et al. 2012; Peterson 

et al. 2009; Zimmerman et al. 2002, 2004). Another study 
reported a unique pathway in which Ang II modulates the 
pressor effect through  AT1R-dependent ROS-SAPK/JNK 
signaling in glutamatergic neurons in the rostral ventrolat-
eral medulla (RVLM) of stress-induced hypertensive rats 
(Jiang et al. 2018).

Glial Cells

Glial cells assist neurons by carrying out several fundamen-
tal functions like neurotransmitter trafficking and recycling, 
release of transporters, transmitter (glutamate), energy sub-
strates, neurosteroids, purines, cytokines, growth factors, 
mediate ion metabolism, and provide protection against oxi-
dative stress. These cells are of five types including schwann 
cells, oligodendrocyte, microglial cells, ependymal cells, 
and astrocytes. Dysfunctional glial cells have a huge impact 
in contributing to neuroinflammation, neuronal excitability, 
and loss leading to the development of various neurologi-
cal disorders including stroke (Booth et al. 2017; Brambilla 
et al. 2013; Di Malta et al. 2012; Khakh et al. 2017).

Table 3  miRNAs regulating RAAS pathway

S. no. Targeted RAAS component miRNA involved Functional outcome References

1 AT1R miR-155 (Human umbilical vein 
endothelial cells (HUVECs)

Regulation of endothelial cell 
inflammation and migration

(Zhu et al. 2011)

2 ACE; ACE2 miRNA-27a and 27b; micro-
RNA-143 (Wistar rat cardiomyo-
cyte; VSMCs; mouse fetus)

Ventricular hypertrophy (Boettger et al. 2009; 
Fernandes et al. 2011; 
Goyal et al. 2010)

3 ATIR miR-155 (rat aortic adventitial fibro-
blasts)

Vascular remodeling (Zheng et al. 2010)

4 AT1R miR-155 (Primary cultured VSMCs 
from the aorta of C57/BL6 mice)

VSMC proliferation (Yang et al. 2014)

5 AGT, ACE and AGTR2 miR-483-3p
NT and TG mice; y human aortic 

smooth muscle cells (HASMC), 
rat aortic smooth muscle cell 
(RAASMC) line (SV40-LT, CRL-
2018)

Affect cellular signaling in RAAS 
pathway

(Kemp et al. 2014)

6 ACE miR-143 and miR-145
(Invitro, invivo)

Increased Angiotensin II production 
in the vessel wall

(Boettger et al. 2009)

7 ACE2 miR-421
primary human cardiac myofibro-

blasts

Post-transcriptional regulation of 
ACE2

(Lambert et al. 2014)

8 ACE miR-143/145
cultured endothelial cells

Vascular complications associated 
with diabetes mellitus.

(Kohlstedt et al. 2013)

9 ATR1 miR-155
Rat H9C2 cardiomyocyte

Cardiac hypertrophy (Yang et al. 2016)

10 Greater activity of the RAAS decreased microRNA-181a
Schlager BPH/2 J mice genetic 

model of hypertension

Hypertension (Jackson et al. 2014)

11 Ang II miR-384
Human umbilical vein endothelial 

cells

Prevents Ang II- induced ER stress 
and apoptosis

(Lin et al. 2017)
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Ang II acts on Angiotensin 1 receptor and activates 
non-receptor tyrosine kinase JAK/STAT (Janus kinases/
signal transducer and activator of transcription proteins) 
pathway triggering the release of interleukin-6 (IL-6) 
(Kandalam and Clark 2010). IL-6 further increases the 
plasma C-reactive protein (CRP) levels, initiating a low 
grade inflammation (Abeywardena et al. 2009). A study 
performed on astrocytes cultured from the brainstem and 
cerebellum reported that Ang II promotes the phospho-
rylation of Src and Pyk2 that sends an activation signal 
to ERK1/2 leading to growth of astrocytes (Clark and 
Gonzalez 2007b). Src is also involved in Ang II-induced 
activation of protein serine/threonine kinase c-Jun N-ter-
minal kinase (JNK) that triggers astrocyte proliferation in 
cultured astrocytes from brain stem (Clark et al. 2008). 
Overactive brain RAAS leads to an increase in sympa-
thetic nervous system activity leading to hypertension 
(Tsuda 2012).

The other well-established cellular activator of Ang II 
in astrocyte is mitogen-activated protein kinase (MAPK). 
Ang II mediates astrocyte growth-promoting effects 
mainly via the stimulation of extrACEllular receptor 
kinase1/2(ERK1/2) which are terminal serine threonine 
kinases in MAPK cascade, in a dose- and time-dependent 
manner (Clark et al. 2001). Previous studies have shown that 
transactivation of AT1 receptor and the membrane-bound 
tyrosine kinase platelet-derived growth factor (PDGF) recep-
tor and epidermal growth factor (EGF) receptor activate the 
ERK1/2 phosphorylation and stimulate astrocyte growth 
and proliferation. Increase in number of astrocytes may 
further lead to an increase in central Ang II levels since 
astrocytes contain high levels of Angiotensinogen, the pre-
cursor molecule for Ang II. This may be an endogenous 
regulatory mechanism to control central Ang II levels and 
its effects (Clark and Gonzalez 2007a). In a study car-
ried out in astrocytes, cultured from the brain stem, Ang 

Table 4  RAAS components regulating various miRNAs

S. no. RAAS component miRNA regulated Functional outcome References

1 Ang II miR-132 and miR-212 Hypertension (Eskildsen et al. 2013)
2 Ang II miR-205 Activation of matrix metalloproteinases 

(MMPs) and inflammation leading to 
abdominal aortic aneurysm

(Kim et al. 2014)

3 Ang II MiR-133a, miR-29b (Sprague–Dawley rats 
cardiocytes)

Myocardial fibrosis (Castoldi et al. 2012)

4 Ang II miR-98 (cultured cardiomyocytes) Cardiac hypertrophy (Yang et al. 2011)
5 Ang II miR-29b, -129-3p, -132, -132* and -212 

(Cardiac fibroblast cell culture)
Regulation of cardiac cells (Jeppesen et al. 2011)

6 Ang II miR-132,-125b-3p and miR-146b, miR-
300-5p,-204 and miR-181b (Adult rat 
cardiac fibroblast)

Cardiac fibrosis and hypertension (Jeppesen et al. 2011)

7 Ang II miR-130a
(SHRs) and Wistar -Kyoto rats (WKYs)
VSMC cell culture from sprague- Dawley 

rats

Proliferation of VSMCs (Wu et al. 2011)

8 Ang II miR-29b
NRK-52E cells; (SHRs) and Wistar–Kyoto 

rats (WKYs)

Epithelial mesenchymal transition leading to 
renal fibrosis

(Nemecz et al. 2016)

9 Ang II miR-29b
mouse model of hypertension and cultured 

cardiac fibroblast

Cardiac remodeling and fibrosis (Zhang et al. 2014)

10 Ang II miR-132
rat vascular smooth muscle cells (VSMC)

Regulation of genes related to cell-cycle and 
motility

(Jin et al. 2012)

11 Ang II miR-224
(adult rat cardiocytes)

 Cardiac fibrosis (Ning and Jiang 2013)

12 ACE miR-145
HASMC

Modulation of VSMCs (Hu et al. 2014)

13 Ang II miR-19b
cultured cardiomyocytes

Overexpression of connective tissue growth 
factor (CTGF) in cultured cardiomyocytes

(Gao et al. 2014)

14 Ang II miR-30
Ang II-induced podocyte injury mouse 

model

Ang II-induced podocyte injury through 
calcium/calcineurin signaling

(Zhao et al. 2017)

15 Ang II miR-29a-3p Renal fibrosis (Castoldi et al. 2016)
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II-mediated activation of ERK1/2 increased the expression 
of early response genes, namely c-fos, c-jun, and c-myc in a 
dose- and time-dependent manner. Further, overexpression 
of c-fos, c-jun, and c-myc contributes to the dysregulation of 
many other genes which are otherwise normally expressed 
within the cell (Delaney et al. 2008). c-fos and c-jun are the 
essential components in reducing the baroreflex response 
which enhances the sympathetic tone during hypertension 
(Chan et al. 1998; Wang and Abdel-Rahman 2004). Both 
c-fos and c-jun have been implicated in the molecular mech-
anisms leading to cardiac hypertrophy induced by Ang II 
and other mitogens (Kim-Mitsuyama et al. 2006).

Transforming growth factor β1 (TGF- β1), a multifunc-
tional regulator that performs several functions such as inhi-
bition of cell growth, induces apoptosis, extracellular matrix 
production, proliferation, and migration of endothelial and 
vascular smooth muscle cells; proliferation, differentiation, 
and activation of immune cells. Excessive and prolonged 
TGF- β1 signaling has been implicated in various human 
diseases including vascular disorders (Krupinski et al. 1996). 
Experiments in transgenic mice overexpressing a consti-
tutively active form of TGF-β1 in astrocytes suggest the 
pivotal role of Ang II in TGF-β1-induced cerebrovascular 
dysfunction and neuroinflammation through AT1R-mediated 
mechanisms. AT1R inhibitor, losartan, significantly reduced 

the astrogliosis and also diminished the cerebrovascular lev-
els of pro-fibrotic protein connective tissue growth factor 
while raising levels of anti-fibrotic enzyme matrix metal-
lopeptidase-9 (Prabhakar et al. 2014). Transfection experi-
ments demonstrate that Ang II mediates the activation of 
TGF-β1 through AT1 receptor via protein kinase C (PKC) 
and MAPK that activates transcription factors, activator pro-
tein 1 (AP-1) box A and B (Weigert et al. 2002). TGF- β1 
triggers its biological effects by inducing the formation of a 
heteromeric transmembrane serine/threonine kinase recep-
tor complex. These receptors then initiate intrACEllular 
signaling through activation of Smad proteins, followed by 
phosphorylation of specific Smads which in turn associ-
ate with other Smads. These heteromeric Smad complexes 
accumulate in the nucleus, where they form functional tran-
scriptional complexes in the nucleus at the promoter sites 
of target genes and modulate their expression (Kretzschmar 
and Massagué 1998; ten Dijke and Hill 2004). Regulation 
of various genes like bone morphogenetic protein type II 
receptor gene (BMPR2) implicated in the pathogenesis of 
hypertension and vascular diseases have been reported to 
be controlled by TGF- β1 through Smad proteins (Peterson 
2005; Yang et al. 2005).

Ang II promotes neuroinflammation in both astrocytes 
and microglia. Stimulation by Ang II leads to an increase 

Fig. 2  Various miRNAs targeting or getting targeted by components of RAAS pathway
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in the production of TGF-β1 microglial cells, wheRAAS in 
astrocytes it mediates an increase the secretion of TGF-β1-
activating protease, thrombospondin-1(TSP-1). TSP-1 acti-
vates TGF-β1 in the brain and creates a permissive niche 
allowing T cells to obtain a more inflammatory phenotype. 
Inhibition of AT1R by candesartan (CA) and blockade of 
binding between TSP-1 and TGF-β1 by LSKL (Leu-Ser-
Lys-Leu); a peptide antagonist of TGF-β1 activation blocks 
the upregulation of TGF-β1 in both astrocytes and microglia. 
The data suggest that use of AT1R antagonists (frequently 
prescribed antihypertensives) may also be useful to inter-
rupt the CNS-specific proinflammatory pathway leading to 
decreased inflammation in brain (Lanz et al. 2010).

Vascular Smooth Muscle Cells (VSMCs)

Ang II has been reported to activate JAK/STAT pathway 
in VSMCs also, triggering the release of IL-6 and Angio-
tensinogen. Ang II can signal the generation of IL-6 inde-
pendent of JAK/STAT pathway also via nuclear factor-κB- 
(NFKB) and/or ROS. In VSMCs, a crosstalk between Ang 
II and membrane-bound tyrosine kinases mediates several 
important effects of Ang II including protein synthesis of 
growth-promoting molecules (Daub et al. 1996; Eguchi and 
Inagami 2000). Transactivation of AT1 receptor and mem-
brane-bound tyrosine kinase platelet-derived growth factor 
receptor (PDGFR) and epidermal growth factor receptor 
(EGFR) stimulates VSMC growth and proliferation (Saito 
and Berk 2001). Moreover, Ang II-induced gene expression 
mediated through c-Fos at the downstream of the ERK cas-
cade has also been reported in VSMC. The protein synthesis 
was found to confer through p70 S6 kinase involving both 
the phosphatidylinositol 3-kinase (PI3 K)/Akt and the ERK 
cascades (Eguchi and Inagami 2000). The aberrant VSMC 
remodeling and proliferation contributes to hypertension, 
plaque formation, and consequently stroke.

In an experiment carried out by Moore et al. (2015), it 
was found that Ang II promotes overexpression of mac-
rophage (CD68) and leukocyte (CD45+) in mice aorta. 
CD-206-expressing M2 macrophages were more than the 
inducible nitric oxide synthase-expressing M1 macrophage. 
Real-time PCR data also confirmed the above finding. The 
markers of M1 macrophage (iNOS, chemokine (C-X-C 
motif) ligand (CXCL)2 and tumor necrosis factor (TNF) 
were found to be downregulated in comparison with M2 
macrophage markers (CD206), arginase (Arg)-1, and Fc 
receptor-like S scavenger receptor (Fcrls). Chemokine 
receptor (CCR2) was also highly expressed in mice aorta 
along with its ligands including CCL2, CCL7,CCL8. Flow 
cytometry identified that Ly6Chi monocytes were the main 
CCR2-expressing cell type. Intervention with a CCR2 antag-
onist (INCB3344) reduced the aortic macrophage numbers 
as well as aortic collagen deposition, elastin loss, and BP in 

Ang II-treated mice, thus, suggesting that Ang II-dependent 
hypertension in mice is attributed by Ly6Chi monocyte and 
M2 macrophage accumulation in the aorta. Inhibition of 
macrophage accumulation with a CCR2 antagonist might 
provide a preventive strategy for BP in Ang II-induced ves-
sel fibrosis (Moore et al. 2015).

Ang II activates the Smad pathway via AT1 receptor 
and MAPK activation, independently of TGF-β in cardiac 
myocytes. Following the lead of MAPK pathway Ang II 
signals fibrosis via connective tissue growth factor (CTGF) 
promoter expression, and extrACEllular matrix (ECM) pro-
teins like fibronectin and type-1 procollagen overexpression, 
leading to hypertension and cardiac remodeling (Chen et al. 
2000).

Treatment Strategies Targeting ACE

Since ACE is the major component of hypertension in stroke 
patients, several antihypertensive drugs like ACE inhibitors 
and angiotensin receptor blockers targeting Ang II have 
been developed (Arnold et al. 1998). These antagonists 
have become the first line of treatment for patients who are 
at a higher risk of stroke occurrence or recurrence (Sica 
2016).Various studies have interpreted the use of antihyper-
tensive drugs for primary prevention of stroke but they are 
still under check for their role to prevent a secondary stroke 
(Lonn et al. 2016).

ACE Inhibitors (ACEIs)

ACEIs competitively inhibit the activity of ACE to prevent 
formation of the active octapeptide, angiotensin II, from the 
inactive decapeptide, angiotensin I. The first orally active 
ACE inhibitor drug captopril was commercially released in 
1981 (Ohkuma et al. 2019). Following the release of capto-
pril, enalapril, and lisinopril in the early to mid-1980s, the 
progress in the field of ACE inhibitors remained relatively 
dormant on account a developmental perspective until 1991 
when four ACE inhibitors namely fosinopril, quinapril, 
benazepril, and ramipril were released in the market (Miller 
and Arnold 2019). This was followed by the entry of other 
ACE inhibitors like perindopril, moexipril, and trandola-
pril in the market between 1993 and 1996 (Sica 2010). In 
the previous section of this study, the mechanism by which 
ACE inhibitor works has been mentioned. Studies involv-
ing animal models suggested that ACE inhibitors promote 
angiogenesis and reverse cerebrovascular remodeling. 
However, the pro-angiogenic effect of ACE inhibition is not 
clear. The mechanism is hypothesized to be mediated by 
gradual increase in bradykinin subsequent NO production. 
ACE inhibition also helps in downregulation of fibrinoid 
necrosis, inhibition of atherosclerotic plaque progression, 
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and also reverting of periarteriolar fibrosis and obstructing 
mains steps of hyperplasia after a vascular injury (Vaughan 
and Pfeffer 1994; Yazawa et al. 2011). Thus, ACE inhibi-
tion plays a crucial role in improving functional outcome 
after stroke. Smeda et al. (1999) demonstrated that captopril 
efficiently autoregulates the cerebral blood flow and cerebro-
vascular constriction in testing stroke prone hypertensive 
rats (SHRsp) (Smeda et al. 1999).

The FDA-approved ACEIs for high blood pressure 
include Captopril, Benazepril, Enalapril, Fosinopril, Lisin-
opril, Perindopril, Quinapril, Ramipril, and Trandolapril 
(www.fda.gov). Recently, qbrelis has been added to the 
list and approved by FDA as an ACE inhibitor for lowering 
blood pressure. The clinical trial of ACEIs like lisinopril, 
enalapril, perindopril, and ramipril have been completed 
for stroke and for some inhibitors the trials are still ongo-
ing (Table 5). In Heart Outcome Prevention Evaluation 
(HOPE) trial, ramipril conferred a 32% decreased relative 
risk of stroke (Arnold et al. 2003). Another study, perindo-
pril protection against recurrent stroke study (PROGRESS), 
determined the effect of Perindopril in lowering the blood 
pressure in both hypertensives and normotensives elucidat-
ing its effectiveness and even better results when used along 
with diuretic indapamide (Chalmers and MacMahon 2003).

ACE Receptor Blockers (ARBs)

ARBs block the action of angiotensin II by preventing angio-
tensin II from binding to angiotensin II receptors over the 
surface of cells (Ferrario 2002). As a result, blood vessels 
dilate and blood pressure is reduced. Reduced blood pres-
sure makes it easier for the heart to pump blood and can 
prevent heart failure. The AT1R in the brain is involved in 
vasopressin release and regulation of sympathetic drive, and 
its overexpression might result in decreased blood flow in 
the neuronal region which is the consequence of increased 
vasoconstriction and cerebrovascular remodeling (Sriram-
ula et al. 2011). Some of the FDA-approved ARBs include 
Atacand, Avapro, Benicar, Cozaar, Diovan, Micardis, 
and Teveten (www.fda.gov). Losartan, a non-peptidergic 

antagonist of AT1R, has been demonstrated to reduce blood 
pressure with high efficacy in a high-renin hypertensive rat 
model. As a result, it prevents the pressor effect generated 
by systemic Ang II. The systemic administration of losartan 
(3 mg/kg) significantly diminished the pressor effect gener-
ated by the electrical stimulation of subfornical organ. In 
addition, it was found that the systemic administration of 
losartan significantly reduces neuronal excitation of PVN 
neurons to SF0 stimulation or microinjection of Ang II by 
58.8% and 88.9% of PVN cells, respectively. These observa-
tions suggest that systemic losartan crosses the blood–brain 
barrier (BBB) and acts at AT1 receptors within the PVN. 
Inhibition of AT1 receptor signaling is useful as an anti-
inflammatory as well as immunosuppressive therapy (Li 
et al. 1993). Several clinical trials have been conducted to 
evaluate the efficacy of this drug in stroke patients. A trial 
called LIFE (Losartan Intervention for Endpoint reduction 
in Hypertension study) which allocated the use of Losartan 
versus Atenolol, Ang II receptor blocker for lowering blood 
pressure, revealed a 25% lessened relative reduction in risk 
for stroke (Dahlöf et al. 2002). Another study, Morbidity and 
Mortality after Stroke Eprosartan compared with Nitrendi-
pine for Secondary Prevention Study (MOSES), examined 
the use of Eprosartan (ARB) with Nitrendipine (Calcium 
antagonist) and found the use of ARBs to be more effec-
tive in preventing secondary stroke outcome (Schrader et al. 
2005).

Conclusion

Stroke is one of the leading cause of death worldwide. 
The ACE is an important entity in context of RAAS path-
way where it catalyzes the conversion of angiotensin I to 
angiotensin II. Angiotensin II triggers changes in vascular 
elasticity leading to vasoconstriction, initiation of plaque 
formation and consequently atherosclerosis. All these physi-
ological processes hinder the cerebral blood flow, apart 
from enhanced oxidative stress leading to stroke. Func-
tional genetic variants of ACE gene have been evaluated 

Table 5  Clinical trials including ACEIs and ARBs in stroke

S. no Trials Cases Drug Drug class Significance References

1. HOPE 9297 Ramipril ACEI 32% reduction in stroke (Yusuf et al. 2000)
2. LIFE 9193 Losartan ARB 25% lower risk of stroke (Dahlöf et al. 2002)
3. PROGRESS 6105 Perindopril ACEI 5% decrease in stroke recurrence, 28% reduction 

in relative risk
(Group 2001)

4. MOSES 1405 Eprosartan ARB Reduced blood pressure (Schrader et al. 2005)
5. ONTARGET 25,620 Telmisartan/

Ramipril + tel-
misartan

ARB/ACE + ARB recurrence of stroke reduced in Telmisartan cases (Ruilope et al. 2007)

6. ACCESS 500 Candesartan ARB 52% less incidence of stroke (Böhm et al. 2017)

http://www.fda.gov
http://www.fda.gov
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by different research groups in various ethnic groups. Some 
studies found an association of ACE variants with stroke, 
whereas others reported contradictory findings. In addition, 
many miRNAs have also emerged as key players in regula-
tion of RAAS pathway and simultaneously certain miRNAs 
also get regulated by different components involved in the 
RAAS pathway. Dysregulation of these miRNAs leads to 
elevated levels of Ang II. Alterations in Ang II levels affect 
the downstream signal transduction pathways in neurons, 
glial cells, and VSMCs and thereby result in the develop-
ment of hypertension and inflammation, the two established 
risk factors for stroke. The overexpression of ACE is con-
trolled by prescribing inhibitors and blockers that have been 
developed over the period of time. However, some of these 
are still under clinical trials.
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