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Abstract Sphingolipids (SPs) comprise a highly diverse

class of lipids that serve biological roles both as structural

components of cell membranes and as mediators of cell

signaling. Pharmacologic and genetic manipulation of SPs

and their signaling systems have underscored their impor-

tance in most biological processes, including central ner-

vous system development and function. Likewise,

perturbations of SP accumulation or signaling have been

associated with a number of disease states, such as neural

tube defects, neuroinflammation, stroke, and dementia. SPs

can be endogenously synthesized de novo, and their

metabolism is a well-regulated process, so their value as

nutraceuticals has not been scrutinized. However, there is

evidence that sphingolipid-rich diets can affect lipid

homeostasis, and several mycotoxins are SP analogs that

are known to cause profound derangement of SP metabo-

lism or signaling. Furthermore, plants and invertebrates

have SP species that are not present in mammals. Several

of these have been shown to induce biological responses in

mammalian cells. These findings suggest that dietary intake

of SPs or SP analogs may have significant effects on

human health or disease outcome. This manuscript pro-

vides an overview of SP metabolism and signaling, their

perturbations in neurological diseases, as well as potential

impacts of modulating this system in the brain.

Keywords Sphingolipid � Fingolimod � Nutraceutical �
Sphingosine 1-phosphate receptor � Ceramide � Review

Introduction to Sphingolipid Structure
and Metabolism

Structural characteristics. SPs comprise one of the eight

major, structurally distinct classes of lipids (Fahy et al.

2005). They are ubiquitous in all eukaryotic cells and in

some prokaryotes such as anaerobic bacteria (Fyrst and

Saba 2010; Olsen and Jantzen 2001). They are highly

abundant in mammalian plasma membranes and make up

approximately 20 % of the lipids in blood plasma (Shui

et al. 2011). The defining characteristic of all SPs is the

presence of a sphingoid backbone or ‘‘long-chain base’’

(LCB), which consists of a nitrogenous amine headgroup

and an acyl chain (Fig. 1a). While there is some variability

in the chain length (see below), the majority of sphingoid

backbones in mammalian SPs have 18 carbons (Quehen-

berger et al. 2010). These are typically saturated or

monounsaturated, but quantitatively minor species of LCBs

have been identified that contain two double bonds at

stereotyped positions (sphingadienes, see Renkonen and

Hirvisalo 1969; Panganamala et al. 1969). The simplest

members of the family (such as the canonical SP, sphin-

gosine) consist only of an LCB, but modifications to this

primary structure provide the material for highly diverse

structural heterogeneity. Indeed, due to potential combi-

nations of the known variations in the headgroup, the
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N-linked acyl chain, hydroxylation, and the length and

degree of saturation of the LCB, theoretically, there are

tens of thousands of unique SPs. However, of these pos-

sible combinations, 620 have been systematically classified

as confirmed species or presumptive intermediates (Que-

henberger et al. 2010; Merrill et al. 2005; Fahy et al. 2009).

General Overview of SP Metabolism

SPs can be obtained through the diet and incorporated into

endogenous lipid metabolic pathways, but the majority of

functionally active SPs are generated by de novo synthesis

(Pyne and Pyne 2000). De novo synthesis begins with the

condensation of a saturated fatty acyl-CoA and an amino

acid, usually serine, via the action of serine palmitoyltrans-

ferase (SPT) as the first committed step in the generation of

SPs (Fig. 1b). This results in saturated LCB intermediates

(‘‘sphinganines’’) that are rapidly N-acetylated to form

dihydroceramide, which is then acted upon by a sphingolipid

D4-desaturase to introduce a double bond that generates

ceramide. Much of the structural diversity of SPs results

from head group modifications to ceramide. The addition of

phosphorylcholine or phosphorylethanolamine results in the

formation of sphingomyelin, the most abundant SP making

up to 20 % of the plasma membrane. Complex ceramides, or

‘‘higher-order sphingolipids,’’ can be generated by the

addition of one or more carbohydrate groups. A single

monosaccharide head group, typically glucose or galactose,

results in the generation of a cerebroside. Increasing com-

plexity occurs through elongation of this head group by

further addition of monosaccharides (glucose, galactose,

mannose, or fucose) or sialic acid, or by sulfonation. Com-

plex ceramides are abundant inmany tissues, particularly the

brain, and can serve as a reservoir for the rapid generation of

signaling pools of ceramide through the ‘‘salvage pathway’’

(Kitatani et al. 2008).

SP Degradation

Ceramide is deacylated to form sphingosine, the first

described SP (Thudichum et al. 1884). By convention, the

term ‘‘sphingosine’’ typically refers to 18-carbon, D4-mo-

nounsaturated, 1,3-dihydroxy sphingosine (D-erythro-sph-

ingosine), which is themost abundant LCB inmammals. It is

interesting to note that there is no known pathway by which

sphingosine can be formed without an N-acetylated

Fig. 1 Sphingolipid structure and metabolism. a Minimum structural

requirement of typical SPs. R1 = H, carbohydrate(s), sialic acid(s),

sulfonic acid. R2 = saturated or mono unsaturated acyl chain.

R3 = H, or acyl chain. b Sphingolipid metabolic pathway. De novo

synthesis is the major source of SPs in mammals, which begins with

the condensation of serine and a fatty acyl-CoA, eventually leading to

the formation of ceramide, a key metabolic intermediate which may

be converted to sphingomyelins or complex ceramides. These

‘‘higher-order’’ SPs may be readily used to regenerate ceramide via

the sphingomyelinase pathway or the salvage pathway, respectively.

Irreversible degradation of all SPs is catalyzed by the activity of S1P

lyase, resulting in the generation of a fatty aldehyde and phospho-

ethanolamine, which may serve as a substrate for the generation of

phospholipids via the Kennedy pathway
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intermediate. That is, non-acetylated LCBs cannot be

directly desaturated (Kitatani et al. 2008). Once formed,

sphingosine can then be phosphorylated to sphingosine

1-phosphate (S1P) via the action of two isoforms of sphin-

gosine kinase: SPHK1 and SPHK2. S1P can then be irre-

versibly degraded by the action of S1P lyase (Saba et al.

1997), representing the onlymeans bywhich SPs eliminated.

While S1P was originally considered to be an inert inter-

mediate in SP metabolism, it has become the most inten-

sively studied SP after it was identified as a highly potent

ligand for a family of cell surface receptors (Lee et al. 1998;

Mutoh et al. 2012). Since SPHK1/SPHK2 activity controls

S1P content in most tissues, this places these two enzymes as

key regulators ofmany S1P signaling processes, as described

below. S1P degradation via S1P lyase may contribute to the

regulation of other phospholipid classes in that the break-

down of SPs results in the production of a fatty aldehyde and

phosphoethanolamine, the latter of which is a substrate for

phosphatidylethanolamine synthesis via the Kennedy path-

way. Although SPmetabolism is a relatively minor source of

ethanolamine in mammals (Gibellini and Smith 2010), it has

been shown that this may play a significant role in the reg-

ulation of the Kennedy pathway in some organisms (Zhang

et al. 2007).

Phylogenic Variations in SP Structure

While SPs are ubiquitously found in eukaryotes, there are

significant differences in the LCB structures that are uti-

lized by different organisms. For example, insect SPs are

typically shorter than their mammalian counterparts, with

the most abundant LCBs containing 14 rather than 18

carbons (Fyrst et al. 2004). Yeast, on the other hand,

contains LCBs with 16–20 carbons, but is typically satu-

rated with backbones consisting of dihydrosphingosine or

phytosphingosine (Cowart and Obeid 2007; Dickson 2008;

Fig. 2). Increasingly divergent structures have been iden-

tified in plants, fungi, and marine invertebrates. LCBs with

branched backbones (Pruett et al. 2008) or ‘‘bifunctional’’

SPs with multiple headgroups (Bensemhoun et al. 2008)

have been isolated from phylogenetically distant organisms

but appear to be rare or absent in mammals. Interestingly,

however, some of these compounds have been shown to

have potent biological effects on mammalian cells.

Effects of Bioactive Sphingolipids on Brain
Development and Function

SPs are ubiquitous and, as such, regulate biological pro-

cesses in many tissues. This review will emphasize the

roles of SPs in the CNS since its biomedical relevance is

underscored by the fact that the only FDA-approved drug

specifically acting on the SP system was approved for a

neurological indication (see ‘‘Myriocin/Fingolimod’’ sec-

tion below). However, other systems will be briefly dis-

cussed when necessary for context.

Taken as a whole, SPs are known to play critical roles in

most aspects of normal brain function, such as neurogen-

esis and maintenance of neural stem cells (Kornhuber et al.

2014; Wang et al. 2014); integral structural components of

both white and gray matter (O’Brien and Sampson 1965);

formation and maintenance of lipid rafts which in turn

regulate neuronal signaling (Aureli et al. 2015); and sig-

naling molecules themselves modulating a wide range of

responses, including neurotransmission, inflammation,

cellular stress, autophagy, and apoptosis (Ghasemi et al.

2016; Ong et al. 2015; Pyne and Pyne 2000). Not sur-

prisingly, perturbations of SP synthesis or regulation have

been implicated in several neurological diseases, and

specific phospholipids as well as associated enzymes and

receptors have been investigated as potential therapeutic

targets or biomarkers (Gomez-Munoz et al. 2016; Korn-

huber et al. 2014; Mielke and Haughey 2012; Mutoh et al.

2012; Ong et al. 2015). In the following sections, we

provide an overview of the biological functions of selected

SPs, as well as their established or putative involvement in

neurological diseases.

Ceramides

Ceramides are particularly well-studied SPs, primarily

known for their pro-apoptotic effects, but also for regulating

a number of important cellular processes (Fyrst and Saba

2010). Because of the remarkable structural diversity of

ceramides, a comprehensive discussion of their roles is

beyond the scope of this manuscript. Additional information

may be found inmore focused reviews (Reynolds et al. 2004;

Ben-David and Futerman 2010). Ceramide can be rapidly

generated in the CNS by tapping into the large reservoir of

sphingomyelin in the plasma membrane. This occurs

through the action of sphingomyelinase and can induce a

number of effects such as neurotransmitter release, inflam-

mation, and apoptosis of a number of cell types in the brain

(Ong et al. 2015). Studies have also provided evidence for a

possible bimodal role of ceramide on the effect of ethanol on

the CNS. Excessive ceramide accumulation is thought to be

generally neurodegenerative (Jana et al. 2009), and it has

been suggested that this may mediate the harmful effect of

alcohol consumption (de laMonte et al. 2009). Indeed, acute

administration of ethanol in rats causes an increase in brain

ceramide in adult and fetal brain (Saito et al. 2010). How-

ever, chronic voluntary consumption by ethanol-preferring

rats resulted in a decrease in brain ceramides (Godfrey et al.

2015), suggesting that moderate ethanol intake may promote

healthful bioactive lipid profiles. To further illustrate the
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conditional nature of ceramide function, a recent genetic

analysis of ceramide metabolism identified a complicated

relationship between ceramide and autophagy (Hebbar et al.

2015). When autophagic flux is inhibited in the brain, cer-

amide clearance is reduced and ceramides accumulate,

accompanied by neurodegeneration (Hebbar et al. 2015;

Finley et al. 2003). Unexpectedly, genetic reduction of cer-

amide (by reducing de novo synthesis) exacerbates the

neurodegenerative phenotype, while increasing ceramide

production through the salvage pathway reduces neurode-

generation. Apparently, although disruption of autophagy

elevates ceramides, they remain sequestered in autophago-

somes and are unable to engage their normal signaling

functions. This provides evidence for a functional distinction

among differentmetabolic sources of ceramide (Fig. 1b) and

for the importance of subcellular localization in SP function.

Given the functional and pathogenic potential of cer-

amide perturbations, much research effort has under-

standably been focused on sphingomyelinase whose action

is a main source of brain ceramides (see above). Altered

regulation of sphingomyelinase activity has now been

implicated in several neurological diseases or systemic

diseases with CNS involvement, the best characterized of

which are the Niemann–Pick disease types A and B arising

from a deficiency of the acid sphingomyelinase SMPD1

gene. The resulting symptoms from the accumulation of

ceramides in multiple organs are often systemic and may

include cerebellar atrophy and dementia (Hulette et al.

1992; Obenberger et al. 1999; Macauley et al. 2008).

Besides Niemann–Pick and related sphingolipidoses,

altered sphingomyelinase function is thought to be

involved in the progression of a number of diseases

including Alzheimer’s disease, pain, and stroke, and sph-

ingomyelinase may also be a target for novel antidepres-

sant therapies (Gulbins et al. 2015; Ong et al. 2015).

Ceramides can be phosphorylated by the action of cer-

amide kinase (CERK) to form another bioactive lipid,

ceramide 1-phosphate (C1P). C1P has a number of docu-

mented effects on mammalian cells that are generally

proliferative or pro-inflammatory (reviewed in: Hoeferlin

et al. 2013; Gomez-Munoz et al. 2016). These effects are

mediated by intracellular targets rather than cell surface

receptors and involve the activation of phospholipase A2,

the MAPK/ERK pathway, and phosphoinositol 3-kinase

(Lamour and Chalfant 2005; Arana et al. 2010). The role of

C1P in the brain is largely unknown; however, several lines

of evidence suggest biological significance in the CNS. For

example, CERK activity was first identified in brain

Fig. 2 Structures of key

sphingolipids and sphingolipid

analogs
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synaptic vesicles (Bajjalieh et al. 1989), and C1P is par-

ticularly abundant in the brain tissue (Yamashita et al.

2016). Furthermore, it was shown that C1P can regulate

calcium entry in pituitary cells, suggesting that it may

modulate neuroendocrine secretion (Tornquist et al. 2004).

Sphingosine 1-Phosphate (S1P)

A paradigm shift in our understanding of the biological

roles of sphingolipids occurred when it was discovered that

some SP species could act as high-affinity, cognate ligands

for G protein-coupled receptors (GPCRs; Lee et al. 1998).

While a number of reports demonstrate that S1P may act as

a second messenger on intracellular targets such as histone

deacetylase and tumor necrosis factor-associated factor 2

(Kunkel et al. 2013), the majority of the biological effects

of S1P are known to be mediated by cell surface receptors.

Specifically, a family of 5 GPCRs has been identified as

bona fide sphingosine 1-phosphate (S1P) receptors (Kihara

et al. 2014), which has instigated a profound research effort

into understanding the biological roles of S1P. These

receptors (S1P1–S1P5) are expressed in distinct, but over-

lapping patterns in most mammalian cell types. As such,

S1P can exert a wide spectrum of physiological responses

depending on the cellular context, i.e., the complement of

S1P receptors, and the presence of downstream effectors

for receptor-specific signaling pathways. In the central

nervous system, S1P receptors are expressed in neurons,

glia, microglia, and endothelial cells and have been shown

to participate in the regulation of multiple aspects of tissue

development and cellular function (Herr and Chun 2007).

The biological relevance of this signaling system has been

established by in vitro and in vivo studies and by clinical

evidence.

Numerous studies demonstrate that S1P induces

responses in cultured astrocytes suggestive of an overall

pro-inflammatory effect. Notably, S1P treatment stimulates

growth and proliferation (Pebay et al. 2001) and induces

the production of growth factors such as nerve growth

factor (Furukawa et al. 2007), fibroblast growth factor-2

(Malchinkhuu et al. 2003; Sato et al. 1999), glial-derived

neurotrophic factor (Yamagata et al. 2003), and arachi-

donic acid (Rao et al. 2003). This was shown to be func-

tionally relevant in that S1P-primed astrocytes were able to

promote the differentiation of neural progenitor cells

(Spohr et al. 2012). These effects appear to be mediated by

S1P1, S1P2, and S1P3 (Rao et al. 2003). S1P receptors are

also expressed in oligodendrocytes and mediate cell growth

pathways (Yu et al. 2004). S1P5 may be the most relevant

mediator of S1P signaling for myelination since CNS

expression of S1P5 appears to be enriched in oligoden-

drocytes (Jaillard et al. 2005), although its function is not

well characterized. While S1P5 does induce process

retraction and cell survival in oligodendrocytes, there is no

obvious myelination defect in S1P5-null mice (Jaillard

et al. 2005). In addition to S1P5, there is evidence for the

involvement of S1P1 in regulation of myelination in that

oligodendrocyte-specific conditional deletion of S1P1
results in delayed differentiation of oligodendrocyte pre-

cursors (Dukala and Soliven 2016).

A number of mouse models have provided clear evi-

dence for the involvement of S1P receptor-mediated sig-

naling in CNS function in vivo (Yang et al. 2002). For

example, genetic deletion of both isoforms of sphingosine

kinase results in a severe depletion of S1P and embryonic

lethality (Mizugishi et al. 2005). This is due to vascular

defects and disruption of neurogenesis, demonstrating that

S1P is essential for CNS development. On the other hand,

increased S1P was found to accompany white matter

lesions in an adult rodent bilateral carotid stenosis model of

chronic hypoperfusion, both of which were ameliorated

with sphingosine kinase inhibitor (SKI-II) treatment (Yang

et al. 2016), although the effects of SKI-II may also involve

its activity as an inhibitor of dihydroceramide desaturase

(McNaughton et al. 2016; Cingolani et al. 2014). Taken

together, these results suggest differential effects of S1P

and sphingosine kinase alterations in different neurode-

velopmental stages. Furthermore, S1P2-specific knockout

mice present with several rather pronounced neural phe-

notypes. Notably, young S1pr2-/- mice display frequent

seizures characterized by wild-running episodes followed

by tonic–clonic episodes that are occasionally fatal

(MacLennan et al. 2001; Akahoshi et al. 2011). This is

associated with increased excitability of cortical neurons

(MacLennan et al. 2001). Furthermore, surviving S1pr2-/-

mice uniformly display progressive hearing loss due to

degeneration of hair cells and the afferent neurons of the

spiral ganglia (Herr et al. 2007). This phenotype has

recently been observed in humans who carry missense

mutations of the S1P2 gene (Santos-Cortez et al. 2016).

Recently, we demonstrated that selective activation of S1P2
is cytoprotective to neural cell lines by reduction of

oxidative stress, suggesting that an S1P2 agonist may be

neuroprotective and/or otoprotective (Herr et al. 2016).

Cumulatively, this demonstrates that S1P signaling plays

an important role in the development and function of the

nervous system.

It is likely that the effects of S1P in the CNS, particu-

larly the glia, are relevant to neurological diseases. For

example, it was shown that intracranial injection of S1P

results in the robust activation of reactive astrogliosis

(Sorensen et al. 2003), indicating that S1P is a regulator of

neuroinflammation. This was validated in a mouse model

for multiple sclerosis, whereby astrocyte-specific deletion

of S1P1 results in a significant reduction in inflammatory

cytokine production due to autoimmune challenge (Choi

400 Neuromol Med (2016) 18:396–414

123



et al. 2011). Furthermore, S1P signaling has been shown to

regulate neuronal loss in stroke models. Notably, transient

middle cerebral artery occlusion/reperfusion results in an

increase in S1P, S1P3, and neuroinflammation, which can

be attenuated by broad-spectrum antagonism of S1P

receptors (Moon et al. 2015). In addition, S1P2 may be an

important regulator of vascular permeability and blood–

brain barrier integrity during ischemia–reperfusion (Kim

et al. 2015). These processes are likely to be clinically

relevant since numerous studies collectively demonstrate

that the S1P receptor modulator, fingolimod, reduces stroke

damage in animal models (Liu et al. 2013).

Non-canonical Sphingolipids with Known Effects
on Mammalian Cells

Mammalian SPs are generally characterized as structures

containing the canonical sphingosine backbone. Variations

of this typical structure are present, but at relatively low

concentrations. For example, LCBs can contain 16–20

carbons, but more than 90 % are 18-carbon species (Que-

henberger et al. 2010). Similarly, there are highly con-

strained variations in degree of saturation and

hydroxylation. Recently, a number of studies have pro-

vided evidence that these non-canonical SPs have distinct

biological effects, which suggests that they may be well-

regulated mediators of cellular processes. This section

describes variants that are emerging as potentially impor-

tant, bioactive lipids.

Variations in Chain Length

The sphingoid base of SPs can vary in a number of ways,

but much of the diversity in sphingoid bases is given by

their different chain lengths. In mammals, the most abun-

dant and ubiquitous long-chain base variant has 18 carbons

(C18; Merrill 2011), but other forms, with shorter or longer

chains, have been found in lower amounts. SPs containing

a C16 sphingoid base have been detected in plasma

(Quehenberger et al. 2010), heart tissue (Russo et al. 2013),

and bovine milk (Byrdwell and Perry 2007), while a C20

sphingoid base has been found at high levels in brain SPs

(especially gangliosides; Ikeda and Taguchi 2010), and in

low levels in plasma (Narayanaswamy et al. 2014) and

mucosal tissues (Keranen 1976). The presence of odd-

chain sphingosines in low amounts has also been con-

firmed, and C17 or C19 (possibly also including branched

chains) has been detected in human plasma (Quehenberger

et al. 2010) and skin (Pruett et al. 2008). Of all tissues

analyzed so far, skin has demonstrated the highest diversity

in SPs, apparently due to their fundamental role in main-

taining epidermal permeability barrier (t’Kindt et al. 2012;

Stahlberg et al. 2015). According to t’Kindt et al. (2012),

the number of unique ceramide species present in human

skin is around a thousand. The sphingoid base length dis-

tribution in skin SPs can vary between 16 and 26 carbons.

Interestingly, phytosphingosine (with carbon numbers

between 16 and 22), usually present in non-de-

tectable amount in the majority of tissues, is the most

abundant LCB in skin. A very unusual characteristic of

skin ceramides is also the large content of C26 dihy-

drosphingosine, usually present with 18–20 carbon atoms

in other tissues. It is still not clear whether the heteroge-

neous SP composition of the skin is only due to a different

SP-related gene expression in epithelial cells, or whether it

is also a result of a contribution of lipids derived from the

microorganisms that colonize the skin surface (De Luca

and Valacchi 2010).

In addition to the chain length diversity of the SP

backbone, there is also remarkable variation in the chain

length of the N-linked fatty acid (FA) of ceramides

(Fig. 1b). The most structurally complex ceramides have

been also observed in skin, containing extremely FAs, up

to C36. Interestingly, skin ceramides have been reported

that contain a unique modification where an x-carbon
group is hydroxylated and esterified to another fatty acid

(typically linoleic acid), forming ‘‘x-O-acyl ceramide’’

(Novotny et al. 2010). This type of ceramide crucially

contributes to the permeability properties of the skin lipid

layers, due to its increased hydrophobicity, and its syn-

thesis is often deregulated in skin-related pathologies like

ichthyosis (Aldahmesh et al. 2011) or psoriasis (Motta

et al. 1994). Ceramides with very short fatty acids, C2-

ceramide, have also been found in mammals (Van Over-

loop et al. 2007). They are formed by the transfer of an

acetyl group from platelet-activating factor (PAF) to sph-

inganine and have been detected in murine brain and liver

(Lee et al. 1996), although they are present at a very low

level when compared to more common molecular species.

This C2-ceramide can also be converted to ceramide

1-phosphate, but its function is still unclear (Van Overloop

et al. 2007).

At this point of time, not much is known about the

biological effect of this chain length variability despite

their recent detailed structural analyses. The reason behind

this growing interest is that different structures present

different biophysical properties, and this can influence

membrane stability (Slotte 2016), binding with cognate

receptors (Hanson et al. 2012), transporter function

(Christoffersen et al. 2011), or enzymatic activity (Levy

and Futerman 2010). S1P serves as an example of a specific

function linked to structural requirements. S1P1 is the best

studied S1P receptor and preferentially binds C18 S1P

(Hanson et al. 2012). The interactions between S1P and

S1P1 are both polar, with the zwitterionic headgroup of

Neuromol Med (2016) 18:396–414 401
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S1P, and hydrophobic, with its acyl chain tail (Yuan et al.

2013). All five S1P receptors have conserved residues for

the binding to the S1P headgroup, but they show an

interesting diversity in the residues that line the

hydrophobic cavity where the acyl chain of S1P is bound

(Pulkoski-Gross et al. 2015). Ligands of S1P1 can behave

as agonists or antagonists depending on the length and

position of their acyl chain in the binding pocket of the

receptor (Hanson et al. 2012), where increasing chain

lengths can shift the effect from antagonism to agonism.

Since more molecular variants of S1P have been identified

in mammals (Narayanaswamy et al. 2014)—variable in

both chain length and degree of saturation—new devel-

opments in this field will likely identify how such variants

affect the selectivity and signaling of their cognate recep-

tors. This is of fundamental importance as structural ana-

logues of S1P are used to treat multiple sclerosis (Willis

and Cohen 2013) and rheumatoid arthritis (Fleischmann

2012).

The heterogeneity of the LCB chain length depends on

the activity of the SPT enzyme, which is responsible for the

first step in de novo synthesis (Fig. 1b). The combination

of different catalytic subunits (SPTLC2 or 3; Hornemann

et al. 2007, 2009) and other putative small subunits

(ssSPTa, ssSPTb; Han et al. 2009) can shift the acyl-CoA

substrate preference of the enzyme. The myocardium has

highest expression of SPTLC3 of any tissue evaluated

(Hornemann et al. 2009), and as a consequence its content

in SPs containing C16 sphingoid bases is unusually high.

This observation brought to the discovery that in mice, a

diet rich in myristate enhances the expression of SPTLC3,

promoting the synthesis of d16 SLs in the myocardium. To

study the physiological effect of C16 sphinganine on

mammalian cells, cultured myocytes were treated with C16

or C18 sphinganine. The treatment with C16 resulted in

PARP-mediated apoptosis; however, C18 sphinganine did

not show the same effect and instead induced autophagy,

clearly suggesting that different chain length-containing

SPs can have different functions (Russo et al. 2013).

Sphingadienes

The predominant LCB species in mammalian cells are

dihydrosphingosine (also known as sphinganine) and sph-

ingosine (Merrill et al. 1988; Valsecchi et al. 1996). Sph-

ingosine contains an unsaturated hydrocarbon chain with

one double bond at the D4 position, which is absent in

dihydrosphingosine (Fig. 2). Besides dihydrosphingosine

and sphingosine, studies have also revealed the presence of

other LCBs, which contribute to the formation of non-

canonical sphingolipids (Fyrst et al. 2008; Renkonen and

Hirvisalo 1969). These LCB species were shown to possess

an additional double bond at various positions along the

hydrocarbon chain (T. U. Abeytunga 2015) and are com-

monly referred to as sphingadienes or sphingadienines

(SDs; Renkonen and Hirvisalo 1969; Fyrst et al. 2008). The

exact biosynthesis pathway(s) of SDs remain(s) elusive,

but it has been suggested to involve desaturase enzymatic

activity on sphingosine to introduce the second double

bond into the hydrocarbon chain (Fyrst et al. 2008). These

can then be readily incorporated into more complex SPs

such as glucosylceramides (Abeytunga et al. 2008). Reg-

ulation of SDs was found to be highly dependent on S1P

lyase (SPL) activity as shown by an increased accumula-

tion of SDs in the Drosophila SPL mutant (Sply; Fyrst et al.

2008). SDs are most commonly found in plants such as

soybean (Lynch and Dunn 2004), as well as being present

across various organisms where the second double bond is

located at different positions along the hydrocarbon chain

(Table 1).

SPs obtained from the diet will undergo enzymatic

lipolyzation in the intestine to form free LCBs and cer-

amide (Imai et al. 1997; Ohlsson et al. 2010; Sugawara

et al. 2003; Rozema et al. 2012b; Nyberg et al. 1997). This

suggests that diets high in SD-rich food such as soy may

result in significant exposure to SD isoforms that are not

endogenously produced. While there is no consensus

regarding the impact of this on human health, there are

several lines of evidence that suggest that SDs exert potent

effects on mammalian cells. For example, D4,8-C18-sphin-

gadiene and 9-methyl-D4,8-C18-sphingadiene are the major

constituents of plants cerebrosides, which were found to

exhibit calcium ion ionophoretic properties and anti-ul-

cerogenic effects in addition to inhibiting replicative DNA

polymerase activities (Okuyama and Yamazaki 1983;

Shibuya et al. 1990; Mizushina et al. 1998). Moreover,

dietary monoglucosylceramide from rice bran, which

contains a D4,8-C18-sphingadiene backbone, was found to

inhibit preneoplastic lesions in the colon of F344 rats

(Inamine et al. 2005). Sphingoid bases from lactic yeast

and maize were also shown to induce apoptosis in the

Caco-2 human colon cancer cell line via caspase activation

and reduction of intracellular b-catenin levels (Aida et al.

2004). In addition, sea cucumber sphingoid bases com-

prising sphingadienes were shown to dose-dependently

inhibit the viability of three different human colon cancer

cell lines (Sugawara et al. 2006). Soy glucosylceramide,

which similarly contains a D4,8-C18-sphingadiene back-

bone, was found to inhibit colon tumorigenesis and reduce

gene expression of transcription factors linked to cancer in

two different mouse models (Symolon et al. 2004). The

role of SDs as the active constituent of SPs in reducing

colon tumorigenesis was further validated when both D4,6-

C14-sphingadiene and D
4,8-C18-sphingadiene reduced colon

cancer cell viability in a time- and dose-dependent manner

(Fyrst et al. 2009). SD-induced cell death was found to
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involve the PI3K/Akt pathway since translocation, activa-

tion, and cellular signaling of Akt in the colon cancer cells

were repressed after SD treatment (Fyrst et al. 2009).

Additionally, the chemopreventive effects of SDs were

suggested to involve Wnt signaling inhibition via a protein

phosphatase 2A/Akt/GSK3b-dependent pathway (Kumar

et al. 2012). Administration of D4,6-C14-sphingadiene also

reduced intestinal tumorigenesis in vivo (Fyrst et al. 2009).

Interestingly, both D4,6-C14-sphingadiene and D4,8-C18-

sphingadiene had more pronounced cytotoxic effects on the

colon cancer cells as compared to soy glucosylceramide,

suggesting that enzymatic metabolism of glucosylceramide

in the gut to release SDs is essential for their cytotoxic and

tumor repression activities to occur (Fyrst et al. 2009).

The cytotoxicity of SDs is not limited to colon cancer

cells. Novel ceramide analogs with the D4,6-C18-SD back-

bone induced apoptotic cell death in the MCF-7 and MDA-

MB-231 breast cancer cell lines via mitochondrial activa-

tion (Struckhoff et al. 2004). Besides inducing cytotoxicity

in different cancer cell lines such as HL-60 and RAW

264.7, D4,8-C18-sphingadiene also decreased cell viability

and proliferation in non-cancerous cell lines such as

HUVEC and HEK-293 (Rozema et al. 2012b). Nonethe-

less, ceramide analogs with the SD backbone exhibited

reduced cytotoxicity toward normal breast epithelial cells,

while non-cancerous human colon mucosal epithelial cells

also showed lower sensitivity to SD-induced cytotoxicity

(Struckhoff et al. 2004; Fyrst et al. 2009).

The reason that this minor structural change results in

significantly increased cytotoxicity is unclear; however, it

may in part be explained by derangement of the sphin-

golipid rheostat. The oncogenic enzyme sphingosine kinase

1 (SPHK1), which is elevated in colon carcinogenesis, can

phosphorylate sphingosine to form S1P. This shifts the

rheostat toward phosphorylation, which is implicated in

angiogenesis formation, Akt activation, and pro-tumori-

genic inflammatory pathway signaling (Lee et al. 1999;

Lee et al. 2010; Xia et al. 2000; Kawamori et al.

2006, 2009; Chumanevich et al. 2010; Kumar et al. 2012).

The presence of the second double bond in sphingadienes

was also suggested to contribute to their higher cytotoxicity

in cancer cells as compared to ceramide or sphingosine

(Struckhoff et al. 2004).

The suggested pharmacological actions of sphingadi-

enes were not just limited to their cytotoxicity in cancer

cell lines. D4,8-C18-sphingadiene was also shown to exert

anti-inflammatory effects via inhibition of lipopolysac-

charide (LPS) and tumor necrosis factor-a (TNF-a)-in-
duced cytokine interleukin-8 (IL-8) and the inflammatory

adhesion molecule E-selectin (Rozema et al. 2012a).

Interestingly, lower concentrations of D4,8-C18-sphingadi-

ene were required for its anti-inflammatory effects

Table 1 Molecular structure of SDs found across different organisms (Color table online)

Molecular structure Sphingadiene type Organism type

D4,14-C18-sphingadiene Homo sapiens (Renkonen and Hirvisalo 1969)

Homo sapiens (Panganamala et al. 1969)

D4,6-C14-sphingadiene Bombycis corpus (Kwon et al. 2003)

Manduca sexta (Abeytunga et al. 2004)

Drosophila (Fyrst et al. 2008)

D4,8-C18-sphingadiene Halichondria panicea (Nagle et al. 1992)

Neanthes diversicolor (Noda et al. 1993)

Glycine max (Sullards et al. 2000)

Stichopus variegates (Sugawara et al. 2006)

9-methyl-D4,8-C18-sphingadiene Cortinarius tenuipes (Tan et al. 2003)

D4,8-C16-sphingadiene Euryale ferox (Row et al. 2007)

The red arrows indicate the different positions of the second double bond
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compared to the concentrations where cytotoxic effects

were observed (Rozema et al. 2012a). In addition, sphin-

golipids containing a D4,6-C14-sphingadiene backbone were

found to induce neurotrophic effects and increased neurite

outgrowth in PC12 cells similar to the effects of the nerve

growth factor (NGF; Kwon et al. 2003).

Results from these studies suggest the possibility of

utilizing SDs not only in colon cancer treatment but also in

neurodegenerative diseases, particularly when inflamma-

tion and neuronal loss are involved. Added to the fact that

they can be readily obtained from the diet, SDs represent

an attractive nutraceutical compound for possible treatment

of cancer and brain neurodegeneration. Nonetheless, there

is still much work to be done regarding the role of SDs in

human physiology and pathology, their direct targets and

signaling mechanisms, and the metabolic pathways

involved in SDs generation.

Deoxysphingolipids

Deoxysphingolipids are atypical constituents of the sphin-

golipidome (Merrill et al. 2009) that were originally

identified in fungal species and marine sponges. They have

only recently been shown to be present at low concentra-

tions in mammalian tissues (Duan and Merrill 2015).

Deoxysphingolipids such as 1-deoxysphinganine differ

from the typical sphingoid base (e.g., sphingosine) due to

the absence of a hydroxyl group at C1 position (Bode et al.

2015), but they are structurally diverse and can range from

simple to complex. 1-deoxy- and 1-deoxymethyl-sphingoid

bases are structurally simple deoxysphingolipids that are

generated by many organisms including mammals (Zito-

mer et al. 2009), while at the opposite end of the spectrum,

the ‘‘two headed’’ structure of oceanapiside isolated from

marine sponges represents one of the more unique and

complex structures seen in SPs (Nicholas and Molinski

2000; Fig. 2).

Deoxysphingolipids were initially thought to be a class

of mycotoxins that are particularly cytotoxic to plant and

animal cells (Abbas et al. 1998). Recently, however, two

groups made the surprising discovery that they are syn-

thesized in mammalian cells in relatively low concentra-

tions (Penno et al. 2010; Zitomer et al. 2009). SPT is

mutated in hereditary sensory and autonomic neuropathy

type 1 (HSAN1; Penno et al. 2010). These mutations have

been shown to alter substrate specificity of SPT, from L-

serine to L-alanine or glycine, which results in the synthesis

of 1-deoxysphingolipid compounds such as 1-deoxysphin-

ganine (Penno et al. 2010). In addition to synthesis of

deoxysphingolipids by mutant SPT, the synthesis of

1-deoxysphingolipid from wild-type SPT was seen in cell

lines incubated with fumonisin B1, which inhibits ceramide

synthases and results in the accumulation of

deoxysphingolipids (Zitomer et al. 2009; Venkataraman

et al. 2002). CHO-LyB cells, which carry an inactive SPT

subunit (SPT1), failed to synthesize 1-deoxysphingolipids

from L-alanine but was genetically rescued with wild-type

SPT, confirming that generation of deoxysphingolipids is

the result of normal mammalian SP metabolism (Zitomer

et al. 2009).

Ongoing work aims to understand the effects of these

atypical lipids on human cells to develop a better under-

standing of their biological roles in health and disease.

1-deoxysphinganine has been studied for its cellular

effects, as it is among the more abundant 1-deoxysphin-

golipids present in humans. While it can enhance prolif-

eration in Swiss 3T3 fibroblasts (Schroeder et al. 1994), it

has been shown to inhibit cell growth as in Vero kidney

epithelial cells (Zitomer et al. 2009) and is cytotoxic to

LNCaP and PC-3 prostate cancer cells at low micromolar

concentrations (Sanchez et al. 2008). The growth inhibition

and cytotoxicity of deoxysphingolipids have been attrib-

uted to de novo synthesis of ceramide, phosphorylation of

P53, and activation of apoptosis (Sanchez et al. 2008;

Salcedo et al. 2007).

HSAN1 patients show elevated plasma concentration of

1-deoxysphingolipids, which has been attributed to the

neurodegeneration seen in HSAN1 (Penno et al. 2010).

Similarly, the occurrence of diabetic neuropathy, a com-

mon and debilitating sequela of diabetes, correlates with

elevation of 1-deoxysphingolipids in plasma samples of

type II diabetes patients (Bertea et al. 2010). This was

corroborated by an in vivo model in which supplementa-

tion of L-serine in a diabetic rat results in decreased plasma

deoxysphingolipids and decreased neuropathic behavior

(Othman et al. 2015). These findings support a possible

connection between deoxysphingolipids and neuroinflam-

mation/neurodegeneration. Recent evidence also indicates

that 1-deoxysphingolipids play a role in TNF-mediated

neurotoxicity of dopaminergic neurons (Martinez et al.

2012). Cumulatively, these data provide compelling evi-

dence that deoxysphingolipids, although a quantitatively

minor class of SLs, are important regulators of neuronal

pathology. It has been proposed, however, that this cyto-

toxicity could be exploited therapeutically. For example,

Enigmol, which is a synthetic 1-deoxysphingoid base, has

shown to suppress tumors in colon and prostate cancer

mouse models (Symolon et al. 2011; Garnier-Amblard

et al. 2011).

Naturally Occurring Sphingolipid Modulators

It is likely that the dietary intake of structurally diverse SPs

exerts significant biological effects on mammals. In addi-

tion, it is known that naturally occurring compounds,
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present in diet, have potent effects on SP metabolism and/

or signaling. This can have a rather large impact on the

composition of the sphingolipidome or may profoundly

affect biological processes that are regulated by SP signal

transduction. This section describes the most notable ex-

amples of SP analogs with known biological effects.

Myriocin/Fingolimod

Successful therapeutic relevance of sphingolipids has been

realized through approval of a sphingosine analog known

initially as FTY720 (Chiba et al. 1996) that has, through a

tortuous process, become a drug known as Gilenya (generic

name, fingolimod; Kappos et al. 2006; Brinkmann et al.

2010; Chun and Brinkmann 2011; Groves et al. 2013) that

was FDA-approved in 2010 as a first oral treatment for

relapsing forms of the autoimmune disease, multiple scle-

rosis (MS; Chun and Brinkmann 2011). The compound was

a chemical derivative of a naturally occurring immuno-

suppressant molecule initially identified from the fungus

Myriococcum albomyces and named ‘‘Myriocin’’ (St-Jac-

ques 1973; Kluepfel et al. 1972). Years later, myriocin was

identified from another fungus, the sac fungus Ascomycota

(formerly known as Ascomycetes) and includes the ento-

mopathogenic fungus Isaria sinclarii (Fig. 3) as ‘‘ISP-1’’

that is myriocin. Its antifungal properties were extended to

mammalian systems where it was observed to have

immunosuppressant properties in culture attributed to SPT

inhibition (Miyake et al. 1995). These properties suggested

utility in a variety of therapeutic applications like organ

transplantation, and myriocin was studied for possible

in vivo use; however, exposure in animals was associated

with unacceptable toxicity (Napoli 2000), which lead to a

concerted effort from academia and pharmaceutical col-

laborations in Japan involving chemical derivatization of

myriocin to produce a more desirable compound, which

resulted in the identification and synthesis of FTY720

(Fig. 2; the names reflecting the contribution by Professor

Tetsuro Fujita at Kyoto University; and the companies

Taito and Yoshitomi; Chiba et al. 1996; Fujita et al. 1994).

FTY720 was tested in a wide range of animal models, in

which it was thought to be acting as a strong immuno-

suppressant (Suzuki et al. 1996; Chueh et al. 1997; Mit-

susada et al. 1997; Ueda et al. 2000). Its mechanism,

however, was distinct from Myriocin that inhibits SPT,

whereas FTY720 did not (Napoli 2000). Nevertheless,

basic studies on Myriocin indicated that its roles in sph-

ingosine metabolism (Miyake et al. 1995) might be rele-

vant to derivatives like FTY720; however, its precise

actions were unclear. Another fungal agent, cyclosporine,

was isolated from Ascomycota fungus Tolypocladium

inflatum that is the same fungal order (Hypocreales) as

Isaria sinclarii, the source of myriocin/ISP-1 from which

FTY720 emerged. Discovered by Sandoz scientists as an

important immunosuppressant (Heusler and Pletscher

2001), cyclosporine was observed in animals to synergize

with FTY720 (Chiba et al. 1996; Enosawa et al. 1996;

Hoshino et al. 1996; Kawaguchi et al. 1996; Masubuchi

et al. 1996). However, studies at Novartis and in academia

produced less clear activities for immunosuppression,

culminating with a pivotal phase III clinical trial for renal

Fig. 3 Source of myriocin. Myriocin was originally isolated from the

fungus Isaria sinclairii, which is commonly used in traditional

Chinese medicine. Like other Cordyceps species it parasitizes insects,

such as cicada larvae under the soil. The structures of FTY720

(derived from myriocin) and cyclosporine (widely used immunosup-

pressant drug also of fungal origin) are shown for comparison.

Reprinted with permission from An Illustrated Guide to New Zealand

Soil Invertebrates, http://soilbugs.massey.ac.nz. � Massey University
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transplantation rejection that combined reduced-dose

cyclosporine—a proven immunosuppressant—with high-

dose FTY720 that failed to reach its desired clinical end-

points (Tedesco-Silva et al. 2006). However, other pre-

clinical work supported activity of FTY720 in an animal

model of multiple sclerosis (MS; Webb et al. 2004;

Brinkmann et al. 2002; Fujino et al. 2003), experimental

autoimmune encephalomyelitis (EAE), which led to human

clinical trials for MS and ultimately resulted in regulatory

approval of the compound that is known by its generic

name ‘‘fingolimod’’ and commercial name Gilenya (Imu-

sera in Japan; Kappos et al. 2006; Chun and Hartung 2010;

Cohen and Chun 2011; Chun and Brinkmann 2011). In the

USA, Gilenya received FDA approval in 2010 for treat-

ment of relapsing forms of MS as well as regulatory

approval globally where it has been used in the treatment of

over 125,000 patients worldwide by 2015 (www.gilenya.

com).

During the period of myriocin modification that pro-

duced FTY720, a completely separate research effort

identified the first of a novel GPCR family (Hecht et al.

1996; Fukushima et al. 2001; Kihara et al. 2014) that

mediates the effects of lysophospholipids (LPs) that

included lysophosphatidic acid (LPA) and S1P. As a

family, LP receptors currently represent over 40 % of

lipid-interacting GPCRs. The discovery by scientists at

Novartis (Brinkmann et al. 2002) and Merck (Mandala

et al. 2002) that FTY720 phosphorylation (FTY-P) pro-

duced an S1P receptor non-selective agonist brought these

two fields together and has allowed mechanistic under-

standing of important physiological activities. FTY-P

interacts with 4 of 5 S1P receptors with high affinity (all

except S1P2). Notably, despite initial identification as an

agonist, the prominent effects of FTY720 in disease

models involve receptor loss through ubiquitin-mediated

receptor degradation that produces functional antagonism

(Welsch et al. 2003; Bohler et al. 2005; Oo et al. 2007),

thereby explaining phenocopying of results between pro-

longed FTY720 exposure and mice deficient for S1P

receptors (Matloubian et al. 2004; Pappu et al. 2007;

Schwab and Cyster 2007; Choi et al. 2011). The primary

effects of FTY720 in MS appear to involve disruption of

normal lymphocyte egress from lymphoid organs pro-

duced by loss of S1P receptors (Matloubian et al. 2004).

In addition, there are direct effects of FTY720 mediated

by S1P signaling within the central nervous system (CNS)

that involve astrocytes, whereby removal of S1P1 recep-

tors from astrocytes reduces disease and eliminates

FTY720 efficacy in EAE (Choi et al. 2011; Groves et al.

2013). The direct CNS effect was further supported by the

observation that FTY720 can promote the regeneration of

sciatic nerve following crush injury (Szepanowski et al.

2016).

Beyond the proven efficacy that FTY720 has in

improving MS outcomes, it has also been suggested that it

may be useful in other neurological indications, such as

stroke (Moon et al. 2015; Liu et al. 2013) and Alzheimer’s

disease (Aytan et al. 2016). In addition, there is evidence

for the potential efficacy of FTY720 in treating certain

cancers (Patmanathan et al. 2015), and it was recently

shown that it induces apoptosis and attenuates proliferative

signaling pathways in oral squamous cell carcinoma cells

(Patmanathan et al. 2016). It is notable that the possible

anticancer effects of FTY720 may in part be independent

of its direct effects on S1P receptors. It has been reported to

affect S1P metabolism by inhibiting SPHK and S1P lyase

(Tonelli et al. 2010; Bandhuvula et al. 2005) and to act

directly on other intracellular targets, such as protein

phosphatase 2A (Matsuoka et al. 2003) and the 14-3-3

adaptor protein (Woodcock et al. 2010). The clinical rel-

evance of these reports is unclear.

These effects and the success of FTY720 have spurred

research into other therapeutics based upon lysophospho-

lipid signaling (Kihara et al. 2015), and it will not be

surprising to encounter new biology and therapeutics in

view of the vast range of phenotypes observed in deletion

mutants of S1P receptors (Ishii et al. 2001, 2002; Yang

et al. 2002; Baudhuin et al. 2004; Nofer et al. 2004; Herr

et al. 2007, 2013; Keller et al. 2007; Means et al. 2007;

Tolle et al. 2008; Choi et al. 2011; Hopson et al. 2011;

Means et al. 2008), some of which may be accessed by

modified fungal metabolites.

Fumonisin B1

Fumonisin B1 is one of a family of mycotoxins produced

by filamentous fungi from the genus Fusarium that com-

monly infect corn (maize). It is a naturally occurring SP

analog that contains tricarballylic acid and methyl modi-

fications to an LCB (Fig. 2). This compound is particularly

notable in that it has been shown to inhibit the activity of

ceramide synthase and cause the accumulation of dihy-

drosphingosine in vivo (E. Wang et al. 1991; Wang et al.

1999). Sub-toxic exposure of fumonisin B1 routinely

occurs through normal dietary intake in many countries

including the USA and is safely tolerated at levels below

2 lg/kg/day (Stockmann-Juvala and Savolainen 2008).

However, high level of fumonisin B1 intake is character-

ized by an increased dihydrosphingosine/sphingosine ratio

(Riley et al. 1993) and may lead to deleterious effect on the

CNS. Notably, fumonisin B1 exposure and elevated dihy-

drosphingosine were associated with an outbreak of neural

tube defects that occurred in a population with a corn-rich

diet that lived along the US–Mexico border in 1990–1991

(Missmer et al. 2006). This was experimentally reproduced

in mice, whereby exposure of embryos to as little as 2 lM
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Fumonisin B1 caused neural tube defects (Sadler et al.

2002), confirming that regulation of SPs is essential for

normal development of the CNS. Interestingly, the occur-

rence of neural tube defects could be attenuated by co-

administration of folic acid, suggesting that derangement of

SP metabolism may disrupt the uptake or bioavailability of

folate.

D,L-Threo-dihydrosphingosine and N,N-Dimethyl

sphingosine

Studies involving the use of sphingosine analogs have

demonstrated that a number of structural variants are rec-

ognized by SPmetabolic enzymes, but may act as inhibitors.

Two notable compounds are D,L-threo-dihydrosphingosine

(DHS) and N,N-dimethyl sphingosine (DMS; Fig. 2), which

can inhibit sphingosine kinase activity. DHS, an enantiomer

of naturally occurring D-erythro-dihydrosphingosine, was

shown to inhibit SPHK1 (Buehrer and Bell 1992), but acts as

a substrate for SPHK2 (Pyne and Pyne 2002). Similarly,

L-threo-dihydrosphingosine (safingol) is known to inhibit

SPHK1, but also acts on protein kinases, such as protein

kinase C (Canals and Hannun 2013). Phase I clinical trials

have been completed for the use of safingol for solid tumors

in combination with doxorubicin (Schwartz et al. 1997) or

cisplatin (Dickson et al. 2011). Both studies provided evi-

dence for safety, but did not evaluate efficacy. DMS was

found to be endogenously present at low levels in spleno-

cytes (Felding-Habermann et al. 1990) and epidermoid car-

cinoma cells (Igarashi et al. 1990) and can inhibit both

isoforms of sphingosine kinase (Yatomi et al. 1996; Pyne and

Pyne 2002). Both of these compounds have served as useful

tools for elucidating the biological roles of sphingosine

kinase and further demonstrate that dietary SPs and SP

analogs not only act as substrates for lipid metabolism, but

also may have significant effects on endogenous metabolic

pathways.

Conclusions and Implications

In conclusion, SPs are abundant and well-studied lipids that

are critical mediators of many functions of the CNS and

other tissues. The metabolic pathways that regulate SPs and

the signaling pathways that they influence are abundantly

characterized and are biomedically relevant. However, the

importance of dietary SPs and the effects of naturally

occurring SP analogs on endogenous SP metabolism are

not fully realized. Atypical SPs can be absorbed from the

diet and incorporated into the mammalian sphin-

golipidome, and several analogs found in normal diet or

herbal supplements (myriocin, fumonisin B1) have been

shown to exert potent biological effects. It is a near

certainty that novel, naturally occurring SPs will continue

to be identified and that therapeutically useful effects will

be discovered from these nutraceuticals.
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