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Abstract Alzheimer’s disease (AD) is characterized neu-

ropathologically by the deposition of different forms of

amyloid b-protein (Ab) including variable amounts of sol-

uble species that correlate with severity of dementia. The

extent of synaptic loss in the brain provides the best mor-

phological correlate of cognitive impairment in clinical AD.

Animal research on the pathophysiology of AD has therefore

focussed on how soluble Ab disrupts synaptic mechanisms

in vulnerable brain regions such as the hippocampus. Syn-

apic plasticity in the form of persistent activity-dependent

increases or decreases in synaptic strength provide a

neurophysiological substrate for hippocampal-dependent

learning and memory. Acute treatment with human-derived

or chemically prepared soluble Ab that contains certain

oligomeric assemblies, potently and selectively disrupts

synaptic plasticity causing inhibition of long-term potenti-

ation (LTP) and enhancement of long-term depression

(LTD) of glutamatergic transmission. Over time these and

related actions of Ab have been implicated in reducing

synaptic integrity. This review addresses the involvement of

neurotransmitter intercellular signaling in mediating or

modulating the synaptic plasticity disrupting actions of

soluble Ab, with particular emphasis on the different roles of

glutamatergic and cholinergic mechanisms. There is grow-

ing evidence to support the view that NMDA and possibly

nicotinic receptors are critically involved in mediating the

disruptive effect of Ab and that targeting muscarinic

receptors can indirectly modulate Ab’s actions. Such studies

should help inform ongoing and future clinical trials of drugs

acting through the glutamatergic and cholinergic systems.
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Introduction

In this review, we restrict our discussions largely to the

evaluating recent research investigating the effects of

amyloid-b protein (Ab) on excitatory synaptic transmission

and plasticity of that transmission in the brain. We focus

particularly on neurotransmitter intercellular signaling

mechanisms that have already been implicated in providing

potential therapeutic effects in patients with Alzheimer’s

disease (AD). Previous reviews have covered a large lit-

erature on other mechanisms including intracellular and

pro-inflammatory pathways (Turner et al. 2003; Lynch

2004; Pena et al. 2006; Rowan et al. 2007; Arendt, 2009).

Amyloid Cascade Hypotheses—from Fibrils

to Oligomers and from Neurodegeneration

to Synaptic Failure

The amyloid cascade hypothesis of AD, as initially for-

mulated, proposed that the hallmark progressive deposition

of insoluble fibrillar Ab in plaques triggered neurodegen-

eration which in turn caused the insidious escalation of

debilitating symptoms, including progression through the

different stages of clinical dementia. Support for this pro-

posal came from the discovery that application of fibril-

containing Ab to cultured neurons was highly toxic in vitro
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(Lorenzo and Yankner 1996) and that intracerebral injec-

tion of fibril-containing Ab caused a delayed neurodegen-

eration-associated disruption of performance of cognitive

tasks in animals (McDonald et al. 1994; Nitta et al. 1994;

Maurice et al. 1996; Stephan et al. 2001). However, the

relatively poor correlation between the severity of clinical

dementia at the time of death of patients with AD and

either the magnitude of fibrillar Ab load or the extent of

neuron loss in the brain provided a major challenge for the

original amyloid cascade hypothesis (Roth et al. 1966;

Terry, 1996). The hypothesis was substantially revised with

the discovery of much stronger correlations between cog-

nitive status and (i) synaptic density rather than neuron loss

and (ii) the levels of soluble rather than fibrillar Ab (Terry

1996; Lue et al. 1999; McLean et al. 1999; Wang et al.

1999). Strong support for a revised amyloid hypothesis

incorporating these findings came from reports that certain

forms of soluble Ab can trigger synaptic pruning in

cultured neurons and brain slices in vitro (Roselli et al.

2005; Shankar et al. 2007) and cause cognitive impairment

in the absence of neurodegeneration in animals (Cleary

et al. 2005; Lesne et al. 2006; Haass and Selkoe 2007).

Current research investigating the relative importance of

the various soluble Ab assembly states in causing cognitive

deficits has emphasized the importance of both low-n

oligomers (such as dimers and trimers) and larger oligo-

mers (including some that may form globular structures

independent of Ab aggregation into fibrils).

Vulnerable Networks—Entorhinal

Cortex/Hippocampal Pathways

As AD progresses, extensive disruption of connectivity

throughout the cortex and many subcortical areas occurs;

two of the earliest areas affected are the hippocampus and

entorhinal cortex which form a network that is essential for

the normal function of episodic memory, thus providing an

explanation for why memory problems which rely on this

network are a very early and core symptom of AD. This

mnemonic function is thought to require a continuous

comparison of incoming integrated perceptual content via

the entorhinal cortex with information and related predic-

tive schemata initially stored/generated in the hippo-

campus. The network’s circuitry is mainly comprised of

glutamatergic neurons and synapses, which are under tight

control from intrinsic GABA-ergic inhibitory interneurons

and external inputs including cholinergic neurons. Exten-

sive deposition of Ab is associated with the disruption of

glutamatergic synapses in this network at an early stage of

AD (Reitz et al. 2009). Such marked and early deposition

of Ab may be at least partly the result of the relatively high

excitatory drive through the network, since Ab aggregation

in the brain has been found to driven by activity at these

synapses (Deshpande et al. 2009).

Glutamatergic Mechanisms—Effects of Ab

Given the initial emphasis of the amyloid cascade hypothesis

on neurodegeneration, much early research focused on the

ability of Ab to increase excitotoxicity mediated through

glutamate receptors, especially N-methyl-D-aspartate recep-

tors (NMDARs) (Greenamyre and Young 1989; Koh et al.

1990; Lawlor and Davis 1992; Mattson et al. 1992; Hynd

et al. 2004). Consistent with these reports, relatively low

doses of Ab were found to exacerbate delayed cognitive

impairment caused by activation of NMDARs (Dornan et al.

1993; Nakamura et al. 2006). Possible mechanisms for the

Ab-mediated enhanced excitotoxicity include the ability of

Ab to reduce glutamate uptake (Harris et al. 1995; Keller

et al. 1997; Harkany et al. 2000; Fernandez-Tome et al.

2004; Matos et al. 2008), or to increase glutamate release

(Arias et al. 1995; Noda et al. 1999; Bobich et al. 2004; Chin

et al. 2007; Kabogo et al. 2008; Puzzo et al. 2008).

The important role of glutamatergic mechanisms and in

particular NMDARs in causing clinical dementia in AD

received validation when the low affinity open channel

NMDA receptor antagonist memantine (Lipton 2007;

Parsons et al. 2007) was licenced for the treatment of

patients. Combined with the realization that mechanisms

other than neurodegeneration contribute significantly to the

cognitive symptoms of AD, glutamatergic transmission and

plasticity of that transmission, rather than solely excito-

toxicity, have become a major focus of interest.

Plasticity of Glutamatergic Synaptic Transmission—

Disruption of Long-term Potentiation and Long-term

Depression by Ab

Synaptic plasticity mechanisms, including those underlying

long-term potentiation (LTP) and long-term depression

(LTD) of glutamatergic transmission, provide a neuronal

substrate for learning and memory (Morris et al. 2003) and

are highly vulnerable to a relatively rapid disruption by

soluble Ab species derived either by chemical synthesis

(Cullen et al. 1997; Lambert et al. 1998; Kim et al. 2001;

Klyubin et al. 2004; Fig. 1) or from cells that naturally

secrete them after the cleavage of amyloid precursor pro-

tein by b- and c-secretases (Walsh et al. 2002). Recent

research has lent support for the key role of oligomeric

assembly states, and Ab dimers are believed to be the

minimum size that interfere with synaptic plasticity. Thus,

synthetic Ab dimers prepared by covalent linkage and size
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exclusion chromatography are extremely potent both

in vivo and in vitro whereas even relatively high concen-

trations of Ab monomers are inactive (Hu et al. 2008;

Shankar et al. 2008). Some larger soluble oligomers are

also disruptive. Thus, a synthetic 60 kDa Ab species that

forms globular structures can inhibit LTP in hippocampal

slices (Barghorn et al. 2005), but not all conformations of

Ab oligomers are active in this model (Ciccotosto et al.

2009; Harmeier et al. 2009). Importantly, human ex vivo

samples of cerebrospinal fluid that contained Ab oligomers

Fig. 1 Dose-dependent effects of Ab on functioning of CA1

glutamatergic synapses in the rat hippocampus in vivo. Anesthetized

adult male Wistar rats had a cannula implanted in the lateral cerebral

ventricle to enable injection of Ab and stimulating and recording wire

electrodes implanted in the dorsal hippocampus to enable recording of

AMPAR-mediated excitatory glutamatergic transmission. In vehicle-

injected controls (left hand panels) high frequency conditioning

stimulation (arrow, 200 Hz) triggered long-term potentiation (LTP)

of synaptic transmission (middle graph) whereas low frequency (bar,

3 Hz) conditioning stimulation failed to induce significant plasticity

(bottom graph). In Ab-treated animals (right hand panels), a high

dose (320 pmol in 5 ll, squares), but not a low dose (80 pmol in 5 ll,

circles), depresses baseline synaptic transmission (top graphs)

whereas low doses selectively modulate synaptic plasticity of this

transmission, inhibiting the induction of LTP by 200 Hz conditioning

stimulation (80 pmol in 5 ll, middle graph) or enhancing the

induction of long-term depression (LTD) by 3 Hz conditioning

stimulation (1 pmol in 5 ll, bottom graph). Ab (right hand panels) or

vehicle (left hand panels) was injected intracerebroventricularly

(i.c.v.) at the time indicated by the asterisk. Values are the

mean ± SEM baseline field excitatory postsynaptic potential (EPSP)

(partly based on data in Kim et al. 2001; Hu et al. 2008)
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but not monomers, potently inhibited LTP (Klyubin et al.

2008). Moreover, post mortem aqueous solutions of cere-

bral cortex from patients with AD that contained Ab
dimers disrupted LTP and learning (Shankar et al. 2008).

Amyloid b-Protein fragments also facilitate low fre-

quency stimulation-induced LTD over a similar concen-

tration range to that inhibiting LTP (Fig. 1). Thus, acute

exposure to synthetic Ab42 potently enabled the induction

of LTD in vivo which was prevented by block of NMDA

receptors (Kim et al. 2001; Cheng et al. 2009). In close

similarity, cell-derived and human brain-derived Ab that

contained low-n oligomers but not monomers enhanced the

induction of an LTD by a sub-threshold low frequency

stimulation protocol in vitro (Shankar et al. 2008; Li et al.

2009). However, this Ab-facilitated LTD was prevented by

certain metabotropic glutamate receptor (mGluR) antago-

nists which can also prevent the inhibition of LTP by Ab
(Wang et al. 2004). Little is known regarding the specific

mechanisms involved, but mGluRs have profound effects in

regulating many forms of synaptic plasticity (Anwyl 1999;

Parsons et al. 2007). Ab was also found to reduce the sensi-

tivity of a supra-threshold NMDA-dependent LTD to

NMDAR antagonists (Li et al. 2009), an effect that was

abrogated by a glutamate scavenger system and associated

with an Ab-mediated inhibition of neuronal glutamate uptake.

The extremely high potency of Ab oligomers in dis-

rupting synaptic plasticity has led to extensive studies into

the cellular mechanisms (Pena et al. 2006; Rowan et al.

2007), including putative receptor sites (Verdier and Penke

2004; Wang et al. 2007; Origlia et al. 2008; Yang et al.

2008; Lauren et al. 2009; Yan et al. 2009).

Basal Glutamatergic Transmission

Compared to LTP and LTD, basal glutamatergic trans-

mission through a-amino-3-hydroxy-5-methyl-4-iso-

xazolepropionic acid receptors (AMPARs), the main

receptors mediating fast excitatory postsynaptic potentials

(EPSPs), is relatively resistant to disruption by Ab. Given

the ability of Ab to inhibit glutamate transporters and to

cause the release of glutamate, it is somewhat surprising

that high concentrations of Ab or prolonged times are

required to affect basal AMPAR-mediated EPSPs (Fig. 1),

generally reducing synaptic efficacy, presumably as a result

of AMPAR endocytosis (Cullen et al. 1996; Almeida et al.

2005; Hsieh et al. 2006; Rowan et al. 2007; Gu et al. 2009)

and receptor desensitization (Li et al. 2009). Interestingly,

removal of synaptic AMPARs was reported to require

NMDAR activation and LTD-like signaling mechanisms,

and was found to be necessary and sufficient for

Ab-induced pruning of dendritic spines (Kamenetz et al.

2003; Hsieh et al. 2006).

Role of NMDARs in the Synaptic Actions

of Ab Oligomers

The use of the NMDAR antagonist memantine in the clin-

ical treatment of AD is somewhat paradoxical, since many

forms of learning and related plasticity are dependent on

NMDAR activation. We recently tested the proposal that

memantine may preferentially target disruptive over phys-

iological NMDAR activation (Parsons et al. 2007; Lipton

2007] by comparing its effects on control NMDAR-depen-

dent LTP and on the inhibitory action of Ab on such LTP in

vitro and in vivo (Klyubin et al. 2009). Memantine reduced

the inhibition of LTP induction by Ab both at medial per-

forant pathway synapses in the dentate gyrus and at CA3-to-

CA1 synapses. However, there was a clear overlap between

the concentration range of memantine that inhibited LTP in

the absence of Ab and the range that was protective. This

partial selectivity may be analogous to the protection against

the inhibition of LTP caused by low Mg2?-induced

NMDAR activation afforded by memantine at concentra-

tions that did not significantly affect control LTP (Coan et al.

1989; Frankiewicz et al. 1996; Zajaczkowski et al. 1997;

Zorumski and Izumi 1998). Parsons et al. (2007) have pro-

posed that the relative selectivity of memantine against

inappropriate background activation of NMDARs is due to

its low affinity because it can be rapidly removed from the

channel with strong NMDAR activation, as occurs during

the induction of LTP. Alternatively, or in addition,

memantine may preferentially block extrasynaptic over

synaptic NMDARs (Lipton 2007; Léveillé et al. 2008) or

GluN2C and -2D over GluN2A and -2B subunit-containing

NMDARs (Wrighton et al. 2008; Kotermanski and Johnson

2009); the underlying assumption being that the receptors

targeted by memantine are more involved in mediating

pathological over physiological functions. Indeed, extrasy-

naptic NMDARs may preferentially mediate toxic effects of

glutamate (Soriano and Hardingham 1997; Lau and Zukin

2007; Zhang et al. 2007).

The partial protective action of memantine indicates

that the inhibition of LTP by Ab is NMDAR-dependent

(Fig. 2), as is Ab-induced Ca2? influx into neurons (Kelly

and Ferreira 2006; De Felice et al. 2007; Domingues et al.

2007). Ab oligomers may bind to a specific site on or

adjacent to the NMDAR (Cowburn et al. 1997; De Felice

et al. 2007; Lacor et al. 2007). Consistent with an agonist-

like action of Ab, Ab can selectively increase NMDA-

evoked neuronal firing in vivo (Molnar et al. 2004;

Szegedi et al. 2005) and rapidly selectively potentiate

NMDAR-mediated synaptic currents (Wu et al. 1995a).

However at the majority of pathways, Ab causes no

marked change or a reduction in NMDAR-mediated

synaptic transmission, the latter being at least partly

explained by removal of NMDARs from the synapse
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(Chen et al. 2002; Raymond et al. 2003; Snyder et al.

2005; Dewachter et al. 2009; Li et al. 2009). Interestingly,

the GluN2B subunit has been implicated in Ab’s effects

on NMDARs and in regulating the localization and

intracellular actions of Ab oligomers (Roselli et al. 2005;

Abbott et al. 2008; Deshpande et al. 2009; Li et al. 2009).

In contrast, the GluN2A subunit may have a more

important role in mediating Ab-induced Ca2? influx

(Domingues et al. 2007).

Some of the strongest support for the hypothesis that Ab
disrupts synaptic plasticity by increasing activation of

NMDARs relies on the partial reduction of the Ab-medi-

ated inhibition of LTP by memantine (Klyubin et al. 2009).

Since memantine is not a pure NMDA receptor antagonist

and because memantine reduces control LTP over a similar

concentration range, caution in such an interpretation is

warranted. We have commenced studies that assess the

effects of more selective NMDAR antagonists on LTP

induction in the absence and presence of Ab. Our new data

are consistent with a role of NMDARs in mediating the

disruptive effects of Ab.

Cholinergic Mechanisms

Decline, disruption, or alterations of cholinergic mecha-

nisms have been implicated in a ‘‘cholinergic hypothesis’’

of AD (Court et al. 2001).

A major neuropathological feature of most patients with

clinical AD is the loss of cholinergic neurons in the basal

forebrain (Schliebs and Arendt 2006; Geula et al. 2008),

and several groups have reported a selective loss of dif-

ferent subtypes of acetylcholine receptors (AChRs) in AD

brains (Wevers et al. 2000; Teaktong et al. 2004). By

modulating activity-dependent events, AChRs participate

in fundamental aspects of synaptic plasticity (Albuquerque

et al. 1997; Ge and Dani 2005). The loss of cholinergic

projections and decline of AChRs during AD may disrupt

normal cholinergic mechanisms that contribute to gluta-

matergic transmission and synaptic plasticity. Overall,

these mechanisms may thus contribute to the cognitive

decline observed during the progression of AD. Support for

such a view comes from the approval of cholinesterase

inhibitors in the treatment of AD and the improvement of

cognition in AD patients who receive these drugs.

Cholinergic deficits produced in AD as well as in various

animal AD models may be, at least, partly attributable to the

suppression of cholinergic functions by Ab peptides before

cholinergic neuron loss in relevant brain areas (Blusztajn

and Berse 2000). Ab peptides negatively alter the cholin-

ergic system at multiple sites, including ACh synthesis,

acetylcholine release, and at the receptor level (Auld et al.

2002). Given the cognitive effects of cholinergic interven-

tions, particularly, clinically used cholinesterase inhibitors,

in animal models and humans, it is interesting to know if the

inhibition of the induction of LTP by Ab is mediated through

disruption of cholinergic transmission. If so, modulation of

either nicotinic (nAChRs) or muscarinic (mAChRs) recep-

tors may restore LTP.

Role of nAChRs

The hippocampus is an important target for nicotinic

influences over memory (Bancroft and Levin 2000; Kenney

and Gould 2008). For example, nicotinic antagonists

applied within the hippocampus impair memory perfor-

mance (Levin et al. 2002) and memory deficits produced

by lesions of cholinergic projections to the hippocampus

can be reversed by nicotine (Yamazaki et al. 2002). These

findings are consistent with dense nAChR expression in the

hippocampus (Bourin et al. 2003) and with rich cholinergic

innervation arising mainly from the medial septum and

diagonal band (Woolf 1991).

Nicotine has been postulated to be a possible treatment

for AD, improving cognition in humans (Newhouse et al.

Fig. 2 Schematic outline of putative targets of Ab-mediated phys-

iological and disruptive actions on synaptic plasticity and hence

synaptic integrity. Pathogenic processing of amyloid precursor

protein (APP) and Ab lead to the accumulation of Ab oligomers

which inappropriately enhance activation of certain NMDA receptors

(NMDAR), possibly caused by increased extrasynaptic glutamate

concentration or a close association between Ab oligomers and

NMDARs. Such actions inhibit LTP induction. Putatively, physio-

logical processing of APP at synapses may release an unknown

assembly state of Ab to activate nicotinic acetylcholine receptors

(nAChR) and thereby increase synaptic glutamate release or enhance

activation of synaptic NMDARs. Such actions may lower the

threshold for the induction of NMDAR-dependent LTP. There is

likely to be overlap and cross-talk between these two systems,

depending on Ab concentration and glial and interneuron engagement

in addition to direct neuronal targets. LTP-like mechanisms are

engaged in memory processing and may, in combination with other

forms of plasticity, help maintain synaptic integrity

Neuromol Med (2010) 12:13–26 17



2004) and attenuating Ab-induced amnesia in mice

(Maurice et al. 1996). Nicotine enhancement of LTP in vitro

and in vivo was previously observed (Fujii et al. 1999;

Ji et al. 2001; Mann and Greenfield 2003) and shown to be

mediated via a7nAChRs (Matsuyama et al. 2000). We

(Welsby et al. 2007) recently studied the effects of nicotine

on Ab-mediated inhibition of LTP. The data suggest that the

effect of Ab could be independent of a direct interaction

between Ab and nicotinic receptors, with Ab inhibiting

control high frequency stimulation (HFS)-induced LTP but

not the nicotine-enhanced LTP. Evidence for a lack of an

interaction between Ab and nicotinic receptors was also

supported by findings in which Ab42 inhibition of LTP

was not prevented by the selective a7nAChR antagonist

methyllycaconitine (Wang et al. 2004). It was, therefore,

postulated that the inhibition of HFS-LTP, but not the nic-

otine-enhanced LTP by Ab, is due to the two forms of LTP

having different underlying induction mechanisms. This is

supported by the protein kinase A dependence of nicotine-

enhanced LTP but not of HFS-LTP, even though they are

both NMDAR-dependent (Welsby et al. 2007). Whereas

nicotine-enhanced LTP was dependent on mGluRs and

ryanodine receptor-sensitive intracellular calcium stores,

but for control LTP, this did not seem to be the case

(Welsby et al. 2006). Overall, both acute and chronic nic-

otine treatments were found to enhance LTP via a7nAChRs

consistent with previous research (Matsuyama et al. 2000).

Since such enhancement is not blocked by Ab, these find-

ings support the view that nicotinic agents activating

selectively a7nAChR are promising cognitive enhancers for

AD. Consistent with potential beneficial effect of nicotine,

Srivareerat et al. (2009b) reported recently that 6 weeks of

nicotine treatment prevented the Ab-induced inhibition of

basal synaptic transmission and LTP in the hippocampus

and Ab-induced impairment of learning and short-term

memory. Interestingly, chronic nicotine also reduced the

levels of Ab40 and b-amyloid precursor protein (APP)

converting enzyme (BACE) peptides in the CA1 area and

prevented an Ab-induced reduction of a7- and a4-nAChRs.

The discovery that Ab42 binds to a7 subunit of nAChRs

with high affinity suggested the potential for a role of

nAChRs in AD (Oddo and LaFerla 2006). This prospect

was supported by the finding that a7nAChRs were found in

plaques (Wang et al. 2000), and a7nAChRs positively

correlated with neurons that accumulated Ab and hyper-

phosphorylated tau in AD brain tissue (Wevers et al. 1999).

In a triple transgenic mouse model of AD, which expresses

aspects of AD neuropathology and an age-related decline

in LTP and cognition, there was a loss of a7nAChRs (Oddo

and LaFerla, 2006).

Intriguingly, Ab has been observed to act as an agonist of

a7nAChR (Fodero et al. 2004) mediating the activation of

the ERK2MAP kinase signaling cascade (Dineley et al.

2001; Dineley et al. 2002), while other groups have reported

inhibitory actions of Ab peptide on a7nAChR (Pettit et al.

2001; Grassi et al. 2003; Lee and Wang 2003). The different

findings may be due to concentration-dependent actions of

Ab, low concentration may activate and higher concentra-

tions desensitize a7nAChR (Dineley et al. 2002) and inter-

acting with other nAChRs subtypes (Oddo and LaFerla

2006). Certain oligomers of Ab may not bind nAChRs with

high affinity (Lauren et al. 2009).

Evidence against a direct interaction of Ab with

a7nAChRs mediating the inhibition of LTP by Ab was the

finding that Ab12-28, which binds a7nAChRs with high

affinity, did not inhibit an a7nAChR-dependent LTP in vivo

(Freir and Herron 2003). However, inhibition of an

a7nAChR-dependent LTP in hippocampal slices from ani-

mals that had received a chronic infusion of Ab40 was pre-

vented by bath application of a selective agonist for a7nAChRs

[3-(2,4-dimethoxybenzylidene)-anabaseine] (DMXB) (Chen

et al. 2006). Furthermore, a novel selective a7nAChR-partial

agonist which rapidly penetrates into the brain (SSR180711)

was found to increase acetylcholine release, glutamatergic

neurotransmission, and LTP in rat hippocampus in a dose-

dependent manner (Biton et al. 2007).

In apparent contrast to these studies, recent data suggest

that blocking a7nAChRs with an antagonist could lessen

some of the features of Ab-mediated deleterious effects

(Martin et al. 2004; Mousavi and Hellstrom-Lindahl 2009).

This proposal of blocking a7nAChR in a disease charac-

terized for cognitive decline is controversial in view of the

evidence of cognitive improvement using a7nAChR ago-

nists (Tietje et al. 2008). However, some effects of

a7nAChR agonists can be mimicked by selective a7nAChR

antagonists (Ferchmin et al. 2003; Hu et al. 2007). The fast

desensitization of a7nAChRs after its activation (Gay et al.

2008) makes it difficult to distinguish between agonistic and

antagonistic effects of an a7nAChR targeted drug. In fact, it

is not clear whether the cognitive enhancing effects are the

result of receptor activation per se or activation-induced

receptor desensitization. Somewhat similarly, Dziewcz-

apolski et al. (2009) suggested that interrupting a7nAChR

function could be beneficial in the treatment of AD. Using a

transgenic mouse model of AD overexpressing a mutated

form of the human amyloid precursor protein (APP) and

lacking the a7nAChR gene (APPa7KO), they have shown

that, despite the presence of high amounts of Ab, deleting

the a7nAChR subunit in the mouse model of AD lead to a

protection from the dysfunction of synapses, and learning

and memory behavior. Specifically, deleting the a7nAChR

subunit preserved the capacity to elicit LTP otherwise

deficient in the APP mice.

A link between Ab-mediated activation of a7nAChR-

induced Ca2? influx and endocytosis of NMDARs has

been demonstrated in the cortex, thus bringing together the

18 Neuromol Med (2010) 12:13–26



strands of evidence implicating nAChRs and NMDARs in

synaptic dysfunction (Snyder et al. 2005).

Recently, Wu et al. (2008) investigated a possible role of

a4b2nAChRs in mediating the impairment of LTP by vari-

ous forms of Ab. They reported that intracerebroventricular

injection of Ab40, Ab25–35, or Ab31–35 significantly

suppressed HFS-induced LTP. Similarly, epibatidine, a

specific agonist of a4b2nAChRs, dose dependently sup-

pressed the induction of LTP. Whereas dihydro-beta-ery-

throidine, a selective antagonist against a4b2 subtype of

nAChRs, showed no effect on the induction of LTP, it

significantly reversed Ab31–35-induced LTP impairment,

indicating that the a4b2 subtype of nAChRs is required for

the suppressive action of Ab on hippocampal LTP in vivo.

Given the cognitive enhancing effects of cholinesterase

inhibitors, their ability to enhance LTP (discussed in Rowan

et al. 2003), and the possibility that their enhancing effect

may be mediated through nAChRs (Welsby et al. 2009), the

role of agonistic and desensitizing actions at these receptors

in mediating their facilitatory effects warrants investigation.

Moreover, if nAChR-dependent mechanisms are engaged,

repeated dosing with cholinesterase inhibitors may exert a

similar facilitatory effect to repeated treatment with nicotine

(Welsby et al. 2006). If and how mAChRs affect the facil-

itatory action of cholinesterase inhibitors also is of consid-

erable interest.

Role of mAChRs

Ab also exerts effects on the cholinergic system by inter-

acting with G-protein-coupled mAChRs. It is generally

believed that M2 receptors, most of which are located on

presynaptic cholinergic terminals, are reduced in the brains

of individuals with AD (Nordberg et al. 1992). The density

of postsynaptic M1 receptors remains unaltered, but there

is some evidence for disruption of the coupling between the

receptors, their G-proteins and second messengers (Warp-

man et al. 1993).

Selective activation of mAChRs may reduce symptoms

and cognitive impairments in individuals suffering from

AD. For example, the M1/M4-preferring mAChR agonist

xanomeline produced a robust reduction in cognitive defi-

cits and behavioral disturbances in individuals with AD

(Bodick et al. 1997). Unfortunately, the clinical effects of

xanomeline and other muscarinic agents are associated

with adverse side effects attributable to non-specific acti-

vation of peripheral M2 and M3 mAChRs (Bymaster et al.

1998). An alternate approach to orthosteric muscarinic

agonists is targeting allosteric sites to more selectively

activate the receptor by actions at a site removed from

acetylcholine binding site. A novel, highly selective allo-

steric agonist of the M1 subtype (TBPB) was reported

to potentiate the NMDAR-mediated currents in hippocampal

pyramidal cells (Jones et al. 2008). Activation of M1

mAChRs can enhance NMDAR-dependent LTP (Shinoe

et al. 2005).

In contrast, in the medial septum (MS), which participates

in memory and learning processes via its cholinergic and

GABAergic projections to the hippocampus, oligomeric

Ab-mediated depression of excitatory synaptic transmission

was dependent on activation of mAChRs and voltage-

dependent Ca2? channels. Thus, perfusion of MS slices with

Ab40 reduced EPSPs and this effect was blocked by calci-

cludine (a selective L-type Ca2? channel antagonist) and

also by pirenzepine, a relatively selective M1-receptor

antagonist (Santos-Torres et al. 2007).

Interestingly, transgenic mice overexpressing mutant

APP and presenilin-1 display synaptic dysfunction which

was associated with a reduction in the ability of endogenous

mAChR activation to reduce basal glutamatergic transmis-

sion in the CA1 area of the hippocampus (Goto et al. 2008).

Both choline acetyltransferase activity and muscarinic

receptor binding is also reduced in these mice, explaining

the impairment of mAChR-mediated effects (Machova et al.

2008). These results indicate that cholinergic modulation of

glutamatergic transmission is already impaired at the onset

of the formation of Ab deposits, and that muscarinic receptor

dysfunction is one of the causes of functional impairment.

Putative Physiological Role of Ab in Synaptic Plasticity

Despite well-established deleterious effects of certain Ab
species, there is growing evidence that APP and its frag-

ments, including Ab itself, may play a role in normal neu-

ronal functioning (Bishop and Robinson 2004; Senechal

et al. 2006; Wasling et al. 2009). Indeed, APP-deficient mice

show compromised neuronal function, reduction in synaptic

markers and deficits in learning and memory as well as

synaptic plasticity, although there is some lack of agreement

as to the relative importance of different APP products and

the role of compensatory changes (Muller et al. 1994; Zheng

et al. 1995; Dawson et al. 1999; Phinney et al. 1999;

Seabrook et al. 1999; Ring et al. 2007; Senechal et al. 2008).

Somewhat similar considerations arise in the case of BACE

knockout mice (Ma et al. 2007; Wang et al. 2008a).

Remarkably, endogenous Ab has been implicated even in

neuronal survival in cultured neurons (Plant et al., 2003). Of

particular relevance to synaptic mechanisms, Kamenetz

et al. (2003) suggested that Ab may serve as a normal neg-

ative feedback mechanism in the regulation of synaptic

activity. Since several potential therapeutic approaches of

AD treatment are designed to target APP, it is important to

understand the physiological functions of the different APP

breakdown products in synaptic plasticity.
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Ab itself may mediate mechanisms of synaptic plasticity

under normal physiological conditions (Fig. 2). Firstly,

studies of the direct effect of relatively low concentrations of

Ab have found that exogenous application of Ab40 or Ab42

can enhance hippocampal HFS-induced LTP in vitro (Wu

et al. 1995b; Puzzo et al. 2008). Puzzo et al. (2008) provided

evidence that the facilitation of LTP was mediated through a

presynaptic enhancement of glutamate release. Secondly, as

outlined above, similar low concentrations of exogenously

added Ab fragments can facilitate low frequency stimula-

tion-induced LTD in vitro and in vivo (Kim et al. 2001;

Shankar et al. 2008; Cheng et al. 2009; Li et al. 2009).

Thirdly, in unpublished work we have found that intracer-

ebroventricular administration of the anti-Ab antibody 4G8

can inhibit HFS-induced LTP in vivo, although in this case,

we cannot rule out the possibility that 4G8-mediated neu-

tralization sAPPa is responsible for the failure to induce

LTP. Indeed, sAPPa is another candidate for a physiological

role in the regulation of synaptic plasticity. Exogenous

application of sAPPa modulated LTD and enhanced LTP

in vitro and in vivo (Ishida et al. 1997; Taylor et al. 2008).

The mechanisms underlying opposite effects of Ab on

synaptic plasticity are still poorly understood. One possible

scenario is that different Ab species act via different

receptors and as a result produce different synaptic effects.

Ramsden et al. (2001) found that the Ab-induced increases

in K? currents, in cultured neurons, depend on Ab aggre-

gation state. In addition, it has been shown that protofibrils

may activate neurons differently than fibrils (Ye et al.

2004). Moreover, an in vitro model of Ab toxicity dem-

onstrated that integrin-mediated polymerization of Ab on

neurons caused toxicity (Wright et al. 2007). Blocking the

same (aV) integrin subunit can prevent Ab-mediated

inhibition of LTP (Wang et al. 2008b).

Another proposed explanation of the opposite synaptic

effects of Ab is that exposure to excessive levels of Ab can

turn Ab-mediated physiological regulation to pathology

(Kim and Tsai 2009). The existence of several parallels

between Ab-induced impairment of and apparent physio-

logical regulation of synaptic plasticity supports this idea.

For example, activation of NMDA receptors are implicated

in inhibition of LTP (Chen et al. 2002; Wang et al. 2004;

Hu et al. 2008; Klyubin et al. 2009) and the facilitation of

LTD induction (Kim et al. 2001) by Ab. Similarly, the

a7nAChR has been shown to be involved in facilitation of

LTP by Ab in low concentration (Puzzo et al. 2008) and

inhibition of LTP in transgenic mice overexpressing human

APP (Dziewczapolski et al. 2009).

Finally, even prolonged uncontrolled augmentation of

LTP by low concentrations of Ab may lead to saturation of

synaptic processes and to negative effects on learning and

memory. Interestingly, increased LTP was reported in the

hippocampus of mice overexpressing some forms of mutant

human APP (Jolas et al. 2002), even though there is memory

impairment in the same mutant mice (Janus et al. 2000;

Chishti et al. 2001).

Ab-Associated Network-level Disruption of Function

Although transgenic APP models do not easily allow the

isolation of a specific action of Ab recent research has

provided a tantalizing glimpse of how Ab may cause

widespread neuronal and glial dysfunction in these models.

In the hippocampal network, the activity pattern of pyra-

midal neurons preferentially tuned to fire depending on the

spatial location of the animal in the recording arena,

so-called ‘‘place-cells’’, is changed dramatically such that

in older animals with extensive amyloid plaques there is a

degradation of the neuronal representation of the environ-

ment (Cacucci et al. 2008). In the cortex, the activity of

neuronal and glial cells changes in relation to their distance

from plaques in vivo, prompting the suggestion that mobile

Ab oligomers or pro-inflammatory and oxidative stress

mediators may be responsible. Thus, neurons near plaques

tend to be hyperactive whereas those neurons further away

tend to have reduced activity, as measured by Ca2?

imaging (Busche et al. 2008). Unfortunately it was not

possible to distinguish between the activity of excitatory

and inhibitory neurons, although the authors provided

evidence that the increased neuronal activity may be

caused by increased glutamatergic drive following reduced

synaptic inhibition from GABAergic inputs, rather than

being due to increased intrinsic excitability. These data

indicate that Ab may not trigger a uniform reduction of

synaptic activity in the cortex. Intriguingly, intercellular

waves of Ca2? are seen to spread across groups of astro-

cytes over relatively long distances apparently independent

of neuronal activity, often starting near plaques, but with

approximately a quarter of astrocytes showing intrinsic

hyperactivity (Kuchibhotla et al. 2009). Such findings

emphasise the importance of examining functional changes

in neuronal and glial cells together.

Conclusion

Future studies need to directly assess and evaluate the role

of adaptive and maladaptive changes at the intercellular

level in mediating and modulating Ab-induced modifica-

tion of synaptic function and plasticity with a view to

integrating apparently conflicting findings (Small 2008;

Savioz et al. 2009). Research that examines how environ-

mental and systemic factors such as stress affect the

threshold and direction of the effects of Ab on synaptic

plasticity is only beginning (Kang et al. 2007; Li et al.
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2007; Srivareerat et al. 2009a) and should advance our

understanding of clinically important variables.

Overall (Fig. 2), current data support the view that

certain NMDARs are critically involved in mediating the

disruptive effect of Ab oligomers on synaptic plasticity.

Whether or not selective NMDAR antagonists are as, or

more, protective than memantine warrants thorough

investigation. The role of nicotinic and particularly mus-

carinic receptors may be more indirect, mediating physio-

logical antagonism of the effects of Ab. How these receptor

subtypes contribute to the facilitatory effects of cholines-

terase inhibitors on synaptic plasticity, especially the role

of receptor desensitization, needs to be assessed as a pri-

ority. Given the interplay between APP/Ab processing and

specific transmitter receptor subtypes, hopefully, it will be

possible to combine disease modifying and symptomatic

treatment aspects of these approaches in future therapies.
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