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Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that degenerates the central nervous system (CNS). B cells exac-
erbate the progression of CNS lesions in MS by producing auto-antibodies, pro-inflammatory cytokines, and presenting 
auto-antigens to activated T cells. Long non-coding RNAs (lncRNAs) play a crucial role in complex biological processes and 
their stability in body fluids combined with their tissue specificity make these biomolecules promising biomarker candidates 
for MS diagnosis. In the current study, we investigated memory B cell-specific lncRNAs located, on average, less than 50 kb 
from differentially expressed protein-coding genes in MS patients compared to healthy individuals. Moreover, we included 
in our selection criteria lncRNA transcripts predicted to interact with microRNAs with established involvement in MS. To 
assess the expression levels of lncRNAs and their adjacent protein-coding genes, quantitative reverse transcription PCR was 
performed on peripheral blood mononuclear cells samples of 50 MS patients compared to 25 controls. Our results showed 
that in relapsing MS patients, compared to remitting MS patients and healthy controls, lncRNA RP11-530C5.1 was up-
regulated while AL928742.12 was down-regulated. Pearson’s correlation tests showed positive correlations between the 
expression levels of RP11-530C5.1 and AL928742.12 with PAWR​ and IGHA2, respectively. The results of the ROC curve 
test demonstrated the potential biomarker roles of AL928742.12 and RP11-530C5.1. We conclude that these lncRNAs are 
potential markers for detection of relapsing MS patients.
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Abbreviations
cDNA	� Complementary DNA
CNS	� Central nervous system
DNase I	� Deoxyribonuclease I
EDSS	� Expanded disability status scale
GEO	� Gene expression omnibus
GSE	� GEO series
IGHA2	� Immunoglobulin heavy constant alpha 2
EDTA	� Ethylenediaminetetraacetic acid
lncRNA	� Long non-coding RNA
miRNA	� microRNA
MS	� Multiple sclerosis
PAWR​	� PRKC apoptosis WT1 regulator
PBMC	� Peripheral blood mononuclear cell
RT-qPCR	� Quantitative reverse transcription PCR
ROC curve	� Receiver operating characteristic
RRMS	� Relapsing-remitting multiple sclerosis

Introduction

Almost 2.5 million people around the world suffer from mul-
tiple sclerosis (MS), a chronic inflammatory disease of the 
central nervous system (CNS). MS is characterized by axon 
demyelination of the brain and spinal cord (Dendrou et al. 
2015). Genetic and environmental factors influence the onset 
and development of MS (Olsson et al. 2017). Although it has 
been proposed that MS is caused by the action of CD4+ T 
cells (McFarland and Martin 2007), recent evidence revealed 
that memory B cells also play an important role in the patho-
genesis of MS (Corcione et al. 2004; Cepok et al. 2005; 
Baker et al. 2017). B cells participate in the progress of the 
CNS lesions by producing auto-antibodies and secreting pro-
inflammatory cytokines and also by presenting auto-antigens 
to activated T cells (Krumbholz et al. 2012; Fillatreau et al. 
2002; Bar-Or et al. 2010; Tintore et al. 2008; Ignacio et al. 
2010; Berger et al. 2003; Sellebjerg et al. 2009). Depletion 
of memory B cells is a high-efficacy treatment for relaps-
ing MS, while increasing memory B cells exacerbates MS 
(Baker et al. 2017). Clinical trials with Rituximab, a mono-
clonal antibody against CD20, was an effective treatment 
for MS progression through the targeting of memory B cells 
(Bar-Or et al. 2008; Duddy et al. 2007).

Long non-coding RNAs (lncRNA) are defined as tran-
scripts with more than 200 nucleotides in length without a 
significant open reading frame to encode protein (Ulitsky 
and Bartel 2013; Liao et al. 2011). lncRNAs play important 
roles in multiple biological processes through the regulation 
of gene expression (Fatica and Bozzoni 2014; Lee 2012). As 
disease biomarker candidates they have advantages over pro-
tein-coding genes due to their relative stability in body fluids 
and the relative ease of their detection by highly sensitive 

and specific PCR methods (Geisler and Coller 2013; Tong 
and Lo 2006).

Around 50% of protein-coding genes are correlated with 
the co-expression of a lncRNA located less than 50 kb away. 
Moreover, this correlation does not depend on the orien-
tation of transcription of lncRNA genes and co-expressed 
protein-coding genes (Spurlock III et al. 2015).

There are several evidances indicating modulation of 
miRNAs levels in autoimmune diseases, thus regulation 
of such miRNAs may prevent development of autoimmune 
diseases, as reported for MS pathogenesis (Tufekci et al. 
2011). LncRNAs could exert their functions through inter-
acting with such miRNAs (Paraskevopoulou et al. 2012; 
Li et al. 2013). The influence of lncRNAs and microRNAs 
(miRNAs) on each other is rapidly emerging in recent stud-
ies. In some cases, the stability of a lncRNA is reduced by 
interacting with specific miRNAsIn other cases, lncRNAs 
act as decoys for miRNAs, suppressing miRNA repression 
of target messenger RNAs (mRNA). Other lncRNAs com-
pete with miRNAs for interaction with the shared target and 
thereby influence mRNA expression. Additionally, some 
lncRNAs repress target mRNAs by producing miRNAs 
(Chen et al. 2012; Yoon et al. 2014).

In the current study, we analyzed a subset of lncRNAs 
that are specifically expressed in memory B cells at less than 
50 kb distance away from differentially expressed genes in 
peripheral blood mononuclear cells (PBMC) of relapsing-
remitting multiple sclerosis (RRMS) patients.

Materials and Methods

The approaches used to identify candidate lncRNAs are 
illustrated in Fig. 1 and described in more detail below.

LncRNAs Selection

In this study 48 memory B cell lineage-specific lncRNAs 
were retrieved from whole-genome RNA-seq data (Ranzani 
et al. 2015). In the next step, the chromosomal locations and 
the identified transcripts for these lncRNAs were mapped 
using Ensembl (genome assembly GRCh37) for further 
analyses.

LncRNA Adjacent to Differentially Expressed Genes 
in MS

We used the dataset from the Gene Expression Omni-
bus  (GEO) database and GEO series (GSE) by acces-
sion number: GSE21942 (Platform: GPL570, Affym-
etrix Human Genome U133 Plus 2.0 Array; 29 samples) 
to extract genes expressed differentially in MS patients 
compared to healthy individuals. Next, GEO2R analyzer 
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was used to compare two groups of samples, control and 
patient, to identify differentially expressed genes. Genes 
with expression levels with adjusted p values < 0.05 and 
absolute log fold change greater than 1 were selected. 
Finally, using Python programming language (v3.6.0), 
selected lncRNAs that are located on the same chromo-
some with relevant protein-coding genes were identified, 
and then those lncRNAs with less than 50 kb distance 
from the protein-coding genes were considered appropriate 
candidate lncRNAs for this study.

LncRNA–miRNA Interactions and Associated 
Diseases

To identify the possible interaction between lncRNAs 
and miRNAs, LncDisease software (a sequence-based 
bioinformatics tool) was used to identify the effective 
transcripts of the lncRNA associated with MS through 
interaction with miRNAs involved in MS disease (Wang 
et al. 2016). LncDisease utilizes TargetScan and miRanda 
criteria to perform analysis as well as the HMDD database, 
and human miRNA-disease associations, to reach the final 
results.

Ethical Issue

The human subject protocol used for this study was approved 
by an Institutional Review Board of the Royan Institute (Pro-
ject ID. No. 91000573). All study procedures were carried 
out in accordance with the approved guidelines.

Human Subjects

The present case–control study was designed at the Royan 
Institute of Isfahan. Written informed consent was obtained 
from each individual. The datasets analyzed during the 
current study are available in the GSE21942 dataset in the 
GEO database, and all data generated during this study 
are included in this article and its supplementary informa-
tion files. Patients were clinically diagnosed with multiple 
sclerosis by a neurologist through clinical and laboratory 
parameters based on the revised McDonald criteria (Pol-
man et al. 2011). In this study, PBMCs were isolated from 
50 RRMS patients and 25 healthy controls. A total of 25 
MS patients was in remitting phase and under regular treat-
ment with interferon beta-1α (CinnoVex®) and another 25 
cases were in the relapsing phase. Age- and sex-matched 
healthy controls with no history of autoimmune diseases or 
malignancies and no acute or chronic infections were sam-
pled. Disability was graded using the Expanded Disability 
Status Scale (EDSS), method of calculating disability in MS 
patients (Kurtzke 1983).

PBMC Preparation

Peripheral blood was collected from all subjects in tubes 
containing Ethylenediaminetetraacetic acid (EDTA) to pre-
vent coagulation. Human PBMCs were isolated on a ficoll-
hypaque lymphocyte separation medium (STEMCELL 
Technologies, USA) density gradient.

RNA Extraction and cDNA Synthesis

Total RNA was isolated with Trizol® reagent (Invitrogen, 
USA) following the manufacturer’s instructions. The RNA 
quality and quantity were assessed using a NanoDrop Spec-
trophotometer (Nanodrop 1000, Thermo Scientific, USA) 
and electrophoresis performed on 1% agarose gels. Next, 
in order to remove DNA contaminations, RNA was treated 
with deoxyribonuclease I (DNase I) (Thermo Scientific, 
USA). Total RNA (1 μg) was used for the biosynthesis of 
complementary DNA (cDNA) following recommended pro-
cedures from the manufacturer (Thermo Scientific, USA). 
cDNAs were stored at − 80 °C until use.

Fig. 1   In silico workflow of the study. Flow chart showing the meth-
odological approaches used to identify lncRNAs linked to MS in 
B cells. In the first step, memory B cell lineage-specific lncRNAs 
retrieved from whole-genome RNA-seq data and chromosomal loca-
tions and transcripts of these lncRNAs were extracted from Ensembl 
GRCh37. a We obtained differentially expressed genes with adjusted 
p values < 0.05 and log fold change > ±1 from GSE21942 GEO data-
set, comparing MS to healthy individuals. Finally, using python pro-
gramming language, selected lncRNAs with less than 50 kb distance 
from protein-coding genes were selected as appropriate candidate 
lncRNAs for this study. b The sequences of lncRNA transcripts were 
entered into the LncDisease software and one of the lncRNAs found 
effective with miRNAs of MS
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Quantitative Reverse Transcription PCR (RT‑qPCR)

Quantitative reverse transcription PCR (RT-qPCR) was 
carried out with the StepOne™ RT-qPCR System (Applied 
Biosystems, USA). RT-qPCR amplifications were per-
formed in triplicate. The RT-qPCR process was carried 
out in a final content volume of 10 μL and included SYBR 
Premix Ex Taq II (TaKaRa, Japan) and specific primer 
pairs for each lncRNA and coding gene. In order to nor-
malize gene expression in healthy controls, relapsing and 
remitting patients, UBC and YWHAZ mRNAs were used 
as reference genes (Oturai et al. 2016). The list of primer 
sequences used for PCR are summarized in Table 1.

Statistical Analysis

The statistical analyses were carried out using SPSS 
17 software (SPSS, Chicago, IL, USA) and Graph Pad 
Prism (version 6; Graph Pad software). Data normality 
was checked using the Shapiro–Wilk test and differences 
between groups were assessed by One-way ANOVA fol-
lowed by pairwise comparisons and using Tukey’s cor-
rection. The correlation between lncRNAs and coding 
genes were assessed using Pearson’s correlation. Statisti-
cal significance was considered as p values less than 0.05. 
Receiver Operating Characteristic (ROC) curve analysis 
was used to determine the discriminatory power of identi-
fied biomarkers between the patients and controls.

Results

LncRNAs Selection

From the available RNA-Seq data, 48 lncRNAs were 
identified that were lineage-specific to memory B cells 
and were annotated to chromosomes using the GRCh37 
genome assembly in Ensembl. Next, we considered dif-
ferentially expressed protein-coding genes which had 
been identified in the PBMC of MS patients compared to 
healthy controls (497; Supplementary Table 1) and were 
retrieved from GEO database. We examined the prox-
imity of this set of differentially expressed genes to the 
48 selected lncRNAs and identified 2 lncRNAs located 
less than 50 kb distance away from the respective pro-
tein-coding genes. AL928742.12 was 10 kb away from 
immunoglobulin heavy constant alpha 2 (IGHA2) and 
RP11-530C5.1 has overlap with PRKC apoptosis WT1 
regulator (PAWR​), indicating the potential cis-regulatory 
relationships of these neighboring genes (Figs. 2 and 3). 
To select the appropriate candidates among the three anno-
tated transcripts associated with AL928742.12, respective 
exonic sequences (in FASTA format) were entered into 
the ‘LncRNAs Input’ panel of the LncDisease software. 
AL928742.12-001 was scored as an MS-associated tran-
script according to predicted miRNA-lncRNA interac-
tions. In the case of RP11-530C5.1, there was only one 
annotated transcript.

Demographic and Clinical Characteristics of Enrolled 
Samples

MS patients and healthy individuals enrolled in this study 
completed questionnaires. Subject information that was 
included in the final analyses is shown in Table 2 and addi-
tional information on all individuals is provided in supple-
mentary Table 2. Statistical analyses showed no significant 
differences between samples in each group with regard to 
sex and age.

LncRNAs Expression Levels in RRMS Compared 
to the Healthy Controls

After measuring differentially expressed lncRNAs in each 
group, statistical analyses showed a significant up-regulation 
of RP11-530C5.1 in relapsing MS patients compared to the 
remitting patients (p value = 0.046) and healthy controls (p 
value = 0.002). In contrast, there was a significant decrease 
of AL928742.12 expression in relapsing MS patients com-
pared to the controls (p value < 0.001) (Fig. 4).

Table 1   Primers used for quantitative reverse transcription PCR

Gene Primer Amplicon 
length 
(bp)

RP11-530C5.1 F: GGG​CTG​AGG​TGT​TAA​GAT​TT
R: AAC​TGT​CTA​TAT​CTG​GTG​

CTT​

93

AL928742.12-001 F: ATG​GTG​CAG​CGG​TTC​CTC​
TCA​

R: GGG​CTG​GAG​GAC​GTT​GGT​
GT

78

PAWR​ F: AGT​GCT​TAG​ATG​AGT​ACG​
AAG​

R: CTC​CTG​TAG​CAG​ATA​GGA​AC

137

IGHA2 F: TGC​CAC​CTT​CAC​CTG​GAC​
R:TAG​CAG​CCA​CAG​AGG​TCA​C

78

UBC F: GGA​TTT​GGG​TCG​CAG​TTC​
TTG​

R: TGC​CTT​GAC​ATT​CTC​GAT​GG

135

YWHAZ F: ACT​TTT​GGT​ACA​TTG​TGG​
CTTC​

R: CCG​CCA​GGA​CAA​ACC​AGT​A

94
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Evaluating Expression Levels of Coding Genes 
(IGHA2 and PAWR​)

In the next step, we measured the expression levels of protein-
coding genes, PAWR​ and IGHA2, which were located less than 
50 kb distance away from the differentially expressed lncR-
NAs. No statistically significant changes in PAWR​ and IGHA2 
expression levels were detected when we compared RRMS 
patients to healthy controls (Fig. 5).

Correlation Coefficient Between lncRNA and Coding 
Genes

Pearson’s correlation tests showed positive correlations 
between the expression levels of RP11-530C5.1 and PAWR​ 
(Pearson’s correlation = 0.269, p value = 0.047). Likewise, 
there was a significant correlation between AL928742.12 
and IGHA2 (Pearson’s correlation = 0.476, p value < 0.001) 
(Fig. 6).

Fig. 2   Physical gene proximities of LncRNAs with expressed protein-
coding genes from array data. Proximities of differentially expressed 
protein-coding genes relative to lncRNAs in MS patients were deter-
mined using python programming language. mRNAs retrieved from 

GEO were inserted to STRING db and then combined with the 
selected lncRNAs and visualized using Cytoscape. Identified protein-
coding gene–lncRNAs pairs located within the distance parameters 
(50 kbp) are indicated with thick lines
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ROC Curve Analysis Results

The results of ROC curve tests showed positive bio-
marker potential for AL928742.12 (AUC = 0.723, 

p  value = 0.006), as well as the RP11-530C5.1 
(AUC = 0.825, p value < 0.0001) (Fig. 7). These findings 
indicate that these two lncRNAs have the potential to serve 

Fig. 3   Chromosomal organization of protein-coding genes and 
lncRNA clusters. Genomic data were obtained from the UCSC 
genome browser. Protein-coding genes are in blue, and lncRNA genes 

in green. The region on the respective chromosomes displayed in 
detail is indicated with a red bar in each chromosome idiogram

Table 2   Demographic features 
of MS patients and controls

*SD stands for standard deviation. **EDSS: expanded disability status scale arranging patients from 0 to 
10 score

Healthy control Relapsing MS Remitting MS Total

Gender (F/M) 15/10 20/5 19/6 54/21
Disease duration years (SD)* – 0 6.16 (4.47) 6.16 (4.47)
Age (mean ± SD) 32.84 ± 6.06 32.48 ± 7.07 35.52 ± 9.26 33.49 ± 7.46
EDSS (mean)** – 1.54 1.40 –

Fig. 4   Expression level analyses of AL928742.12 and RP11-530C5.1 
lncRNAs in relapsing–remitting and control samples. a Scatter-plot of 
the expression level of AL928742.12 and b Scatter-plot of the expres-
sion level of RP11-530C5.1 in MS and control samples was measured 

by RT-qPCR and values are given as the mean normalized expres-
sion relative to UBC and YWHAZ. (*p < 0.05, **p < 0.01 and*** 
p < 0.001)
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Fig. 5   Expression of IGHA2 and PAWR​ in MS patients compared 
to the controls. Scatter-plots of the differential expression level of 
a PAWR​ and b IGHA2 in relapsing, remitting, and control samples. 

Values are given as mean normalized expression relative to UBC and 
YWHAZ. (*p < 0.05, **p < 0.01 and*** p < 0.001)

Fig. 6   Correlation analyses between lncRNAs and protein-coding genes in MS. Pearson correlation of expression between a AL928742.12 and 
IGHA2 and b RP11-530C5.1 and PAWR​ 

Fig. 7   ROC curve analysis indicates lncRNAs as likely biomarkers for MS. Discriminatory power of the individual lncRNAs, a AL928742.12 
and b RP11-530C5.1, as biomarkers for the diagnosis of MS patients and controls
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as diagnostic biomarkers to distinguish healthy controls 
from relapse phase MS patients.

Discussion

Several specific lncRNAs were recently shown to be deregu-
lated in the PBMCs of MS patients, leading to a proposed 
role for specific lncRNAs in the progression of MS patho-
genesis (Zhang and Cao 2016; Teimuri et al. 2018; Hosseini 
et al. 2019). LncRNAs have important roles in regulating 
gene expression and abnormal expression of lncRNAs has 
recently been linked to the pathogenesis and progression 
of multiple diseases (DiStefano 2018). Recent studies also 
demonstrated control of the immune system by lncRNAs 
(Zhang and Cao 2016; Heward and Lindsay 2014). B lym-
phocytes have a key role in the normal immune response by 
secreting antibodies in humoral immunity. Therapies that 
target memory B cells have become an important focus in 
MS disease research (Baker et al. 2017).

In this study, we aimed to identify candidate memory 
B cell-specific lncRNAs involved in MS pathogenesis. To 
accomplish this, we selected lncRNAs specifically expressed 
in memory B cell lineage that were also located less than 
50 kb distance away from genes differentially expressed 
in the PBMC of MS patients. Because these differentially 
expressed genes might be involved in MS pathogenesis, 
their close physical association with differentially expressed 
lncRNAs suggests an associated involvement of the lncRNA 
with MS as well. We evaluated the expression levels of the 
identified lncRNAs and their neighboring mRNAs in relaps-
ing and remitting phase MS patients compared to healthy 
individuals.

Analysis of microarray data retrieved from gene expres-
sion profiling in PBMCs from relapsing–remitting MS 
patients demonstrates that PAWR​ is among the top differ-
entially expressed genes in B cell (Comabella et al. 2015). 
PAWR​ is a pro-apoptotic gene and a recent study showed that 
B cells derived from patients with RRMS induce apoptosis 
in oligodendrocytes and neurons via unknown secreted fac-
tors (Lisak et al. 2017). IGHA2, on the other hand, encodes 
the constant region of immunoglobulin heavy chains. Immu-
noglobulins serve as receptors that initiate B lymphocyte 
differentiation into antibody-secreting plasma cells. Secreted 
immunoglobulins mediate the effector phase of humoral 
immunity, which blocks antigen binding to these receptors 
(McHeyzer-Williams et al. 2012; Schroeder and Cavacini 
2010).

RP11-530C5.1 was significantly higher in relapsing MS 
patients compared to remitting phase patients and healthy 
controls. The correlation between RP11-530C5.1 and PAWR​ 
expression suggests a cis-regulatory role for RP11-530C5.1 
on PAWR​ in memory B cells.

Recently, it was shown that AL928742.12 is down-regu-
lated in inflammatory bowel disease (Mirza et al. 2015). Our 
results indicated that AL928742.12 was also significantly 
down-regulated in relapsing MS patients compared to the 
healthy controls. AL928742.12 expression was also signifi-
cantly correlated with IGHA2 expression.

LncRNAs may have correlation with their adjacent genes 
and exert a positive or negative effect on expression of these 
genes at both transcriptional and post-transcriptional levels. 
Such regulation is important in development, differentiation, 
or even progress of human disease (Wilusz et al. 2009; Taft 
et al. 2010; Yap et al. 2010).

Conclusion

In this study, candidate lncRNAs involved in MS disease 
were identified from B cell-specific lncRNAs that were iden-
tified through adjacent differentially expressed genes in the 
PBMC of MS patients compared to the healthy controls, 
and also through interactions with miRNAs involved in 
MS. Here, we propose that deregulated lncRNAs identified 
from these associations could provide a valuable resource 
for studies to discern the important lncRNAs in diseases 
involving specific cell types and their associations with, and 
potential regulation of, nearby protein-coding genes.
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