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Abstract Parkinson’s disease is the second most com-

mon neurodegenerative movement disorder; however, its

etiology remains elusive. Nevertheless, in vivo observa-

tions have concluded that oxidative stress is one of the

most common causes in the pathogenesis of Parkinson’s

disease. It is known that mitochondria play a crucial role in

reactive oxygen species-mediated pathways, and several

gene products that associate with mitochondrial function

are the subject of Parkinson’s disease research. The PTEN-

induced kinase 1 (PINK1) protects cells from mitochon-

drial dysfunction and is linked to the autosomal recessive

familial form of the disease. PINK1 is a key player in many

signaling pathways engaged in mitophagy, apoptosis, or

microglial inflammatory response and is induced by oxi-

dative stress. Several proteins participate in mitochondrial

networks, and they are associated with PINK1. The E3

ubiquitin ligase Parkin, the protease presenilin-associated

rhomboid-like serine protease, the tyrosine kinase c-Abl,

the protein kinase MARK2, the protease HtrA2, and the

tumor necrosis factor receptor-associated protein 1

(TRAP1) provide different steps of control in protection

against oxidative stress. Furthermore, environmental tox-

ins, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,

have been identified as contributors to parkinsonism by

increasing oxidative stress in dopaminergic neurons. The

present review discusses the mechanisms and effects of

oxidative stress, the emerging concept of the impact of

environmental toxins, and a possible neuroprotective role

of the antioxidant astaxanthin in various neurodegenerative

disorders with particular emphasis in Parkinson’s disease.
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Abbreviations

AIMP2 Aminoacyl tRNA synthetase complex-

interacting multifunctional protein 2

AMPA Amino-3-hydroxy-5-methyl-4-isoxazole

propionic acid

a-syn Alpha synuclein

ATX 3,30-Dihydroxy-b,b-carotene-4,40-dioneastaxanthin

Bcl-2 B cell leukemia-2

CSF Cerebrospinal fluid

CNS Central nervous system

Cyt c Cytochrome c

DA Dopamine

DAT Dopamine transporter

ER Endoplasmic reticulum

ERK Extracellular signal-regulated kinase

FBP-1 Fructose-1,6-bisphosphatase 1

GSH Glutathione

HAX1 HS1-associated protein X-1

Hsp Heat-shock protein

HtrA2 High-temperature requirement A2 protease

IjB Inhibitory kappa B

IL Interleukin

IMM Inner mitochondrial membrane

IMS Intermembrane space

JNK c-Jun N-terminal kinase
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LBs Lewy bodies

LDH Lactate dehydrogenase

LNs Lewy neurites

MAPK Mitogen-activated protein kinase

MARK2 Microtubule affinity-regulating kinase 2

MN Maneb

MPP? 4-Phenyl-2,3-dihydropyridinium ion

MPTP 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

mtDNA Mitochondrial DNA

NF-jB Nuclear factor kappa B

NM Neuromelanin

NMDA N-methyl-D-aspartate

NMDAR NMDA receptor

NOS Nitric oxide synthase

NPCs Neuronal progenitor cells

OMM Outer mitochondrial membrane

RNS Reactive nitrogen species

ROS Reactive oxygen species

PARL Presenilin-associated rhomboid-like serine

protease

p-a-syn Phosphorylated a-syn

PDZ Postsynaptic density protein (PSD95)/

Drosophila disc large tumor suppressor

(Dlg1)/zonula occludens-1 protein (Zo-1)

PI3K Phosphoinositide-3 kinase

PINK1 PTEN-induced kinase 1

PKCd Protein kinase C delta

PQ Paraquat

SAPK Stress-activated protein kinase

SN Substantia nigra

SNpc Substantia nigra pars compacta

SOD Superoxide dismutase

STAT Signal transducer and activator of transcription

SVZ Subventricular zone

TCF/

LEF

T-cell factor/lymphoid enhancer-binding factor

TNF-a Tumor necrosis factor alpha

TRAP1 TNF receptor-associated protein

UPS Ubiquitin–proteasome system

DWm Mitochondrial membrane potential

Introduction

Parkinson’s disease is the second most common neurode-

generative movement disorder with a median age of onset

of 55 years and a prevalence of 3 % in people[80 years of

age (Strickland and Bertoni 2004). The majority of these

cases are identified as sporadic Parkinson’s disease, and

only a small percentage are considered familial Parkinson’s

disease. Phenotypically, it is characterized by tremor,

rigidity, slowness of voluntary movement, and postural

instability. Since Parkinson’s disease is characterized by

various symptoms that are linked to different stages of its

progression, the identification of this pathology at an early

stage is not easy. The etiology is still unknown, but it is

hypothesized that it may result from a complex interaction

between environmental factors, genetic susceptibility, and

aging (Reichmann 2011).

The motor symptoms of Parkinson’s disease result from

the loss of dopaminergic neurons in the substantia nigra (SN)

(Braak and Braak 2000). It is known that dopamine (DA)

released from the neurons of the SN pars compacta (SNpc)

into the striatum exerts a critical role in the modulation of

basal ganglia activity (Graybiel 2005). Parkinson’s disease is

also characterized by highly insoluble fibrillar aggregates of

the protein alpha synuclein (a-syn), called Lewy bodies

(LBs) and Lewy neurites (LNs), that accumulate in the

neuronal cytoplasm or neuritic processes, respectively.

These inclusions are rich in phosphorylated a-syn (p-a-syn),

are often ubiquitinated (Fujiwara et al. 2002; Kuzuhara et al.

1988), and are widely distributed in the central nervous

system (CNS), where they are associated with neuron loss

(Wakabayashi et al. 2007). Despite these findings, current

therapies of Parkinson’s disease are symptomatic, targeting

mainly the lack of DA in the striatum with DA replacement

strategies. Although these therapies provide symptomatic

relief, they become more and more inefficient while the

disease progresses.

Despite the fact that Parkinson’s disease has long been

considered as a non-genetic disorder of sporadic origin,

there have been identified some rare (\10 % of Parkinson’s

disease cases) monogenic forms of Parkinson’s disease.

This resulted in the identification of 16 ‘‘PARK’’ loci, with

the genes PTEN-induced kinase 1 (PINK1 or PARK6),

Parkin (PARK2), SNCA (PARK1/4), LRRK2 (PARK8), and

DJ-1 (PARK7) being the most common (Crosiers et al.

2011; Sundal et al. 2012). It has been demonstrated that

these genes also play a role in the much more common

sporadic form of the disease; therefore, the knowledge of

their biological function will contribute to the under-

standing of sporadic Parkinson’s disease since both share

clinical and neuropathological features (Lesage and Brice

2012). Moreover, several cellular abnormalities displayed

in sporadic Parkinson’s disease, such as mitochondrial and

lysosomal dysfunction, oxidative stress, excitotoxicity,

proteasomal stress, neuroinflammation, and protein aggre-

gation, are also associated with mutations in the familial

Parkinson’s disease genes (Yacoubian and Standaert 2009).

More specifically, oxidative damage is very frequent in

neurodegenerative disorders including Parkinson’s disease.

The CNS is characterized by energy-demanding organs

(brain and spinal cord); hence, persistent oxidative stress is

a prominent factor in the pathogenesis of Parkinson’s dis-

ease (Ciccone et al. 2013).

218 Neuromol Med (2014) 16:217–230

123



Oxidative Stress in Parkinson’s Disease

Oxidative stress can be defined as a condition in which

the cellular antioxidant defense mechanisms are insuffi-

cient to keep the level of reactive oxygen species (ROS)

below a toxic threshold (Shulman et al. 2011). This may

be due to either an overproduction of reactive free radi-

cals or to a failure of cell-buffering mechanisms (Yaco-

ubian and Standaert 2009). ROS can damage all types of

biomolecules, and oxidative damage of nucleic acids,

lipids, and proteins can have deleterious effects (Dalle-

Donne et al. 2003). ROS are produced by a number of

different pathways, but all the initial free radical reactions

require activation of molecular oxygen (Barnham et al.

2004). ROS are being continuously generated in vivo as a

result of oxygen metabolism, with about 1–5 % of the

oxygen consumed being converted to ROS (Deas et al.

2011). In addition, the generation of reactive nitrogen

species (RNS) is due to nitric oxide synthase (NOS)-

mediated conversion of arginine to citrulline (Barnham

et al. 2004).

The occurrence of oxidative stress in Parkinson’s dis-

ease is supported by both postmortem studies and studies

demonstrating the important role of oxidative stress and

oxidizing toxins in neuronal degeneration of the DAergic

nigral neurons (Gilgun-Sherki et al. 2001; Mythri et al.

2011). Early and profound loss of the antioxidant protein

(protein-disulfide reductase) glutathione (GSH); a reduc-

tion in mitochondrial Complex I activity; increased oxi-

dative damage of lipids, proteins, and DNA; augmented

superoxide dismutase (SOD) activity; and elevated free

iron levels in the SN of Parkinson’s disease patients have

been documented (Blum et al. 2001; Mythri et al. 2011).

Moreover, in vivo observations revealed that several

markers of oxidative stress are altered in the cerebrospinal

fluid (CSF) and blood samples of Parkinson’s disease

patients (Ilic et al. 1998; Vinish et al. 2011).

An ever increasing number of studies associate oxida-

tive stress with neurodegenerative disorders; therefore, it is

crucial to understand why CNS exhibits increased sus-

ceptibility to oxidative stress (Fig. 1). First of all, it is

noteworthy that the brain in particular is more vulnerable to

oxidative stress and oxidative damage compared to other

organs. For instance, the brain consumes more oxygen on a

per weight basis under physiological conditions than any

other organ. Secondly, the brain contains a relatively low

level of antioxidants and free radical-scavenging enzymes

compared to other tissues (Barnham et al. 2004; Mytilineou

et al. 2002; Roberts et al. 2010) as well as a high amount of

substances, such as phospholipids and unsaturated fatty

acids (Cui et al. 2004), which are vulnerable to oxidative

modifications (Barnham et al. 2004; Selley 1998). Fur-

thermore, the vulnerability of neurons to oxidative damage,

which accumulates in aging neurons, might also be due to

their postmitotic nature (Crabtree and Zhang 2012).

More specifically, the high concentration of DA in the

nigrostriatal pathway is presumed to be essential for the

high vulnerability of DAergic cells to oxidative stress. DA

itself does not exert direct toxic effects (Lotharius and

Brundin 2002), but toxic intermediates derived from its

catabolism may contribute to the oxidative stress patho-

genic pathway in Parkinson’s disease (Andersen 2004;

Jenner 2003). Midbrain DAergic neurons are also prone to

oxidative stress due to their low mitochondrial reserve

compared to other neuronal populations (Feng and Magu-

ire-Zeiss 2010).

A matter of concern is the role of Ca2?. Ca2? stimulates

DA synthesis and modulates the function of endoplasmic

reticulum (ER) and mitochondria (Mosharov et al. 2009).

SNpc DA neurons engage L-type Ca2? channels to allow

extracellular Ca2? to enter the cytoplasm (Puopolo et al.

2007) and to maintain an adequate level of DA synthesis

(Mosharov et al. 2009). This process requires L-type Ca2?

channels to be opened most of the time leading to a basal

mitochondrial oxidant stress in SNpc DA neurons (Guzman

et al. 2010). The unusual reliance of SNpc DA neurons on

this type of Ca2? channels is the key factor of Ca2?-

mediated mitochondrial and ER stress, and it seems to be

responsible for their selective vulnerability (Surmeier et al.

2011).

Furthermore, it is proposed that oxidative damage

caused by excessive influx of Ca2? could also be a con-

sequence of overstimulation of ionotropic glutamate

receptors (Nakamura and Lipton 2011). Glutamate is the

major neurotransmitter in the CNS of mammals. Ionotropic

glutamate receptors in the nervous system are represented

by three classes: kainate, amino-3-hydroxy-5-methyl-4-

isoxazole propionic acid (AMPA), and N-methyl-D-aspar-

tate (NMDA). NMDA receptors (NMDARs) are widely

expressed throughout the basal ganglia including SNpc

(Johnson et al. 2009). Under physiological conditions,

NMDARs can result in normal ROS and RNS production,

which mediate normal signaling to support neuronal

function and survival. However, under neurodegenerative

conditions, overactivation of extrasynaptic NMDARs cau-

ses excessive influx of Ca2? contributing to cell injury and

death via oxidative stress, a process called excitotoxicity

(Nakamura and Lipton 2010).

On the other hand, the nature of cells in which oxidative

stress occurs in the SN in Parkinson’s disease is debated. It

is not clear whether oxidative stress is a process that occurs

in all DAergic cells, because those in the dorsal tier appear

to be more resistant to degeneration than those found in

ventral layers (Andersen 2004; Barnham et al. 2004; Jenner

2003). Additionally, the extent of change in parameters of

oxidative stress has led to the notion that it must also take
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place in non-neuronal cells such as glial cells. Indeed, a

decrease in glial cell GSH content has been demonstrated

by immunohistochemistry in nigral tissue from Parkinson’s

disease patients, and increased iron levels also occur within

glia (Andersen 2004; Barnham et al. 2004; Jenner 2003;

Pearce et al. 1997). This raises the important concept of a

generalized oxidative stress occurring in the SN that affects

both glial cells and neurons, perhaps because of a general

metabolic failure (Fig. 1) (Andersen 2004).

In addition, it is important to note that the ROS-gener-

ating pathways are heavily dependent on the presence of

metals such as copper and in particular iron, whose levels

have been found to be elevated in the SN of Parkinson’s

disease patients (Andersen 2004). The reason for this is not

yet understood, but the fact is that during brain aging, a

deregulation in total iron concentration may cause an

increase in free iron within brain leading to oxidative

damage. In this situation, neuromelanin (NM) can play a

protective role by blocking reactive iron in a stable com-

plex. NM is a dark-brown pigment that concentrates metal

ions, such as iron, and thereby makes the nigrostriatal

DAergic neurons appear dark colored. However, the role of

NM has been debated for long time (Zecca et al. 2004).

NM accumulates in the SNpc with age but in Parkinson’s

disease patients, the NM levels are significantly reduced in

DA neurons, while elevated in the extracellular space in the

SNpc. Investigations show that the release of NM in the

extracellular space is a result of damaged or dying neurons.

Released NM induces mitochondrial activation, generates

neuroinflammation, and leads to progressive degeneration

of DA neurons (Zhang et al. 2013).

Furthermore, several of the genes linked to familial

forms of Parkinson’s disease appear to be involved in the

protection against or in the propagation of oxidative stress

(Toulouse and Sullivan 2008; Yacoubian and Standaert

2009). In particular, subsequent studies have connected

specific genetic defects with mitochondria and oxidative

stress. Increased Parkinson’s disease risk has been linked to

mutation in a-syn, Parkin, PINK1, DJ-1, and LRRK2 all of

which have been related to mitochondria (Henchcliffe and

Beal 2008). Impaired mitochondrial function is likely to

increase oxidative stress, and the products of these Par-

kinson’s disease-associated genes have a crucial role in

mitochondria under certain conditions (Henchcliffe and

Beal 2008). Apart from that, many of the genetic loci

linked to the familiar cases of Parkinson’s disease code for

genes that affect the ubiquitin–proteasome system (UPS)

(Olanow and McNaught 2006). The UPS is the main sys-

tem through which the body removes superfluous proteins.

Dysfunction of the UPS leads to accumulation of LB

inclusions in the SNpc of Parkinson’s disease patients

(Olanow and McNaught 2006).

Finally, mitochondrial DNA (mtDNA) alteration is

implicated in Parkinson’s disease onset. High levels of

somatic mtDNA mutations have been observed in SN

neurons in Parkinson’s disease patients (Yan et al. 2013).

MtDNA is vulnerable to oxidative stress; thus, an increase

in ROS generation leads to a gradual accumulation of

Fig. 1 Main causes of

oxidative stress in Parkinson’s

disease clustered in five groups

by their functional similarity

(marked in different color).

Each group describes the

general biological processes that

may result in excessive

oxidative stress, thus

contributing to the pathogenesis

of Parkinson’s disease. DA

dopamine, mtDNA

mitochondrial DNA, NM

neuromelanin, PD Parkinson’s

disease, ROS reactive oxygen

species, SN substantia nigra,

UPS ubiquitin–proteasome

system
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mtDNA mutations creating a positive feedback loop of

increasing mutation and ROS production that is followed

by eventual cell death (Yan et al. 2013).

Mitochondrial Dysfunction: Just Think PINK

We have discussed above the role of oxidative stress for

Parkinson’s disease progression. Several postmortem

studies performed on individuals with Parkinson’s disease

have shown an increased level of lipids, proteins, and DNA

oxidation, and a decreased concentration of GSH (Ciccone

et al. 2013). Moreover, numerous studies have reported the

involvement of mitochondria, neuroinflammation via acti-

vated microglia, and other ROS-mediated pathways in the

pathogenesis of Parkinson’s disease (Varcin et al. 2012).

Mitochondria play a pivotal role in eukaryotic metabolic

processes by serving as cellular energy generators of ATP

(Nicholls 2010), which are critical for cell survival and for

normal cellular functions, as well as in mediating apoptosis

and in determining their own autophagy called mitophagy

(Novak 2012), an important control mechanism that clears

damaged mitochondria. It seems that mitochondrial dys-

function is involved in Parkinson’s disease insurgence as

well (Fig. 1) (Arduino et al. 2013).

PINK1 Regulatory Pathway Leading to Mitophagy:

The Key Role of Parkin

The discovery of several inherited mutations in gene pro-

ducts that associate with mitochondrial function was cru-

cial in Parkinson’s disease research. PINK1 is a

mitochondria-targeted serine/threonine (Ser/Thr) kinase,

which is linked to autosomal recessive familial form and

early-onset Parkinson’s disease (Corti et al. 2011). PINK1

is present in different brain regions, in particular in SN,

hippocampus, and Purkinje cells of cerebellum. It harbors a

mitochondrial signal motif in the N-terminal domain and

an autoregulatory region in the C-terminal domain. Several

studies demonstrate that PINK1 is involved in mitochon-

drial metabolism and dynamics, ubiquitin-mediated protein

degradation, and oxidative stress (Heeman et al. 2011). The

subcellular localization of PINK1 is still debated but it

seems that it is regulated by the mitochondrial membrane

potential (DWm). In healthy mitochondria, PINK1 is gui-

ded to the mitochondrial inner membrane through the

general mitochondrial import machinery (Song et al. 2013),

whereas in damaged mitochondria, the dissipation of DWm

prevents PINK1 from reaching the inner membrane and as

a consequence PINK1 remains localized to the outer

mitochondrial membrane (Okatsu et al. 2012). The role of

PINK1 in Parkinson’s disease progression is supported by

the fact that PINK1 colocalizes with LBs (Zhou et al.

2008). Moreover, a study in primary neuronal cell lines

from mice lacking PINK1 has shown typical symptoms of

Parkinson’s disease, including mitochondrial impairment

of DAergic neurons (Wood-Kaczmar et al. 2008). Com-

pelling evidence indicates that the mutation of PINK1 is

one of the principal causes of Parkinson’s disease insur-

gence (Marongiu et al. 2009).

In addition, PINK1 is known to regulate Parkinson’s

disease-related protein Parkin (Corti et al. 2011). Parkin

bears an N-terminal ubiquitin-like domain and a C-terminal

RING finger region with E3 ubiquitin ligase activity

(Shimura et al. 2000). Parkin plays an important role in

controlling the amount of protein aggregates. Albeit Parkin

can reduce ROS production, and the overexpression of

mutant Parkin is linked to increased ROS generation.

Postmortem studies performed in subjects affected by

Parkinson’s disease demonstrate that Parkin colocalizes

with LBs as well (Ciccone et al. 2013). In damaged

mitochondria, PINK1 translocates to the outer membrane,

where it recruits the E3 ubiquitin ligase Parkin from

cytosol to mitochondria in order to initiate mitophagy

(Fig. 2). This induces the ubiquitination of outer membrane

proteins. In flies, Parkin accumulation and autophagy

induction can cause an enrichment of impaired mitochon-

dria in DAergic neurons and generate an excessive amount

of ROS (Narendra et al. 2010).

One important molecule that affects the proteolytic

processing of PINK1 is the presenilin-associated rhom-

boid-like serine protease (PARL), the mammalian ortholog

of mitochondrial protease Rhomboid-7 in flies (Deas et al.

2011). Normal PINK1 localization and stability require the

catalytic activity of PARL. Consequently, PARL defi-

ciency impairs Parkin recruitment to mitochondria, sug-

gesting that PINK1 processing and localization are crucial

in determining its interaction with Parkin (Greene et al.

2012). More than 50 mutations have been mapped

throughout the kinase and C-terminal regulatory domains

of PINK1 with various effects on protein stability impli-

cating neuroprotective roles (Kumar et al. 2011; Rochet

et al. 2012). Intramembrane proteolysis is a conserved

mechanism that modulates various cellular processes.

PARL cleaves human PINK1 within its conserved mem-

brane anchor (Meissner et al. 2011), suggesting PINK1’s

role in neurodegenerative disease. Mature PINK1 is then

free to be released into the cytosol or into the mitochon-

drial intermembrane space (Fig. 2). Upon depolarization of

the mitochondrial membrane potential, the import of

PINK1 and its PARL-catalyzed processing are blocked,

leading to the accumulation of the PINK1 precursor

(Meissner et al. 2011). Targeting of this precursor to the

outer mitochondrial membrane has been shown to trigger

mitophagy (Okatsu et al. 2012). The PARL-catalyzed

removal of the PINK1 signal sequence in the import
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pathway may act as a cellular checkpoint for mitochondrial

integrity. Interestingly, Parkinson’s disease-causing muta-

tions decrease the processing of PINK1 by PARL (Cook-

son and Bandmann 2010). When mitochondrial import is

compromised by depolarization, PINK1 accumulates on

the mitochondrial surface where it recruits the Parkinson’s

disease-linked Parkin from cytosol, which in turn mediates

the mitophagic destruction of mitochondria (Cookson and

Bandmann 2010; Okatsu et al. 2012). The importance of

PINK1 in mechanisms underlying neurodegeneration is

demonstrated by the neuroprotective properties of Parkin in

counteracting oxidative stress and improving mitochondrial

function. The involvement of Parkin and PINK1 in mito-

chondrial dysfunction, oxidative injury, and impaired

functioning of the ubiquitin–proteasome system has been

investigated in light of Parkinson’s disease pathogenesis

(Cookson and Bandmann 2010; Okatsu et al. 2012).

The protein kinase microtubule affinity-regulating kinase

2 (MARK2) also plays key roles in several cellular processes

underpinning neurodegenerative diseases (Gu et al. 2013).

MARK2 phosphorylates the N-terminal Thr-313 and acti-

vates PINK1 (Matenia et al. 2012). Thr-313 is the primary

phosphorylation site, mutated to a non-phosphorylatable

residue in a frequent variant of Parkinson’s disease (Matenia

et al. 2012). The importance of this PINK1 phosphorylation

site is emphasized by the fact that the expression of the

mutation of Thr-313 in PINK1 shows severe toxicity for cells

(both CHO and neuronal cells) and leads to abnormal

mitochondrial accumulations in the cell soma or degradation

of mitochondria (Matenia et al. 2012). The mutation could

also have effects on known PINK1 substrates like Omi/

HtrA2 or TRAP-1 (Pridgeon et al. 2007). Both MARK2 and

PINK1 colocalize with mitochondria, especially in axons

and dendrites, and regulate their transport; therefore,

MARK2 may be an upstream modulator of PINK1 that

modulates mitochondrial trafficking in neuronal cells.

Furthermore, it is suggested that this phosphorylation con-

sequently enhances the binding and possibly the phosphor-

ylation of Parkin by PINK1. As previously discussed, Parkin

is recruited via PINK1 to defective mitochondria inducing

their degradation by mitophagy. This effect seems to be also

influenced by MARK2; thus, failure of this pathway results

in the accumulation of mitochondria in the cell soma

(Matenia et al. 2012). The MARK2–PINK1 cascade pro-

vides new insights into the control of mitochondrial traf-

ficking in neurons. Alterations in mitochondrial homeostasis

have been implicated as an important source of many neu-

rodegenerative diseases; thus, suppression of PINK1 kinase

Fig. 2 Implication of mitochondrial dysfunction in the pathobiology

of Parkinson’s disease. In damaged mitochondria, PARL cleaves

PINK1 precursor and the mature PINK1 translocates from the inner to

the outer membrane, where it recruits the E3 ubiquitin ligase Parkin

from cytosol to mitochondria to induce mitophagy. MARK2 phos-

phorylates and activates the mature PINK1. During oxidative stress,

however, cytoplasmic c-Abl moves to mitochondria and inactivates

Parkin promoting the accumulation of misfolded proteins such as

AIMP2 and FBP-1. C-Abl activates PKCd leading to mitochondrial

dysfunction and cell death as well. AIMP2 aminoacyl tRNA

synthetase complex-interacting multifunctional protein 2, FBP-1

fructose-1,6-bisphosphatase 1, IMM inner mitochondrial membrane,

IMS intermembrane space, MARK2 microtubule affinity-regulating

kinase 2, OMM outer mitochondrial membrane, PARL presenilin-

associated rhomboid-like serine protease, PINK1 PTEN-induced

kinase 1, PKCd protein kinase C delta
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activity and/or downregulation of PINK1 transcription

contribute to Parkinson’s disease pathogenesis. Nonetheless,

enhanced PINK1 kinase activity also induces neuronal cell

death (Matenia et al. 2012). As a result, the importance of a

tight regulation of PINK1 depending on MARK2 is crucial

and failure of this balance contributes to the development of

Parkinson’s disease (Matsuda et al. 2013).

Moreover, Parkin-induced mitophagy contributes to the

mitochondrial control preventing neurodegeneration.

However, oxidative and dopaminergic stress are thought to

impair the function of Parkin through direct posttransla-

tional modification (Imam et al. 2011). The exact mecha-

nisms underlying impairment of Parkin function by these

stressors remain elusive but an increase in c-Abl activity

has been observed (Cao et al. 2001; Sun et al. 2000). The

c-Abl tyrosine (Tyr) kinase is involved in diverse cellular

activities depending on its subcellular localization. c-Abl

can promote mitogenesis when located in cytoplasm, cell

cycle arrest when activated in the nucleus, and upon

translocation to the mitochondria can induce the loss of

DWm, depletion of ATP, and apoptotic/necrotic cell death

(Constance et al. 2012; Qi and Mochly-Rosen 2008). As

mentioned before, oxidative DNA damage occurs to a

higher extent in Parkinson’s disease individuals compared

with age-matched controls (Alam et al. 1997). Studies

conducted in vitro and in vivo indicate an association

between c-Abl and Parkin. Specifically, compelling evi-

dence suggests that c-Abl phosphorylates Parkin at Tyr-143

leading to the loss of Parkin function and disease pro-

gression in sporadic Parkinson’s disease (Imam et al.

2011). Activation of c-Abl and Parkin Tyr phosphorylation

occurs after oxidative and dopaminergic stress both in vitro

and in vivo, causing significant loss of Parkin’s E3 ubiq-

uitin ligase activity and leading to the accumulation of

neurotoxic aminoacyl tRNA synthetase complex-interact-

ing multifunctional protein 2 (AIMP2) and fructose-1,6-

bisphosphatase 1 (FBP-1), ultimately compromising Par-

kin’s protective function (Imam et al. 2011). The latter are

two toxic substrates of Parkin detected in the striatum.

Importantly, pharmacological inhibition of c-Abl by STI-

571 enhances E3 ubiquitin ligase activity of Parkin and

offers new therapeutic options for blocking Parkinson’s

disease progression (Imam et al. 2011; Ko et al. 2010). In

this manner, c-Abl can induce an alternative oxidative

stress pathway via inhibiting the ubiquitin-mediated path-

way by Parkin, and it can promote the accumulation of

misfolded protein and toxic substrates (i.e., AIMP2 and

FBP-1) (Fig. 2) (Gonfloni et al. 2012).

Moreover, c-Abl activity seems to have a role in Par-

kinson’s disease development by regulating the activation

of protein kinase C delta (PKCd). Studies have demon-

strated that PKCd, a prominent member of novel PKCs,

plays a pro-apoptotic role in various cell types

(Kanthasamy et al. 2003). In cell culture models of Par-

kinson’s disease, oxidative stress activates PKCd through a

caspase-3-dependent proteolytic cleavage that induces

apoptotic cell death (Kanthasamy et al. 2003). Interest-

ingly, proteolytic activation of PKCd is regulated through

phosphorylation of its Tyr residues. Evidence regarding a

functional interaction between PKCd and c-Abl has been

provided following oxidative stress response (Sun et al.

2000). Indeed, in response to oxidative stress, cytoplasmic

c-Abl moves to mitochondria, phosphorylates PKCd on

Tyr-311, and this modification amplifies apoptotic signals

via activation of the mitochondrial apoptotic pathway and

leads to mitochondrial dysfunction and cell death (Fig. 2)

(Lu et al. 2007; Qi and Mochly-Rosen 2008).

The PINK1 Anti-apoptotic Pathway

Besides its role in mitophagy, PINK1’s cooperation with

different molecules is involved in survival pathways to

protect mitochondria against oxidative stress. First of all,

PINK1 has been shown to phosphorylate TNF receptor-

associated protein 1 (TRAP1), a mitochondrial chaperone

of the heat-shock protein 90 (Hsp90) family also known as

Hsp75, and thus to increase neuronal survival against

oxidative stress or heat shock by preventing the release of

cytochrome c (cyt c) and apoptosis (Fig. 3) (Pridgeon et al.

2007). TRAP1 may be a direct substrate for PINK1, which

localizes primarily in the mitochondrial matrix and at extra

mitochondrial sites. Upon induction of oxidative stress,

PINK1 may regulate TRAP1 function constitutively (Bu-

eler 2009). Phosphorylated TRAP1 is proposed to act as a

chaperone to hamper protein misfolding and misassembly

of respiratory complexes in mitochondria during oxidative

stress (Plun-Favreau et al. 2007). Given that TRAP1 acts as

a molecular chaperone in the clearance of misfolded pro-

teins, it may lead to enhanced molecular quality control in

mitochondria, therefore decreasing the demand for orga-

nelle quality control as a clearance mechanism for mito-

chondria overwhelmed by excessive protein misfolding

(Costa et al. 2013).

Adding to the variety of survival functions of PINK1, its

association with the mammalian high-temperature

requirement A2 protease (HtrA2, also known as Omi) has

been also investigated. HtrA2 belongs to a widely con-

served family of serine proteases involved in various

aspects of protein quality control and cell fate but it has

received more attention than other HtrA family members

because of its potential role in the regulation of apoptosis

(Fig. 3) (Clausen et al. 2011). In healthy cells, HtrA2

resides in the intermembrane space of mitochondria.

Apoptotic stimuli lead to HtrA2 release into the cytosol

where it inactivates the caspase-inhibitory activity. HtrA2
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proteolytic activity has also been suggested to ignite a

caspase-independent cell death pathway (Fig. 3) (Alnemri

2007). Jones et al. (2003) revealed that the mnd2, a mouse

model of neurodegeneration with features resembling

Parkinson’s disease, results from a missense mutation that

inactivates the proteolytic activity of HtrA2. Further ana-

lysis demonstrated that cells from these mice or from

HtrA2 knockout mice exhibit a defective mitochondrial

membrane potential that led to increased apoptosis, espe-

cially in striatal neurons and, consequently, to neurode-

generation (Martins et al. 2004). This supports the notion

that HtrA2 functions primarily as a survival rather than a

death protease.

Indeed, HtrA2 is indirectly phosphorylated and interacts

with PINK1 as part of a signaling pathway (Fig. 3) (Plun-

Favreau et al. 2007). The PINK1-dependent phosphoryla-

tion of HtrA2 augments its protease activity leading to

enhanced survival against oxidative stress (Plun-Favreau

et al. 2007, 2008). The HtrA2 is also phosphorylated upon

activation of the p38 stress-activated protein kinase

(SAPK) pathway, occurring in a PINK1-dependent manner

(Plun-Favreau et al. 2007). Structural studies revealed that

Ser-142 in the protease domain and Ser-400 in the PSD95/

DLG1/ZO1 (PDZ) domain of HtrA2 are two potential

phosphorylation sites for proline-directed Ser/Thr kinases.

Point mutations in these regions of HtrA2 are a suscepti-

bility factor for Parkinson’s disease. More specifically,

PINK1 does not seem to be directly responsible for phos-

phorylating HtrA2 on Ser-142 upon activation of the p38

pathway; instead, it might serve as an adaptor in a trimeric

complex to bridge between p38 kinase and HtrA2 (Fig. 3)

(Alnemri 2007; Li et al. 2002). Furthermore, it appears that

p38 and PINK1 operate upstream of HtrA2 in an external

stress-sensing pathway to phosphorylate HtrA2 (Valente

et al. 2004). As with many other proteases, the proteolytic

activity of HtrA2 is tightly regulated to prevent unwanted

proteolysis.

However, it has been shown in Drosophila that HtrA2 is

not essential for all the protective functions of PINK1 (Tain

et al. 2009; Yun et al. 2008). It is noteworthy that in

Drosophila, the mitochondrial protease Rhomboid-7,

equivalent to PARL in mammals, can physically interact

with HtrA2, and that Rhomboid-7 is both necessary and

sufficient to process one HtrA2 isoform in vitro and in vivo

(Whitworth et al. 2008). In contrast, vertebrate PARL does

not directly interact with HtrA2 and requires HS1-

Fig. 3 The PINK1-dependent phosphorylation of HtrA2 increases its

protease activity leading to enhanced survival against oxidative stress

(Clausen et al. 2011). PINK1 serves as an adaptor in a trimeric

complex, to bridge between p38 kinase and HtrA2 in order to prevent

unwanted proteolysis of HtrA2 (Alnemri 2007). Furthermore, HtrA2

is not essential for all the protective functions of PINK1; thus, PARL

seems to regulate HtrA2 via HAX1. HAX1 functions as a substrate of

HtrA2 as well, reflecting a delicate balance between mitophagy and

apoptosis. Finally, PINK1 phosphorylates and activates TRAP1 to

inhibit the release of cyt c and apoptosis and hinder protein

misfolding and misassembly of respiratory complexes. Cyt c

cytochrome c, HAX1 HS1-associated protein X-1, HtrA2 high-

temperature requirement A2 protease, IMM inner mitochondrial

membrane, IMS intermembrane space, OMM outer mitochondrial

membrane, PARL presenilin-associated rhomboid-like serine prote-

ase, PINK1 PTEN-induced kinase 1, TRAP1 TNF receptor-associated

protein 1
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associated protein X-1 (HAX1), a B-cell leukemia-2 (Bcl-

2) family protein not found in Drosophila (Fig. 3). Nota-

bly, it was first identified as a cleavage target of HtrA2 in

the mnd2 mouse model. Degradation of HAX1 by HtrA2

was observed when cells were treated with various apop-

totic inducers (Cilenti et al. 2004). It is important that

HAX1 functions not only as a substrate of HtrA2, but also

as a regulator of the mitochondrial import of HtrA2

through the presentation of HtrA2 to PARL. Collectively,

these findings suggest that the interaction or balance

between HAX1 and HtrA2 is crucial for both mitophagy

and apoptosis. On the one hand, as an upstream modulator

of HtrA2, HAX1 ensures the proper localization of func-

tional HtrA2 to protect cells from stresses; on the other

hand, as a specific substrate of HtrA2, HAX1 can be

digested by HtrA2 to elicit mitophagy or to stimulate

apoptosis when cells are ultimately sentenced to death (Li

et al. 2010a, b).

PINK1 Participates in Microglial Inflammatory

Response

Further to genetic background, environmental factors, such

as environmental toxins or lifestyle factors, may have a

role in Parkinson’s disease pathogenesis (Dawson et al.

2010). However, the most important ‘‘environmental’’

factor that regulates neuronal function and survival is glia

(astrocytes and microglia). Accordingly, glia has recently

been suggested as a turning point in the therapeutic strategy

for Parkinson’s disease (Yin et al. 2010).

It is known that in response to brain injury, microglia

and neurons die at injury sites (Jeong et al. 2010; Ji et al.

2007; Min et al. 2012), and that microglia in the penumbra

region rapidly isolate these sites and produce cytokines

such as interleukin (IL)-1b (IL-1b), which are not harmful

to brain cells. It has been reported that the expression of

pro-inflammatory cytokines increases in CSF and brain

parenchyma of patients with Parkinson’s disease (Kim

et al. 2013). Furthermore, inflammatory responses includ-

ing microglia activation and expression of inflammatory

cytokines increase in animal models of Parkinson’s disease

(Beal 2003; Hald and Lotharius 2005). Studies have shown

that brain inflammation is a risk factor for neurodegener-

ative diseases, including Parkinson’s disease (Whitton

2007), and anti-inflammatory drugs such as dexametha-

sone, ibuprofen, and rofecoxib display neuroprotective

effects (Kurkowska-Jastrzebska et al. 2004). Specifically, it

has been demonstrated that PINK1 deficiency augments the

expression of pro-inflammatory cytokines such as tumor

necrosis factor alpha (TNF-a), IL-1b, and IL-6 (Kim et al.

2013). Moreover, PINK1 knockout mice exhibit higher

striatal levels of IL-1b, IL- 12, and IL-10 in response to

lipopolysaccharide (Akundi et al. 2011). As explained

previously, PINK1-deficient cells are vulnerable to apop-

tosis compared to wild-type cells (Valente et al. 2004).

Therefore, it is critical to investigate the signaling pathway

operating during brain inflammation.

The most important signaling pathways engaged in

neurodegenerative disorders are the mitogen-activated

protein kinase (MAPK) and the signal transducer and

activator of transcription (STAT) signal transduction cas-

cades (Pyo et al. 1998; Ryu et al. 2000). However, in a

PINK1 knockout mouse model, the signaling pathways that

increase inflammatory responses were slightly different.

Kim et al. (2013) documented significant difference only in

the activation pattern of STAT3. They observed a degra-

dation of the nuclear factor kappa B (NF-jB) inhibitory

protein inhibitory kappa B (IjB) due to STAT3 activation,

which resulted in increased pro-inflammatory cytokines. It

has been reported that STAT3 blocks NF-jB activation by

preventing IjB phosphorylation and degradation (Yu et al.

2009). In addition, a recent study revealed that PINK1-

mediated phosphorylation activates Parkin’s E3 ubiquitin

ligase function and enhances Parkin-mediated ubiquitin

signaling through the NF-jB pathway (Sha et al. 2010).

Moreover, this study provided evidence that deregulation

of the PINK1/Parkin/NF-jB cytoprotective pathway,

which could be caused by PINK1 or Parkin mutations, is a

common pathogenic mechanism leading to neurodegener-

ation in early-onset familial Parkinson’s disease (Sha et al.

2010).

The phosphoinositide-3 kinase (PI3K)/Akt signaling

axis may be another factor regulating the inflammatory

responses, independently of the STAT3 or IjB/NF-jB

pathways. The importance of the PI3K/Akt pathway in

inflammation has been documented in rheumatoid arthritis,

multiple sclerosis, and asthma (Busse and Lemanske 2001;

Camps et al. 2005; Sospedra and Martin 2005). Inhibiting

PI3K augments TNF-a and IL-6 expression in macro-

phages (Medina et al. 2010). Because the PINK1 defect

promotes brain inflammation in response to injury, the

function of PINK1 may be more pertinent in injury states

than in physiological states. Thus, a defect in PINK1 could

exaggerate brain inflammation in the injured brain,

increasing brain damage and resulting in DAergic neuronal

death (Kim et al. 2013). Although PINK1 is involved in

mitochondrial function, a recent report demonstrated that

PINK1 has another action point in the cytoplasm (Murata

et al. 2011). Specifically, phosphorylation of Akt at Ser-

473 was enhanced by the overexpression of PINK1 inde-

pendently of PI3K in SH-SY5Y cells, a cellular model of

Parkinson’s disease. The Akt activation increased the

protection of cells from various cytotoxic agents, including

oxidative stress (Murata et al. 2011).
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Environmental Toxins: The Paradigm of MPTP

The vast majority of Parkinson’s disease cases are a

combination of genetic and environmental influences that

may vary from person to person, and in this review, we

briefly discuss the association of genetic susceptibility and

aging with oxidative stress and inflammation as a risk

factor. The emerging concept of the onset and progression

of DAergic neuronal degeneration in vivo is that certain

environmental agents act in cooperation with genetic fac-

tors (Yin et al. 2010). Hints that environmental toxins

might play a role in the molecular pathology of Parkinson’s

disease first appeared after the accidental administration of

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in a

group of young drug users in the 70s, who eventually

developed a clinical phenotype reminiscent of late-stage

Parkinson’s disease, albeit in the absence of LBs pathology

(Whitton 2007). It was the first proof that exposure to an

environmental substance could produce parkinsonism in

humans (Cui et al. 2004; Deas et al. 2009).

In addition to MPTP, other environmental toxins have

been identified as contributors to DAergic neuronal cell

death and parkinsonism, supporting further the link

between environmental exposure to pesticides and a risk of

developing Parkinson’s disease (Shulman et al. 2011). Four

individual pesticides were found to increase the risk of

Parkinson’s disease such as dieldrin, maneb (MN), para-

quat (PQ), and rotenone (Horowitz and Greenamyre 2010),

with the latter two behaving as mitochondrial toxins in a

mode similar to MPTP (Shulman et al. 2011). In rural

environments where workers were coexposed to PQ and

MN, several studies have clearly shown a marked increase

in Parkinson’s type neurodegeneration (Gollamudi et al.

2012). Unraveling the signaling pathways following

exposure to these toxins may offer a potential therapeutic

approach in the pathology of Parkinson’s disease.

MPTP was subsequently identified as a potent neuro-

toxin that can readily cross the blood–brain barrier and is

metabolized in astrocytes to 4-phenyl-2,3-dihydropyridi-

nium ion (MPP?). The latter is a powerful mitochondrial

Complex I inhibitor that causes abnormal energy metabo-

lism and increased ROS production, and is then selectively

transported into DAergic neurons via dopamine transporter

(DAT), ultimately leading to cell death via mitochondrial

impairment (Horowitz and Greenamyre 2010). In normal

conditions, MPP? generates several ROS (Esposito et al.

2002), resulting in lipid peroxidation, DNA fragmentation,

mitochondrial harm, lactate dehydrogenase (LDH) leakage,

GSH depletion, reduction of Na?/K?-ATPase and catalase

activities, increase in caspase-3 activity, and eventually cell

death (Chan et al. 2009; Harish et al. 2010). Consequently,

the MPTP model constitutes the best-characterized toxin

paradigm for Parkinson’s disease, clearly reflecting most of

its clinical and pathological hallmarks (Langston et al.

1984; Li et al. 2010a, b).

As analyzed beforehand, in the striatum bordering the

subventricular zone (SVZ) of Parkinson’s disease experi-

mental models, glia exhibits remarkable morphological and

functional changes, including the expression of an array of

pro-inflammatory cytokines and chemokines as well as

production of ROS (Gao et al. 2008; Hirsch and Hunot

2009; Marchetti and Abbracchio 2005). Of special interest,

MPTP-dependent inflammatory mechanisms are recog-

nized to contribute to nigrostriatal DAergic degeneration

and self-repair (L’Episcopo et al. 2010). During the last

decade, many investigators have attempted to illuminate the

mechanisms underlying the so-called SVZ stem cell niche,

which includes neuronal progenitors cells (NPCs) and sur-

rounding glia. Wnt/b-catenin signaling is a vital pathway

regulating self-renewal and differentiation of neural stem

cells (Logan and Nusse 2004). Stabilized b-catenin, a chief

transcriptional regulator, can enter the nucleus and associate

with T-cell factor/lymphoid enhancer-binding factor (TCF/

LEF) transcription factors, leading to the expression of

Wnt-target genes involved in cell survival, proliferation,

and differentiation. A volume of data suggests a role for this

pathway in adult neurogenesis, providing a novel thera-

peutic approach in many neurodegenerative diseases, such

as Parkinson’s disease (Kuwabara et al. 2009; Munji et al.

2011; Wexler et al. 2008; Zhang et al. 2011). Because Wnt/

b-catenin signaling controls the expression of diverse target

genes, deregulation of this signaling cascade is involved in

various neurodegenerative disorders (Inestrosa and Arenas

2010; Kim et al. 2011; L’Episcopo et al. 2011a; Shruster

et al. 2011).

In Parkinson’s disease, the Wnt/b-catenin pathway plays

also a fundamental role in the generation, survival, and

protection of midbrain DAergic neurons (Inestrosa and

Arenas 2010; L’Episcopo et al. 2011a; Prakash et al. 2006).

Interestingly, in response to nigrostriatal injury, reactive

astrocytes express Wnt1 and protect DAergic neurons

against different neurotoxic insults via the potentiation of

Wnt/b-catenin signaling (L’Episcopo et al. 2011a, b). The

exogenous MPTP leads to the induction of the caspase-3-

dependent apoptotic pathway in a dose-dependent fashion

(L’Episcopo et al. 2012). However, exogenous manipulation

of Wnt/b-catenin signaling in primary mesencephalic neu-

rons exerts potent neuroprotective effects against oxidative

stress and MPTP-induced DAergic cell death in vitro and

in vivo (L’Episcopo et al. 2011a, b). Additional studies are

necessary to address the significance and implications of

Wnt/b-catenin signaling disruption in conditions associated

with exacerbated inflammation, neurodegeneration, and

impaired neurogenesis such as Parkinson’s disease.

Last but not least, several studies lately have focused on

the discovery of supplements that can enhance the amount
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of the daily antioxidant intake. Astaxanthin (3,30-dihy-

droxy-b,b-carotene-4,40-dioneastaxanthin; ATX), a non-

provitamin A carotenoid found in the red pigment of

shrimp, crab, salmon, and asteroidean, seems to have

neuroprotective effects in a dose-dependent manner fol-

lowing MPP?-induced oxidative damage (Ye et al. 2013),

thus providing a promising candidate for chemoprevention

and chemotherapy strategies for Parkinson’s disease. Na-

guib (2000) using rats fed on natural ATX found that ATX

crossed the blood–brain barrier in mammals, extending its

antioxidant benefits into the brain. As a result, a number of

in vitro and in vivo studies of ATX have demonstrated its

antioxidant and neuroprotective effects, with the antioxi-

dant properties of ATX being 100–1,000 times more

effective than vitamin E (Liu et al. 2009). ATX, as an

exogenous environmental agent, may diminish the Par-

kinson’s disease phenotype and offer a valuable curative

tool for the treatment for other progressive neurodegener-

ative diseases as well.

Conclusion and Future Perspectives

Parkinson’s disease is a multivariate disorder caused by

genetic background and environmental factors. Many

studies try to tackle different aspects of the disease in order

to elucidate the mechanisms underpinning its pathogenesis.

Signaling networks comprised of multiple layers of inter-

acting proteins are an imperative key in this direction.

Activation of most cell signaling circuits is modulated by

feedback control, and disease conditions are often caused

by the loss of this control. A comprehensive understanding

of the complexities of signaling networks is required to

design effective therapies without inducing off-target

effects. In neurodegenerative disorders, the temporal and

spatial de-organization of signaling complexes can cause a

system failure ending in neuronal loss. Protein aggregation

and organelle malfunction are hallmarks of many late-onset

neurodegenerative diseases. Mitochondrial damage and

dysfunction are indeed linked to neurodegeneration in a

gamut of animal models.

Many therapeutic regimens have been proposed to

reduce the symptoms of Parkinson’s disease. Clearance of

misfolded proteins and damaged organelles may be con-

sidered an effective recovery strategy for stressed neuronal

cells. In addition, the genetic ‘‘repair’’ of mutated proteins

that participate in this process may lead to positive results.

The ex vivo replacement of damaged neurons by endoge-

nous stem cells of SVZ is another therapeutic strategy.

Lately, antioxidants have been considered as agents of

great importance toward the prevention of oxidative stress

in diverse diseases such as cancer or neurodegenerative

disorders.

In summary, this review focused on the complex inter-

action and complementary interrelationship between oxi-

dative stress and Parkinson’s disease. To this end, the

possible effect of the Parkinson’s disease-related gene

PINK1 in the oxidative stress pathogenic pathway and its

role against oxidative stress by preventing mitophagy,

apoptosis, or the microglial inflammatory response were

discussed. The effect of environmental toxins, such as

MPTP, in nigrostriatal DAergic degeneration strengthens

the notion that oxidative stress is central to the pathways

leading to the development of Parkinson’s disease.
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