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Abstract
Intracranial aneurysms (IA) are local dilatations in cerebral arteries that predominantly affect the circle of Willis. Occur-
ring in approximately 2–5% of adults, these weakened areas are susceptible to rupture, leading to subarachnoid hemor-
rhage (SAH), a type of hemorrhagic stroke. Due to its early age of onset and poor prognosis, SAH accounts for > 25% of 
years lost for all stroke victims under the age of 65. In this review, we describe the cerebrovascular pathology associated 
with intracranial aneurysms. To understand IA genetics, we summarize syndromes with elevated incidence, genome-wide 
association studies (GWAS), whole exome studies on IA-affected families, and recent research that established definitive 
roles for Thsd1 (Thrombospondin Type 1 Domain Containing Protein 1) and Sox17 (SRY-box 17) in IA using genetically 
engineered mouse models. Lastly, we discuss the underlying molecular mechanisms of IA, including defects in vascular 
endothelial and smooth muscle cells caused by dysfunction in mechanotransduction, Thsd1/FAK (Focal Adhesion Kinase) 
signaling, and the Transforming Growth Factor β (TGF-β) pathway. As illustrated by THSD1 research, cell adhesion may 
play a significant role in IA.
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Introduction

An intracranial aneurysm (IA) is a dilatation in the wall of 
a cerebral artery that occurs predominantly in the circle of 
Willis. A ruptured IA is the most common cause of suba-
rachnoid hemorrhage (SAH), a devastating condition that 
can lead to death or permanent disability (Brain Aneurysm 
Foundation 2017). Due to early age of onset and high mor-
tality, SAH accounts for > 25% of years lost for all stroke 
victims under the age of 65 years (Johnston et al. 1998). 
Despite treatment advances, the SAH mortality rate is ~ 40%, 
and only half of survivors return to independent life. The IA 
prevalence in the adult population is approximately 2–5% 

with an annual rupture rate of 8–10 per 100,000 (Hop et al. 
1997; Tromp et al. 2014; Zacharia et al. 2010; Linn et al. 
1996; Korja et al. 2013; Andreasen et al. 2013; Wiebers 
et al. 2003, 2004). Prior to rupture, IAs are usually asymp-
tomatic, and population-wide IA screening is unrealistic 
due to brain imaging costs. Currently, unruptured IAs are 
primarily discovered as an incidental finding or in affected 
families. When treated before rupture, survival rates improve 
dramatically (International Study of Unruptured Intracranial 
Aneurysms 1998).

IAs usually develop in adulthood. Structurally, there are 
two types of intracranial aneurysms: saccular and fusiform. 
Saccular (aka berry) aneurysms are sac-like pocket that 
arises from a cerebral wall, while the less-common fusiform 
aneurysms are dilations that affect a short length of vessel 
where the entire vessel diameter is increased. Female sex, 
smoking, hypertension, and alcohol consumption are risk 
factors, but a positive family history confers the greatest 
risk (Andreasen et al. 2013; Korja et al. 2013). It is known 
that 7–20% of patients have a family history, and first-
degree relatives are at increased risk, regardless of ethnic 
background.(Norrgard et al. 1987; Ronkainen et al. 1993; 
Schievink et al. 1994, 1995; Bromberg et al. 1995; Teasdale 
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et al. 2005; Ronkainen et al. 1997; Kim et al. 2003) The 
Nordic Twin Study reports a SAH heritability estimate of 
41% [95% CI 23.7% to 55.5%], while the odds ratio for SAH 
is 51.0 [95% CI 8.56–1117] when ≥ 2 affected first-degree 
relatives have SAH (Korja et al. 2010; Bor et al. 2008). In a 
recent study of 21 twin pairs (Mackey et al. 2015), 11 of 12 
monozygotic twins developed IA, irrespective of smoking 
or hypertension, while only 5 of 9 dizygotic twins were both 
affected. Increased IA incidence is a prominent phenotype in 
Autosomal Dominant Polycystic Kidney Disease (ADPKD); 
however, the vast majority of IA occurs in nonsyndromic 
families or sporadic cases. In this review, we present our 
current understanding of intracranial aneurysms, highlight-
ing pathological features, several syndromes with elevated 
IA incidence, and genetic studies that elucidate molecular 
mechanisms that contribute to disease. We will also describe 
the discovery and functional significance of THSD1 (Throm-
bospondin type I Domain containing 1), a gene whose dele-
terious rare variants cause a subset of human IA/SAH cases.

Methods

The medical literature on intracranial aneurysms was 
reviewed up to March 25, 2019 using PubMed searches 
using combinations of the following terms: intracranial, cer-
ebral, brain, aneurysm, syndrome, genetics, exome sequenc-
ing, pathology, physiology, biology, histology, vascular, 
endothelial, smooth muscle, inflammatory, cell signaling, 
molecular mechanism, animal model, mouse, and zebrafish. 
For whole exome sequencing results of IA families, both 
the data in the paper and supplementary information are 
summarized in Table 3. In several subsections, we refer 
to review articles that provide additional information on a 
particular topic. Nonetheless, we added newly discovered 
facts and discussed their significances as well as referred 
the previous reviews, so as to maintain the overall integrity 
and continuity.

Results

Cerebrovascular Pathology of Intracranial 
Aneurysms

Pathological analyses on human IA samples provide criti-
cal insights into the molecular mechanism of IA formation 
and rupture. A common feature of IA is disintegration of 
the internal elastic lamina (IEL), a subendothelial connec-
tive tissue that separate intima from media. Other charac-
teristics may include irregular luminal surface, myointi-
mal hyperplasia, disorganization of the muscular media, 

hypocellularization, and infiltration of inflammatory cells 
(reviewed in Santiago-Sim (2011)).

Normal Intracranial Artery in Human

An intracranial artery consists of three layers: the intima, 
media, and adventitia. The intima is the innermost layer that 
faces the luminal side and has direct contact with blood flow. 
It is composed of a monolayer of endothelial cells and a 
subendothelial extracellular matrix. Glycoproteins, proteo-
glycans, and elastin can be deposited into the extracellular 
matrix that forms the internal elastic lamina (IEL) that sepa-
rates intima from media. The media is mainly composed of 
smooth muscle cells with an extracellular matrix that con-
tains predominantly type III collagen (Canham et al. 1991). 
The adventitia is the outmost layer and consists of a com-
plex network of type I collagen fibers, elastin, nerves, and 
fibroblasts (Finlay et al. 1995). It is notable that the external 
elastic lamina (EEL) that separates media from adventi-
tia in aortic arteries does not exist in intracranial arteries, 
potentially rendering intracranial arteries more vulnerable 
to hemodynamic stress.

IA occurs in high frequency at a bifurcation of the circle 
of Willis, a ring-like arterial structure located at the base of 
the brain which supplies blood to the brain and surrounding 
structures (Williams and Brown 2013). It is well documented 
that these bifurcations are characterized by high wall shear 
stress due to the impingement of blood flow that may con-
tribute to IA formation (Sforza et al. 2009). In 1930, Forbus 
proposed that the smooth muscle layer is lacking at bifur-
cation apexes in the circle of Willis, resulting in inherent 
IA susceptibility (Forbus 1930). Subsequently, the “media 
gap” was shown to be the physiological junction between 
two smooth muscle layers that primarily contain tendon-like 
collagen that provides strength and stability (Finlay et al. 
1998). Meng and colleagues later designed elegant rabbit 
experiments that showed that IA does not originate from 
the apex but from the proximal region, where both high wall 
shear stress and positive shear stress gradient apply (Meng 
et al. 2007, 2014).

Abnormal Intracranial Artery in IA Patients

Disintegration of Internal Elastic Lamina (IEL) Internal elas-
tic lamina contains elastic fibers that provide flexibility to 
arteries. In a normal intracranial artery, IEL is well pre-
served and homogeneous. In IA, IEL becomes torn, frag-
mented, or disappears, especially in the fundus of the aneu-
rysm. The disruption of IEL is considered as a hallmark for 
IA pathology (Krings et al. 2011).

Irregular Luminal Surface of  Intima In IAs from human 
patients or induced in animal models, the luminal surface 
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of intima shows large evaginations and deep, narrow invagi-
nations as detected by transmission electron microscopy 
(Draghia et al. 2008). In addition, small holes and enlarged 
gaps were detected at the junction of endothelial cells at the 
luminal surface which accordingly, attracts a thick layer of 
platelets and/or leukocytes. Overall, the luminal surface of 
intima becomes rugged in comparison to the well-preserved 
and smooth surface in the normal intracranial artery (Sca-
narini et al. 1978).

Myointimal Hyperplasia In normal intracranial arteries, 
IEL separates intima from media. When IEL becomes dis-
integrated, smooth muscle cells in media can migrate into 
the intima layer and proliferate, causing myointimal hyper-
plasia. This phenomenon results in intimal thickening that is 
frequently observed in IA samples (Fennell et al. 2016). It is 
unclear whether myotintimal hyperplasia contributes to IA 
formation or merely is a result of IEL degeneration.

Disorganization of the Muscular Media The smooth muscle 
cells in the media are organized onto the reticular fiber that 
mainly consists of type III collagen. In IA, the medial layer 
is disorganized, and smooth muscle cells often undergo a 
“phenotypic switch” from contractile to a synthetic type that 
is pro-inflammatory and pro-remodeling (Chalouhi et  al. 
2012). Morphologically, their appearance changes from 
their original spindle-like shape into a spider-like one (Song 
et al. 2018), resulting in media that is no longer arranged 
in tightly compacted bands. In comparison with unruptured 
IA, the media of ruptured IA is thin and often devoid of 
smooth muscle cells, probably due to increased apoptosis. A 
similar phenotype has also been observed in mouse models 
(Aoki and Nishimura 2011; Morimoto et al. 2002).

Hypocellularization Hypocellularization in IA walls occur 
commonly. Both apoptotic and necrotic cells have been 
observed in human IAs, especially in their necks and domes, 

while few have been described in control arteries (Pentimalli 
et al. 2004). Data from experimentally induced IA animal 
model support that apoptosis of smooth muscle cells is asso-
ciated with IA formation (Kondo et al. 1998). Necrosis is 
in general considered an acute response to injury. Recently, 
necroptosis was identified as a new type of necrosis that 
could occur in a programmed manner similar to apoptosis. 
Given its link to aortic aneurysms via smooth muscle cell 
death (Wang et al. 2015a, b), necroptosis may also play a 
role in IA pathogenesis.

Infiltration of  Inflammatory Cells Inflammatory cells are 
frequently found in aneurysmal tissues in both animal mod-
els and humans where they are thought to contribute to dis-
ease. These cell populations include macrophages, neutro-
phils, T cells, and B cells. Of note, macrophages can secret 
matrix-degrading enzymes such as MMP2 and MMP9, 
and cytokines that further recruit other inflammatory cells 
(reviewed in Chalouhi et al. (2012)). Macrophages are also 
thought to be important for aneurysmal rupture. Further 
descriptions of the roles of immune cells in IA is presented 
in section "Contribution of Inflammatory Cells".

Genetic Syndromes with Elevated Intracranial 
Aneurysm Incidence

In addition to environmental risk factors, genetics plays a 
significant role in disease, providing valuable clues on the 
molecular mechanisms of IA. The available data demon-
strates that IAs can be caused by rare variants of major 
effect as illustrated by multiple genetic syndromes (Table 1) 
or common variants of minor effect as shown by GWAS. 
According to the American Heart Association (AHA) and 
American Stroke Association (ASA) guidelines (Thomp-
son et al. 2015), IA screening is recommended for those 
affected by Autosomal Dominant Polycystic Kidney Dis-
ease (ADPKD), Type IV Ehlers–Danlos (vascular subtype), 

Table 1  Genetic syndromes, underlying defective gene, and IA incidence

Syndrome Major gene(s) IA incidence References

Autosomal Dominant Polycystic Kidney Disease 
(ADPKD)

PKD1, PKD2 11% Cagnazzo et al. (2017)

Type IV Ehlers–Danlos Syndrome (Vascular Sub-
type)

Col3a1 17.5% Kim et al. (2016)

Microcephalic/Majewski’s Osteodysplastic Primor-
dial Dwarfism, Type II (MOPD2)

PCNT up to 50% Teo et al. (2016), Bober et al. (2010), Brancati et al. 
(2005), and Li et al. (2015)

Loeys-Dietz Syndrome (LDS) TGFBR1, 
TGFBR2, 
SMAD3, TGFB2

10–28% Loeys et al. (2006), Rodrigues et al. (2009), Vanakker 
et al. (2011), and Kim et al. (2016)

Marfan Syndrome FBN1 0–14% van den Berg et al. (1996), Conway et al. (1999), and 
Kim et al. (2016)

Neurofibromatosis Type I NF1 9% Conway et al. (2001) and Schievink et al. (2005)
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and Microcephalic Osteodysplastic Primordial Dwarfism 
(MOPD). The mechanisms by which the underlying syn-
dromic genes as well as others contribute to IA will be 
discussed in section "Biology of Intracranial Aneurysms". 
Computed tomography (CT) or magnetic resonance angi-
ography (MRA) based imaging is strongly encouraged for 
IA detection.

Autosomal Dominant Polycystic Kidney Disease (ADPKD)

Autosomal dominant polycystic kidney disease (ADPKD) 
has an IA prevalence of roughly 11% as determined by a 
systematic literature review (Cagnazzo et al. 2017). Caused 
by loss-of-function in polycystin 1 (PKD1) or polycystin 2 
(PKD2), ADPKD is primarily characterized by polycystic 
kidney, leading to renal dysfunction and eventual failure 
(reviewed in Pirson (2010) and Bergmann et al. (2018)). In 
addition, other organs, most notably the liver, are adversely 
affected. ADPKD patients frequently have high blood pres-
sure that is a risk factor for IA as well as other diseases. 
This disorder has reduced average life expectancy to 53 and 
69 years for European PKD1 and PKD2 patients, respec-
tively (Hateboer et al. 1999).

Type IV Ehlers–Danlos Syndrome (Vascular Subtype)

Affecting 1 in 50,000–200,000, vascular EDS is an autoso-
mal dominant connective tissue disorder characterized by 
extreme vascular fragility that often leads to hemorrhage 
and death (reviewed in De Paepe and Malfait (2012) and 
Malfait (2018)). This disease is caused by variants/mutations 
in Col3a1 that encodes an abundant, extracellular matrix 
protein that is required to support and strengthen connective 
tissue (Tsipouras et al. 1986; Nicholls et al. 1988; Superti-
Furga et al. 1988). In a retrospective study, 7 out of 40 
(17.5%) individuals with vascular EDS had IA (Kim et al. 
2016). Annual, noninvasive imaging (e.g., CT or MRA) of 
the vascular tree is strongly recommended. Unfortunately, 
the discovery of IA in these patients has little clinical util-
ity as surgical intervention is highly risky in these patients.

Microcephalic/Majewski’s Osteodysplastic Primordial 
Dwarfism, Type II (MOPD2)

MOPD2 is a rare, autosomal recessive disorder characterized 
by short stature with other skeletal abnormalities includ-
ing a disproportionately small head size (reviewed in Rauch 
(2011)). Due to the extreme rarity of this disease, the precise 
incidence of IA in MOPD2 remains unknown, but the cur-
rent data suggest that it may occur in up to half (Teo et al. 
2016; Bober et al. 2010; Brancati et al. 2005; Li et al. 2015). 
This disease is caused by the inheritance of two defective 
copies of the Pericentrin 1 (PCNT) gene that encodes a 

centrosome-associated protein that is important for proper 
chromosomal segregation (Rauch et al. 2008; Willems et al. 
2010). In addition, PCNT loss-of-function in epithelial cells 
disrupts cilia formation and PDK2 localization to basal bod-
ies (Jurczyk et al. 2004). The significance of the PCNT-
PDK2 interaction and potentially PCNT haploinsufficiency 
in IA is further suggested as PCNT rare missense variants 
were found in multiple IA families where several affected 
also had kidney cysts (Lorenzo-Betancor et al. 2018). In 
these particular families, it should be noted that other rare 
variants beyond PCNT exist where another gene variant may 
be responsible for disease.

Loeys‑Dietz Syndrome (LDS)

Similar to Type IV Ehlers–Danlos, LDS is an autosomal 
dominant, connective tissue disease. Characterized by muta-
tions in the Tgf-β pathway genes (predominantly TGFBR1, 
TGFBR2, SMAD3, and TGFB2), these patients have severe 
vascular phenotypes where arterial aneurysm dissection 
and bleeding are common that often manifest early in life. 
Roughly one-third of LDS deaths are caused by cerebro-
vascular bleeding with an overall IA incidence of 10–28% 
(Loeys et al. 2006; Rodrigues et al. 2009; Vanakker et al. 
2011; Kim et al. 2016). Given the widespread defects in the 
vasculature, biennial screening of the entire vascular tree is 
recommended, including brain CTs or MRAs (MacCarrick 
et al. 2014).

Other Disease with Putative IA Association: Marfan 
Syndrome and Neurofibromatosis Type I

Marfan syndrome (MFS) is an autosomal dominant con-
nective disorder that leads to skeletal, ocular, and cardio-
vascular malformations due to mutations in the fibrillin-1 
(FBN1) gene that leads to increased Tgf-β signaling (Dietz 
et al. 1992; Hayward et al. 1992). The initial association of 
MFS with IA was largely based on numerous case reports 
(Finney et al. 1976; Matsuda et al. 1979; Ohtsuki et al. 1984; 
Higashida et al. 1988; Stehbens et al. 1989; Hainsworth and 
Mendelow 1991; Schievink et al. 1997). Subsequent analysis 
of 129 Marfan patients with > 3400 observation years found 
no evidence for symptomatic IA in any patient (van den Berg 
et al. 1996), while an autopsy study of 25 Marfan patients 
revealed only one case with a 2-mm unruptured aneurysm 
(Conway et al. 1999). In contrast, a recent study found that 
14% (8/59) Marfan individuals were characterized by IA 
(Kim et al. 2016). Further research will be required to rec-
oncile these results.

Like Marfan, Neurofibromatosis Type 1 (NF1) is an auto-
somal dominant disease. Caused by pathogenic variants in 
the NF1 gene, this disease is characterized by cutaneous 
neurofibromas (typically benign), café-au-lait spots, iris 
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Lisch nodules, and vasculopathy. The association of NF1 
with IA remains controversial. Intracranial aneurysms have 
been reported in 9% (2/22) of NF1 cases as detected by MRI 
(Schievink et al. 2005). An autopsy study of 25 NF1 indi-
viduals found none with an intracranial aneurysm nor were 
there any NF1-affected individuals among 925 intracranial 
aneurysm patients at Johns Hopkins Medical Institutions 
from 1990 to 2000 (Conway et al. 2001).

Genetic Studies on Nonsyndromic Intracranial 
Aneurysms

Genetic studies on nonsyndromic IA can be broadly clas-
sified into four categories: linkage analyses, genome-wide 
association studies (GWAS), candidate gene approaches, and 
whole exome sequencing research.

Linkage Analysis

In IA, linkage analyses on aneurysm families or sib-pairs 
have mapped 15 IA susceptibility loci (reviewed in Hitch-
cock and Gibson (2017) and Zhou et al. (2018)) (Nahed 
et al. 2005; Ruigrok et al. 2008; Roos et al. 2004; Foroud 
et al. 2008; Foroud et al. 2009; Verlaan et al. 2006; Onda 
et al. 2001; Farnham et al. 2004; Kim et al. 2011; Ozturk 
et al. 2006; Yamada et al. 2004; Olson et al. 2002; van der 
Voet et al. 2004; Mineharu et al. 2007; Santiago-Sim et al. 
2009a). These studies suggest that a subset of IAs may be 
caused by rare mutations/variants with major effect. The 
identified IA linkage peaks are often quite broad encompass-
ing tens or hundreds of genes and the definitive causative 
gene(s) remain largely unidentified. The one exception is a 
linkage peak at 13q14-21 that we identified in a large family 
with 9 IA-affected and 13 unaffected members who provided 
DNA (Santiago-Sim et al. 2009a). Subsequently, we dis-
covered that this chromosomal region harbored a nonsense 
THSD1 variant that co-segregates exclusively with disease 
as determined by whole exome and targeted sequencing. 
Furthermore, we demonstrated Thsd1 heterozygous and null 
mice develop IA and SAH, validating a direct disease role 
(unpublished observations and Santiago-Sim et al. (2016)).

Genome‑Wide Association Studies (GWAS)

To date, many groups have performed GWAS on those 
affected by IA and controls, identifying more than 20 IA-
candidate loci (reviewed in Hitchcock and Gibson (2017) 
and Zhou et al. (2018)). An overarching conclusion is that 
there is no common genetic variant that has a large effect 
on IA. Of note, only two loci have been replicated by more 
than two studies: CDKN2A/CDKN2B/CDKN2B-AS on 
chromosome 9p21.3 (Bilguvar et al. 2008; Yasuno et al. 

2010; Deka et al. 2010; Foroud et al. 2012, 2014; Low 
et al. 2012; Abrantes et al. 2015; Akiyama et al. 2010; 
Kurki et  al. 2014) and SOX17 on 8q11.23 (Bilguvar 
et al. 2008; Yasuno et al. 2010; Deka et al. 2010; Foroud 
et al. 2012). A recent meta-analysis of 116,000 IA cases 
reported an odds ratio of 1.29 (95% CI 1.21–1.38) for 
rs10757278 in CDKN2B-AS and 1.21 (95% CI 1.15–1.27) 
for rs9298506 near SOX17.(Alg et al. 2013) These loci 
have been implicated in diverse populations that include 
North American, Finnish, Dutch, Japanese, New Zealand-
ers, and Australians. SOX17 was recently implicated as 
a bona fide IA-causing gene as endothelial-specific dele-
tion of Sox17 in mice induces IA formation under hyper-
tension stress.(Lee et al. 2015) Functional validation of 
CDKN2A/B in IA pathogenesis remains elusive and is 
complicated by the structural complexity of this locus. 
Specifically, CDKN2A undergoes alternative promoter 
utilization that yields transcripts encoding either p14ARF 
or p16/INK4A. The promoter for P14ARF in the divergent 
orientation directs expression of CDKN2B-AS that is also 
known as long noncoding RNA Anril. The CDKN2B gene 
lies within this lncRNA gene in the reverse orientation.

Case–Control Studies for Candidate Gene Association

Based on linkage analysis, expression studies, or biologi-
cal function, multiple case–control studies have interro-
gated whether specific polymorphisms are IA-associated 
(Table  2). The implicated genes include: ACE (Cun 
et al. 2017), ADAMTS2 (Arning et al. 2016), ARHGEF 
(Zholdybayeva et al. 2018), COL1A2 (Joo et al. 2009; 
Glasker et al. 2014; Gan et al. 2017), COL3A1 (Zholdy-
bayeva et al. 2018), CSPG2 (Ruigrok et al. 2009; Zholdy-
bayeva et al. 2018), ELN (Akagawa et al. 2006; Paterakis 
et al. 2017), ENG (Joo et al. 2008; Hu et al. 2015; Zholdy-
bayeva et al. 2018), HSPG2 (Ruigrok et al. 2009), IL6 (Sun 
et al. 2008; Zhang et al. 2011; Zheng et al. 2013), JDP2 
(Krischek et al. 2010; Zholdybayeva et al. 2018), KLK5-
10 (Weinsheimer et al. 2007; Suo et al. 2014), let-7a-1/
let-7f-1/let-7d (Sima et al. 2015), LIMK1 (Akagawa et al. 
2006; Low et al. 2011; Zholdybayeva et al. 2018), LOX 
(Hong et al. 2017), MLL2 (Zholdybayeva et al. 2018), 
MMP2 (Low et al. 2011; Alg et al. 2018), NOS3 (Paschoal 
et al. 2018), PRDM9 (Zholdybayeva et al. 2018), RNF213 
(Zhou et al. 2016), SERPINA3 (Zholdybayeva et al. 2018), 
SOX17 (Zholdybayeva et al. 2018), StAR (Zholdybayeva 
et al. 2018), TNF-α (Low et al. 2011; Hu et al. 2017), 
TSLC2A9 (Zhang et al. 2015), UBR3 (Zholdybayeva et al. 
2018), VCAN (Ruigrok et al. 2006; Sathyan et al. 2014), 
and WWOX (Fan et  al. 2016). Further research using 
mouse models will be required to determine which of the 
aforementioned genes contribute directly to IA.
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Whole Exome Sequencing IA Studies

With advances in high-throughput sequencing that have 
significantly reduced costs, whole exome sequencing has 
recently been applied to identify candidate disease-causing 
genes in affected families. Using relative stringent filtering 
criteria, first cousins who share 12.5% of their genomic DNA 
have in common an average of 27 rare coding variants with a 
minor allele frequency (MAF) < 0.2%. This reality highlights 
the inherent limitations of many familial IA studies. Table 3 
highlights published studies that have used whole exome 
sequencing (and often subsequent targeted sequencing) to 
identify candidate IA genes. As illustrated in Table 3, many 
candidate genes have been identified on a per family basis 
in these studies. Of note, most families selected for study 
appear to have an autosomal dominant pattern of inherit-
ance, and a single gene defect is most likely responsible. In 
addition, the number of candidate genes are less than what 
is predicted in several cases due to the difference in how 
variants were filtered and reported. To date, only a single 
family has yielded a definitive IA gene. Specifically, our 

group identified multiple rare variants in thrombospondin 
type I domain containing 1 (THSD1) from IA patients by 
combining linkage analysis, whole exome sequencing, and 
targeted sequencing (Santiago-Sim et al. 2009a; Santiago-
Sim et al. 2016). The THSD1 nonsense variant R450X was 
identified in a large IA family where it co-segregated in nine 
affected members and was absent in the 13 unaffected family 
members who provided DNA. Our loss-of-function studies 
in zebrafish and mice validated a direct role for Thsd1 in 
intracranial hemorrhage.

Biology of Intracranial Aneurysms

Intracranial arteries are mainly composed of two types of 
cells, endothelial cells forming intima and smooth muscle 
cells forming media. When IA occurs, infiltration of inflam-
matory cells such as macrophages are inevitable as well as 
neutrophils, T cells, and B cells. Each type of cells has dif-
ferent biological characteristics and contributes to IA via 
different molecular and cellular mechanisms.

Table 2  Intracranial aneurysm 
candidate gene studies

Gene Reference(s)

ACE Cun et al. (2017)
ADAMTS2 Arning et al. (2016)
ARHGEF Zholdybayeva et al. (2018)
COL1A2 Joo et al. (2009), Glasker et al. (2014), and Gan et al. (2017)
COL3A1 Zholdybayeva et al. (2018)
CSPG2 Ruigrok et al. (2009) and Zholdybayeva et al. (2018)
ELN Akagawa et al. (2006) and Paterakis et al. (2017)
ENG Joo et al. (2008), Hu et al. (2015), and Zholdybayeva et al. (2018)
HSPG2 Ruigrok et al. (2009)
IL6 Sun et al. (2008), Zhang et al. (2011), and Zheng et al. 2013
JDP2 Krischek et al. (2010) and Zholdybayeva et al. (2018)
KLK5-10 Weinsheimer et al. (2007) and Suo et al. (2014)
let-7a-1/let-7f-1/let-7d Sima et al. (2015)
LIMK1 Akagawa et al. (2006), Low et al. (2011), and Zholdybayeva et al. (2018)
LOX Hong et al. (2017)
MLL2 Zholdybayeva et al. (2018)
MMP2 Low et al. (2011) and Alg et al. (2018)
NOS3 Paschoal et al. (2018)
PRDM9 Zholdybayeva et al. (2018)
RNF213 Zhou et al. (2016)
SERPINA3 Zholdybayeva et al. (2018)
SOX17 Zholdybayeva et al. (2018)
StAR Zholdybayeva et al. (2018)
TNF-α Low et al. (2011) and Hu et al. (2017)
TSLC2A9 Zhang et al. (2015)
UBR3 Zholdybayeva et al. (2018)
VCAN Ruigrok et al. (2006) and Sathyan et al. (2014)
WWOX Fan et al. (2016)
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Table 3  Candidate IA genes implicated by whole exome sequencing studies

Study Family Total 
(affected/
unaffected)

Sequenced 
(affected/
unaf-
fected)

Candidate gene(s)

Santiago-Sim et al. (2016) IA001 (9/20) (9/13) THSD1 (Nonsense variant in family, Missense mutations were found in 8/507 
probands in our IA/SAH cohort and each variant affected protein function)

Farlow et al. (2015)
Familial Intracranial 

Aneurysm (FIA) Study

A (6/2) (5/1) C1orf35, CALHM1, CCDC39, CTNND2, KLF11, PPIL4, ROBO3, SLK, 
TRMT1, WDR96, ZNF653

B (4/2) (4/2) ABCC3, DUSP16, MCM10, NME4, SNX21, TANC2, TSC2, TXNDC11, 
UNC93A, ZNF362

C (7/2) (5/2) C11orf65, SEC16B
D (4/0) (4/0) ALMS1, ARHGEF17, DGKA, FOXM1, HAL, IFNA21, MAP7D1, NLRP1, 

TAS1R1, TMEM132B
E (4/0) (4/0) HTRA2, NDST1, SMEK2
F (5/2) (5/2) AGMAT, CYP1A1, FOXRED1, LMBR1L, RFC4, SOX30, UNC13B
G (4/2) (4/2) ACSM3, ASPM, C1orf38, C10orf58, CCDC37, CHD9, COL17A1, DIAPH1, 

FAM71A, GSTCD, ITGB6, MLLT4, MTRF1L, OVGP1, PCDHGA11, 
PIK3C2B, PKP3, PPYR1, PTAFR, RSPH3, TBC1D7, TET2, TRPA1, 
ZNF264, ZNF835

Bourcier et al. (2018) A (5/26) (2/0) ANGPTL6, GSTA5, UNC5B, BATF2, DPF2, SART1, KEAP1, C19orf57
B (2/2) (2/2)# ANGPTL6 (p.Glu131Val)
C (2/8) (2/8)# ANGPTL6 (p.Glu131Val)
D (2/1) (1/1)# ANGPTL6 (p.Leu348Phe)
E (3/1) (2/1)# ANGPTL6 (p.Ala153ValfsTer66)
F (2/7) (2/7)# ANGPTL6 (p.Ala153ValfsTer66)

Wu et al. (2017) A (5/4) (3/1) MASP2, DHRS3*, OR2G3*, OR2T11, VWA3B, PHF3, LOXL2*, TBC1D31, 
CAAP1, TTC16, SH3GLB2, LSM14A, MIA, PPP1R37, RIPK4, FGL1*, 
RRP12, KLC3*

Zhou et al. % (2016) 10 (6/10) (5/0) GPATCH8, RNF213, OR11H1, ZNF335
60 (5/9) (5/0) ABCA10, HELZ2, RNF213, PLEC, ZNF335
89 (9/11) (6/0) AIM1, CDAN1, OR11H1, PLEC, RTTN
94 (5/8) (4/0) ABCA10, AIM1, RNF213, RTTN, SF3A2
28 (8/9) (4/0) CDAN1, GPATCH8, HELZ2, RNF213, SF3A2
9 (4/7) (2/0) Unknown

Yan et al. (2015) P1 (5/8) (4/0) CFTR, KCNH3, MLL2, PDE11A, TMEM146, ZNF222, ZNF233
P2 (5/6) (4/0) C5orf42, CYC1, IL10RA, KNTC1, PNKD
P3 (5/1) (3/0) BPIFB3, BPIFB4, C10orf122, KCNV2, RDH16, RSU1, SGK223, TG
P4 (5/3) (5/0) ABCA12, ADAMTS15, DEFB132, DNAH9, ZNF224
P5 (4/2) (3/0) AMPD1, JMJD1C
P6 (3/5) (3/0) CBLL1, DLG1, GLB1L2, LIMCH1, LRP5, MTA3, PLAU, SLC22A11, XAB2
P7 (4/1) (4/0) C4orf45, CYP1B1, FILIP1L, FOXN1, KIAA1244, MYBBP1A, SGSM3
P8 (3/1) (3/0) C2orf62, FCRL1, IQGAP3, KIF20A, SPAG17, STON1, THBD, USP4, 

VPS13B
P9 (3/1) (3/0) C17orf53, CD320, DSG1, MLL2, MYO7B, RNF10
P10 (3/9) (3/0) IL11RA, ITGB6, NEB, ZNF292
P11 (6/5) (4/0) GPR63, VIPR1, ZXDC
P12 (3/1) (3/0) ASTN2, CRAT, CRELD1, CYP4F11, FAM59A, GPR63, LRP4, MYCBPAP, 

PAFAH2, PEG3, PVRL1, TBX4, TTN
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Contribution of Vascular Endothelial Cells

Vascular endothelial cells organize into a polarized mon-
olayer that surrounds the vessel lumen. The apical side of 
endothelial cells is in direct contact with and senses blood 
flow through mechanosensory pathways. At the lateral side, 
three different cell–cell adhesions exist: adherens junctions, 
tight junctions, and gap junctions. The basal side of endothe-
lial cells contains focal adhesion that mediates the inter-
action between the cell and extracellular matrix. Figure 1 
depicts some of the genes and pathways in endothelial cells 
dysfunction of which contributes to IA.

Shear Stress‑Related Mechanosensory Defects in  Endothe‑
lial Cells The luminal endothelium experiences blood flow 
with associated shear stress. Shear stress plays a critical role 
in intracranial aneurysm formation and growth. High shear 
stress may induce IA formation while low shear stress can 
promote IA growth and rupture.(Diagbouga et  al. 2018) 
Shear stress mechanosensors have been identified in dis-
ease (reviewed in Deng et al. (2014) and Givens and Tzima 
(2016)). These include different transmembrane proteins 
such as G-protein coupled receptors. Moreover, plasma 
membrane microdomains such as lipid raft and cilia are 
likely critical. Several IA-predisposing genetic syndromes, 
most notably ADPKD and MOPD2 that were discussed pre-

viously, implicate mechanotransduction in IA. For ADPKD, 
the two responsible genes (PKD1 and PKD2) serve as 
mechanosensors that transduce blood flow-induced signal-
ing via cilia (Nauli et al. 2008; AbouAlaiwi et al. 2009). In 
MOPD2 where between 25 and 50% of cases have IA (Lor-
enzo-Betancor et al. 2018), autosomal recessive variants in 
PCNT are disease-causing, and it is now known that PCNT 
loss inhibits cilia formation and leads to mislocalization of 
PKD2 (Jurczyk et  al. 2004). When taken together, these 
results suggest mechanosensors including PKD1 and PKD2 
can contribute to IA, likely by perturbing downstream sign-
aling.

Cell–Cell Adhesion Defects in Endothelial Cells In some IA 
patients, red blood cells are detected in the intima or media, 
and this dissection could be caused by defects in endothe-
lial cell–cell adhesion and integrity involving adherens, 
tight, and gap junctions. In mouse models, loss of Sox17 
in endothelial cells lead to IA formation and disruption of 
VE-cadherin, a major player in adherens junctions, support-
ing that cell–cell adhesion can contribute to IA formation. 
It is possible that Sox17 as a transcription factor regulates 
a plethora of downstream targets including VE-cadherin 
and its modulators (Nakajima-Takagi et al. 2013). Interest-
ingly, another IA-causing gene THSD1 regulates adherens 
junction assembly since VE-cadherin was reduced or mis-

Table 3  (continued)

Study Family Total 
(affected/
unaffected)

Sequenced 
(affected/
unaf-
fected)

Candidate gene(s)

Yang et al. (2018) P1 (3/2) (3/0) NCF1, SRGAP2D, CLEC18B, CCDC88C, UNC79, ARHGEF17, PLEK, 
KIAA0922, MKI67, PPARGC1B

P2 (2/4) (1/0) NCF1, IL17F, ARHGEF17
P3 (1/5) (1/0) SRGAP2D, IL17F, ZNF175, PLEK, KIAA0922, MLH1, ATXN7
P4 (2/18) (2/0) ARHGEF17, GIPR, FAM47E
P5 (2/11) (2/0) AOX1, RANBP3, PLEK, KIAA0922, ADAM15, XRCC1, SIGLEC1, CSMD2, 

UBE3B, ISOC2, PLTP
P6 (2/18) (2/0) AOX1, ARHGEF17, AKAP13, MLH1, ATXN7, FAM47E, SCAF11, 

PPARGC1B
P7 (2/3) (1/0) NCF1, TMED3, PLEK, AKAP13, ACSM5, GIPR, PLTP
P8 (2/3) (2/0) NCF1, CLEC18B, ZNF175, MKI67, ACSM5, ISOC2
P9 (2/20) (1/0) IL17F, TMED3, KIAA0922, ADAM15, TNRC6A
P10 (2/20) (2/0) SRGAP2D, CLEC18B, UNC79, TMED3, RANBP3, PLEK, XRCC1, 

SIGLEC1, TNRC6A, CSMD2, UBE3B
P11 (2/2) (2/0) SRGAP2D, CLEC18B, CCDC88C, TMED3, AKAP13, XRCC1, ACSM5, 

SCAF11
P12 (2/4) (1/0) NCF1, SRGAP2D, AOX1

Genes highlighted in italics were the authors’ preferred candidate gene
# By targeted sequencing only
% In the four families with RNF213 variants, the RNF213 did not segregate with disease in 7 of 18 IA cases
*LOXL2 contained the only genetic variant that segregated with disease among the five candidates tested as denoted by an asterisk
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localized in endothelial cells that lack THSD1 (Haasdijk 
et  al. 2016). In the future studies, it will be interesting to 
see if THSD1 is also a downstream target of SOX17 and 
adds an extra layer of regulation on VE-cadherin activity in 
endothelial cells.

Role of TGF‑β Pathway in Endothelial Cells TGF-β pathway 
plays a pleotropic role in different cell types within the cer-
ebrovasculature, and its disease significance is confirmed 
by Loeys-Dietz syndrome. Interestingly, loss of TGF-β 
pathway genes in mouse endothelial cells via either inacti-
vation of Smad2/3 (Itoh et al. 2012) or Smad4 (Crist et al. 
2018) cause vascular defects, highlighting a pivotal role in 
endothelial cells. Importantly, rare variants of endoglin and 
beta-glycan, both of which are type III receptors for TGF-β 
pathway, were found in IA patients, suggesting the poten-
tial role of TGF-β signaling transduction in IA pathogenesis 
(Santiago-Sim et al. 2009b).

Focal Adhesion is  Essential for  Cerebrovascular Integrity 
in Endothelial Cells In comparison with adherens junctions, 
focal adhesions are composed of superamolecular com-
plexes that mediate the interaction between cell and extra-
cellular matrix (reviewed in Wozniak et al. (2004)). Integrin 
is a major protein involved in focal adhesion and trans-
duces signaling in bidirectional manner. When extracellular 
matrix proteins such as fibronectin binds to its receptor inte-
grin, an outside-in signaling can be illicit through integrin 
and eventually activate cytoskeleton remodeling (Fig. 2). In 
addition, an inside-out signaling pathway exists where the 

intracellular adaptor protein talin binds to integrin, leading 
to a conformational change and its activation (Harburger 
and Calderwood 2009). Focal adhesions are known to main-
tain cerebrovascular integrity (Iida et  al. 2018; Liu et  al. 
2012). For instance, inactivation of integrin αv and β1 leads 
to intracranial hemorrhage in zebrafish. Furthermore, deple-
tion of talin, an integrin-binding protein that is essential 
for focal adhesion, also causes intracranial hemorrhage in 
zebrafish (Wu et al. 2015). Focal adhesion kinase (FAK) is a 
master kinase to regulate the dynamics of integrin-mediated 
focal adhesion, and inactivation of FAK in mouse endothe-
lium causes brain hemorrhage (Shen et al. 2005).

THSD1 and  Focal Adhesions THSD1 is a single-span 
transmembrane protein that is functionally linked to FAK 
signaling and cell adhesion (Fig. 2). In terms of protein 
partners, Thsd1 was initially identified as a putative talin-
interactor based on a mass spectrometry of talin immu-
noprecipitation (de Hoog et  al. 2004). Subsequently, we 
validated this interaction using reciprocal IPs in endothe-
lial cells (Santiago-Sim et  al. 2016). Protein–protein 
interaction databases do not provide further candidates for 
Thsd1 interactions in part due to biases in cell types used 
as THSD1 since it is predominantly present in endothelial 
cells. Since Talin is a key protein for integrin-mediated 
focal adhesion, we hypothesized that THSD1 might affect 
endothelial focal adhesion and FAK signaling. Functional 
studies in human umbilical vein endothelial cells suggest 
that THSD1 regulates focal adhesion stability. Knock-
down of THSD1 by small interfering RNA reduces the 

Fig. 1  Schematic of IA genes in vascular endothelial cells. Three IA 
genes including THSD1, SOX17, and ARHGEF17 are highlighted in 
red. THSD1 physically interacts with integrin complex through talin 
at nascent focal adhesion. When nascent focal adhesion matures, 
THSD1 leaves for next nascent focal adhesion site via endosome-
mediated recycling process. Loss of THSD1 leads to defects in focal 

adhesion, a key determinant of the actin cytoskeleton, and modulator 
of several downstream pathways. Sox17 functions as a transcriptional 
factor and modulates VE-cadherin expression. Loss of VE-cadherin 
decreases cell–cell adhesion and increases permeability. ARHGEF17 
is guanidine exchange factor that potentially regulates the remodeling 
of actin cytoskeleton
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focal adhesion number, concomitant with reduced ability 
in cell attachment onto collagen but not fibronectin. Inter-
estingly, a rescue experiment demonstrated that most of 
THSD1 variants showed impaired ability in focal adhe-
sion and cell attachment.

To characterize THSD1 further, Rui and coworkers uti-
lized a novel precision tagging technique to epitope-tag 
THSD1 and tracked its subcellular localization.(Rui et al. 
2017; Xu et al. 2017, 2018) Interestingly, THSD1 localizes 
at nascent focal adhesion that displays a dot-like appear-
ance rather than mature focal adhesion that displays as 
streak-like patterns, suggesting that THSD1 may function 
at the early phase of focal adhesion assembly (Rui et al. 
2017). Multiple THSD1 missense variants identified in 
IA patients encode proteins with reduced binding affin-
ity for talin, which may contribute to their compromised 
function in focal adhesion stability. Surprisingly, THSD1 
was also located at the endosome, in addition to nascent 
focal adhesions, suggesting that THSD1 may function at 
the interface between these two organelles and orchestrate 
the efficiency of focal adhesion assembly. On one hand, 
THSD1 facilitates nascent focal adhesion assembly by 
directly promoting integrin complex formation. On the 
other hand, THSD1 leaves mature focal adhesion for next 
nascent one via endosome-mediated protein trafficking. 
Recently, a novel mechanism was revealed that integrin 
can maintain an active conformation in endosomes via 
FAK/Talin/PIPK1gamma complex (Nader et al. 2016). It 
will be interesting to know if THSD1 is also a part of 
such protein complex to modulate integrin activity in 
endosomes.

Contribution of Vascular Smooth Muscle Cells

In IA, changes in the vascular endothelium often occur in 
concert with phenotypic changes in smooth muscle cells 
that provides structural support to vessel walls (reviewed in 
Starke et al. (2014)). Pathology demonstrated that smooth 
muscle cells can switch from contractile to synthetic type, 
which is pro-inflammatory, pro-remodeling, and de-differ-
entiated (Fennell et al. 2016). This transition may lead to 
a morphological switch from spindle-like smooth muscle 
cells into spider-like cells that can migrate to and proliferate 
in the intima, causing myointimal hyperplasia. Moreover, 
smooth muscle cells with synthetic type can secret cytokines 
and metalloproteases that recruit inflammatory cells and 
degrades theextracellular matrix, respectively (Chalouhi 
et al. 2012). This will further compromise the integrity of 
media layer of vessel wall. In comparison with contractile 
type, synthetic smooth muscle cells have reduced collagen 
biosynthesis and often undergo increased cell death that 
further weakens the aneurysm wall and predispose it to 
IA rupture (Kondo et al. 1998; Pentimalli et al. 2004). It is 
worth noting that the critical role of smooth muscle cells in 
preserving vascular integrity was also highlighted by a clini-
cal case where a child carrying a mutation in myosin heavy 
chain 11 (MYH11) developed rapidly progressing IAs at 
early age with one rupture (Ravindra et al. 2016).

Contribution of Inflammatory Cells

Macrophages Macrophages have been noted in numer-
ous human IA samples. Their function in IA is twofold. 
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Fig. 2  THSD1/FAK signaling with its downstream targets. THSD1 is 
required for normal levels of focal adhesions and THSD1 loss reduces 
the overall amount of focal adhesions, FAK, and active phosphoryl-
ated FAK in endothelial cells. As a result, several pathways may be 

implicated including SRC, PI3K/AKT, Rho, and Rac1 signaling that 
affects actin cytoskeleton organization and cell adhesion mediated in 
part through integrins and mechanosensors
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Macrophages secrete metalloproteases such as MMP2 and 
MMP9 that can degrade extracellular matrix in vessel wall 
and render IA prone to rupture. Also, macrophages release 
a variety of cytokines that further recruit other inflamma-
tory cells such as neutrophils, T cells and mast cells. The 
causal role of macrophages in IA formation and rupture has 
been well established (Chalouhi et al. 2012; Signorelli et al. 
2018). Kanematsu et  al. found that clodronate liposome-
induced macrophage depletion in mice have a much lower 
risk of developing IAs (Kanematsu et  al. 2011). Mono-
cyte Chemoattractant Protein-1 (MCP1) is one of the key 
chemokines that regulate infiltration and polarization of 
macrophages. MCP1-deficient mice exhibit a significant 
decrease in IA formation (Aoki et al. 2009). Furthermore, 
the incidence of IA in mice lacking NF-κB, a master tran-
scription factor regulating the inflammatory function of 
macrophage, was significantly reduced (Aoki et al. 2007). 
Of note, this study utilized advanced imaging to detect mac-
rophages in animal models and human patients, such as the 
application of an FDA-approved nanoparticle ferumoxytol 
that can be efficiently cleared off by macrophages while 
remaining intact in other non-phagocytic cells (Aoki et al. 
2017). Despite the established link between macrophages 
and IA, more mechanistic studies are needed especially on 
understanding how imbalance of the two subtypes of mac-
rophage with opposing functions (M1 vs. M2 macrophage) 
contributes to IA disease (Shao et al. 2017). It is worth men-
tioning that M2 macrophages can be subdivided into M2a, 
M2b, M2c, and M2d in response to different ligands stim-
ulations, such as interleukins or TGF-beta (Roszer 2015). 
Identification of other new phenotypes of macrophages such 
hemorrhage-associated macrophages called Mhem continue 
to expand the list (Batra et al. 2018). It will be intriguing 
to see whether intracranial aneurysm formation or rupture 
can be preferentially associated with a specific subtype of 
macrophages, which may provide a novel therapeutic target.

Other Inflammatory Cells Other inflammatory cells such as 
neutrophils, T cells, B cells, and mast cells are also detected 
in the aneurysm wall in human samples and animal mod-
els (Chalouhi et  al. 2012; Signorelli et  al. 2018). Neutro-
phils and mast cells are regarded as functional players in IA 
pathogenesis (Ishibashi et al. 2010; Chu et al. 2015; Meng 
et al. 2014). Nonetheless, the role of T cells in IA remains 
controversial. Sawyer and colleagues found that in Rag1 
knockout mice, which lacks T cells, the incidence of IA for-
mation and rupture was reduced (Sawyer et al. 2016). Later, 
another research group induced IA, utilizing rats lacking T 
cells caused by a mutation in the Whn gene (Miyata et al. 
2017). Surprisingly, they found T cells are not required for 
IA formation and progression. It is unclear why discordant 
results were found between rodent species on the require-
ment for T cells in IA. Since T cells have different subpopu-

lations that exert different, even opposite functions, further 
dissection of their specific contribution might help resolve 
this discrepancy.

Animal Models of Intracranial Aneurysms

To interrogate candidate disease genes, animal models pro-
vide an invaluable genetic tool. Although mice are the most 
attractive model organism for mammalian IA, their cost and 
the limited availability of appropriate genetically engineered 
mouse strains are often prohibitive when encountering a 
list of candidate IA genes that warrant further evaluation. 
To overcome this limitation, we recently used zebrafish to 
determine if candidate IA genes play critical roles in early 
cerebrovasculature development as defined by cerebral hem-
orrhages. Afterward, we validated our results in a genetically 
engineered mouse strain.

Zebrafish Models

Intracranial aneurysm and hemorrhage are tightly associ-
ated with compromised cerebrovascular integrity. Recently, 
zebrafish have gained additional popularity as a vertebrate 
model organism for studying the cerebrovasculature. Since 
zebrafish embryos are transparent, intracranial hemorrhage 
can be directly observed using a standard microscope. Fur-
thermore, zebrafish fecundity and rapid development permits 
rapid phenotypic evaluation as intracranial hemorrhage in 
zebrafish fry are detectable as early as 2–3 days post ferti-
lization. Importantly, gain-of-function and loss-of-function 
approaches are well established in zebrafish that include 
morpholino and mRNA injections and more recently, 
through applications of CRISPR/Cas9 technology. A draw-
back of zebrafish studies is that there are no established 
protocols for identifying IA due in part to their small size.

Loss of  Thsd1 Induces Intracranial Hemorrhage 
in  Zebrafish Two research groups have independently 
observed intracranial hemorrhage in zebrafish deficient in 
Thsd1 caused by embryonic morpholino injection using 
two distinct, nonoverlapping antisense oligonucleotides in 
a concentration-dependent manner (Haasdijk et  al. 2016; 
Santiago-Sim et al. 2016). Future zebrafish studies of genes 
involved in integrin and FAK signaling are clearly warranted 
given the significance of THSD1 in IA. Other pathways also 
contribute to cerebrovascular integrity in zebrafish. For 
example, intracranial hemorrhage was observed in zebrafish 
upon inactivation of VE-cadherin-mediated cell adhesion, 
Birc2-mediated cell death, fibrinogen-mediated thrombo-
sis, ift81-related hedgehog signaling pathway (Montero-
Balaguer et  al. 2009; Santoro et  al. 2007; Vo et  al. 2013; 
Kallakuri et  al. 2015). It remains unknown if Thsd1 is 
involved in these pathways or vice versa.
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Loss of  Arhgef17 Induces Intracranial Hemorrhage 
in  Zebrafish Yang et  al. identified rare variants in ARH-
GEF17 from intracranial aneurysm families. To validate its 
causal role, they tested two different splicing morpholinos 
against arhgef17 into zebrafish embryo and found a sig-
nificant intracranial hemorrhage. Importantly, expression 
of human ARHGEF17 but not its rare variant forms can 
partially rescue the hemorrhage phenotype (Yang et  al. 
2018). Since ARHGEF17 encodes a protein’s functions as 
guanine nucleotide exchange factor that regulates cytoskel-
eton remodeling, it is possible that loss of function in ARH-
GEF17 may lead to cell adhesion defects during IA patho-
genesis.

Mouse IA Models

To dissect the molecular mechanisms of IA, several induced 
mouse models have been employed, and more recently, 
genetically engineered mice have demonstrated that two 
genes, Sox17 and Thsd1, play a direct role in disease. For 
induced IA models, systemic hypertension, local cerebrovas-
cular hemodynamic stress, and/or extracellular matrix integ-
rity are manipulated (reviewed in Wang et al. (2015a, b)). 
Seminal work in the induced IA field has been performed 
by Nobuo Hashimoto and Tomoki Hashimoto to develop 
and test these models (Morimoto et al. 2002; Nuki et al. 
2009; Kanematsu et al. 2011; Tada et al. 2011). Systemic 
hypertension can be induced by surgery and/or medicine 
such as renal artery ligation, angiotensin II infusion, or a 
diet containing high salt and Nitic Oxide synthase inhibi-
tor L-NAME. To alter the local cerebral blood flow, carotid 
artery ligation is often applied. To weaken cerebrovascu-
lar walls, mice are either injected with elastase, a matrix-
degrading enzyme, to disrupt internal elastic lamina, or fed 
a diet containing BPAN, an irreversible inhibitor of lysyl 
oxidase that can prevent crosslinking between elastin and 
collagen fibers. These experimental manipulations have 
been applied to mice singly and in different combinations 
to generate IA models with distinct kinetic profiles. Since 
multiple stresses are often utilized in these mouse models, 
there are concerns about how accurately they reflect natural 
disease progression and may bypass key signaling pathways 
important for IA. This shortcoming is especially relevant to 
understanding IA development and progression.

Loss of  Sox17 in  Endothelial Cells Induces Intracranial 
Aneurysm and Subarachnoid Hemorrhage in an Angioten‑
sin II‑Induced Mouse Model SOX17 was identified as a 
genetic risk factor by genome-wide association studies in 
multiple cohorts and populations. Lee and colleagues found 
that endothelial-specific deletion of SOX17 in mice causes 
IA formation and its incidence was dramatically increased 
by hypertension stress such as infusion of angiotensin II 

together with injection of elastase (Lee et al. 2015). Suba-
rachnoid hemorrhage was infrequently observed in mutant 
mice, while hypertension stress significantly increases it.

Loss of Thsd1 Causes Intracranial Aneurysm and Subarach‑
noid Hemorrhage Previously, we identified a large IA fam-
ily where a nonsense THSD1 variant co-segregated in all 9 
affected individuals and was absent in 13 unaffected fam-
ily members as determined by whole exome and targeted 
sequencing (Santiago-Sim et  al. 2016). Thsd1 missense 
variants were identified in 8 among 507 probands in our IA/
SAH patient cohort. Each missense protein led to adhesion 
defects to collagen I endothelial cells in vitro, due in part to 
compromised ability to promote the FAK-talin interaction 
(Santiago-Sim et al. 2016; Rui et al. 2017). In the mouse cer-
ebrovasculature, Thsd1 is strictly expressed in endothelial 
cells and not smooth muscle cells. We further demonstrated 
that Thsd1-deficient mice (+/− and −/−) had cerebral hem-
orrhage localized to the subarachnoid space. More recently, 
we found that Thsd1-deficient mice by 12  months of age 
are characterized by high incidence of IA as determined 
by cerebrovascular casting using Microfil (unpublished 
observations). Further experiments are needed to examine 
whether IA development is accelerated in response to modi-
fiable risk factors such as hypertension; however, Thsd1-
deficient mice are a unique resource as the only genetically 
engineered mouse IA model that develop IA at high rates 
without induction by additional factors.

Other Mammalian Models

Besides IA induction in mouse models, other animals such 
as rats, rabbits, dogs and pigs have also been used to assess 
pathological changes under IA-related stresses or evaluat-
ing the technical proficiency of endovascular devices, due 
to their larger vessels (Bouzeghrane et al. 2010). To dissect 
molecular mechanisms of IA formation and rupture, mouse 
models have noteworthy benefits due to their genetic tools 
and costs.

Conclusion and Future Perspectives

Although mechanotransduction, Thsd1/FAK signaling, and 
extracellular matrix integrity are implicated in IA, several 
noteworthy opportunities and challenges remain to under-
stand more fully IA genetics and pathobiology. The avail-
able data suggest that many high-risk genes remain to be 
discovered and that these genes may have prominent roles 
in distinct pathways. Advances in high-throughput sequenc-
ing will facilitate future studies on IA-affected families and 
large patient cohorts to identify putative disease genes. As 
discussed previously, whole exome sequencing studies often 
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report numerous candidate rare variants per IA family with 
several affected individuals. After prioritization based on 
gene expression and the predicted impact of the variant, the 
ability to narrow the candidate list is difficult. A critical bot-
tleneck exists as experimental evidence of causality using 
animal models is severely lacking. To illustrate this point, 
only Thsd1 and Sox17 are implicated directly in IA using 
mouse models. Specifically, IA and SAH occur in Thsd1 
heterozygous and null mice with high incidence in com-
parison to wild-type controls (unpublished observations and 
Santiago-Sim et al. (2016)). Endothelial-specific deficiency 
of Sox17 increases IA incidence in an Angiotensin II infu-
sion model (Lee et al. 2015). To evaluate the functional 
significance of a candidate IA gene in vertebrates, we and 
others have employed zebrafish, an increasingly popular 
model organism for studying cerebrovascular integrity in an 
efficient and economical way. Genetically engineered mouse 
models also will continue to have a prominent role. With 
recent advances in the CRISPR/Cas9 system, the generation 
of site-specific mouse knockins of candidate IA variants is 
becoming increasingly affordable to test directly if specific 
candidate variants are responsible for disease.

Currently, mouse studies on IA formation and rupture is 
an endpoint assay that requires sacrifice of the experimental 
animal. Therefore, new techniques that permit the noninva-
sive determination of IA growth over time would be advan-
tageous. Micro-computerized tomography (micro-CT) might 
provide such an opportunity, since remodeling processes in 
mouse carotid arteries can be well documented by utilizing 
it together with AuroVist, a nontoxic X-ray contrast agent 
(Schurmann et al. 2015). Recently, a commercial company, 
Nanoprobes, utilized the same approach to successfully track 
aortic aneurysm growth over time in living mice. The inno-
vations in imaging techniques will certainly bring paradigm 
shifts for understanding molecular mechanisms of intracra-
nial aneurysm. In conclusion, past and future research hold 
promise for identification of high-risk patients and subse-
quent prevention of IA formation or therapeutic intervention 
prior to rupture.
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