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Abstract
Autoimmune diseases (AIDs) are complex in etiology and diverse in classification but clinically show similar symptoms 
such as joint pain and skin problems. As a result, the diagnosis is challenging, and usually, only broad treatments can be 
available. Consequently, the clinical responses in patients with different types of AIDs are unsatisfactory. Therefore, it is 
necessary to conduct more research to figure out the pathogenesis and therapeutic targets of AIDs. This requires research 
technologies with strong extraction and prediction capabilities. Single-cell sequencing technology analyses the genomic, 
epigenomic, or transcriptomic information at the single-cell level. It can define different cell types and states in greater 
detail, further revealing the molecular mechanisms that drive disease progression. These advantages enable cell biology 
research to achieve an unprecedented resolution and scale, bringing a whole new vision to life science research. In recent 
years, single-cell technology especially single-cell RNA sequencing (scRNA-seq) has been widely used in various disease 
research. In this paper, we present the innovations and applications of single-cell sequencing in the medical field and focus 
on the application contributing to the differential diagnosis and precise treatment of AIDs. Despite some limitations, single-
cell sequencing has a wide range of applications in AIDs. We finally present a prospect for the development of single-cell 
sequencing. These ideas may provide some inspiration for subsequent research.
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Introduction

Single-cell sequencing, including genomics, epigenomics, 
and transcriptomics, is a significant technology for decipher-
ing cellular and molecular mapping at the level of single 
cells, whereas bulk sequencing provides average data [1]. 
The technology enables cell biology research at an unprec-
edentedly enormous resolution and scale. With the robust-
ness and accessibility of the technology increasing annually, 
it has become an important tool for life science research [2]. 
This technique has been used in a wide range of diseases 
including tumors, infections, and AIDs. In the field of oncol-
ogy, it can be used to uncover the heterogeneity of the tumor 
microenvironment and identify subpopulations of immune 
cells that are relevant to immune surveillance and could be 
potential therapeutic targets [3]. With the help of single-
cell sequencing, more breakthroughs have also been made in 
research on infectious diseases. For example, the viral RNA 
responsible for COVID-19 was identified using scRNA-seq 
[4]. What’s more, scRNA-seq has multiple applications 
in studies such as intercellular communication analysis, 
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regulatory single-cell states, and immune cell distribution 
[5]. It is also a powerful tool to promote personalized treat-
ment by defining subpopulations of cells with hidden thera-
peutic targets [6]. The wide range of applications for single-
cell sequencing will be described in more detail later on.

AID is a disease state resulting from the abnormal 
immune response against the body’s own components. The 
immune response against foreign antigens usually ends with 
the clearance of those antigens. However, when the immune 
response occurs to the body’s own cells or tissues, these own 
components are not easily cleared but constantly attacked, 
resulting in the body a disease state. The causes of AIDs are 
complex and variable, ranging from genetic factors involv-
ing mutations in family genes or one’s own genes to exter-
nal environmental factors such as infections, medications, 
and daily diet [7]. The different types and factors determine 
the different clinical symptoms. Common AIDs include 
systemic lupus erythematosus (SLE), rheumatoid arthritis 

(RA), systemic sclerosis (SSc), systemic vasculitis (SV), 
sicca syndrome (SS), inflammatory bowel disease (IBD), 
dermatomyositis (DM) [8], etc. The etiology and clinical 
manifestations are so diverse and complex that they are dif-
ficult to study [9]. Some organs and cells involved in AIDs 
are shown in Fig. 1. Immune cell heterogeneity is one of the 
common features of AIDs, and single-cell sequencing tech-
nology can analyze the cellular genome or transcriptome at 
the level of single cells. It helps eliminate the heterogeneity 
of the immune system by identifying different immune cell 
subpopulations between healthy individuals and patients, 
characterizing the random heterogeneity among them, and 
constructing the developmental trajectory of immune cells 
[10]. Therefore, single-cell sequencing has tremendous 
applications in the field of AIDs. In this paper, we will intro-
duce single-cell sequencing and its application in different 
diseases especially AIDs in detail to provide some help for 
clinical practice and related research.

Fig. 1   Organs and cells involved in AIDs (By Figdraw.)
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Single‑Cell Sequencing

Sequencing technology has been developed through the 
first [11], second [12], and third [13] generations, gradually 
reaching large-scale, high-throughput, and high-resolution. 
Single-cell sequencing is based on the second-generation 
sequencing technology [14]. It is divided into four main 
steps, including single-cell sorting, nucleic acid extraction 
and amplification, high-throughput sequencing, and data 
analysis [15]. Unlike bulk sequencing, which provides an 
aggregate measure of genetic variation across a population 
of cells and cannot accurately represent an individual cell, 
single-cell sequencing is a technique that specifically tar-
gets and sequences the genetic material of a single cell. It 
analyzes the genome or transcriptome from the single-cell 
level; thus, it can accurately measure the gene structure and 
expression of a single cell. Therefore, single-cell sequencing 
can analyze the heterogeneity of cells with similar pheno-
types. The technology allows biological research to reach 
an unprecedented resolution and scale and provides a new 
vision for life science research. Single-cell sequencing has 
undergone significant innovations in recent years. We show 
these innovations combined with the basic procedure of 
single-cell sequencing in Fig. 2, list the key points of each 

technology (Table 1), and summarize the different omics-
based methods (Table 2) at the end of this section.

Single‑Cell Genome Sequencing

Single-cell genome sequencing means the amplification 
and sequencing of genomes at the single-cell level. This 
technology can reveal differences between various cell 
populations and elucidate the process of cell evolution 
[25]. The current mainstream focus of single-cell genome 
sequencing is on copy number variation (CNV). CNV is 
the result of genomic rearrangements and is mainly mani-
fested as sub-microscopic duplications or deletions. Such 
variation is an important submechanism in many human 
diseases and has become a hot topic of research, and sin-
gle-cell sequencing has provided an advanced tool and 
perspective for analyzing CNV [79]. To investigate the 
role of CNV in hepatocellular carcinomas (HCCs), Guo 
et al. performed scDNA-seq and scRNA-seq to clarify the 
evolutionary model followed by CNV accumulation and 
identified CAD, a gene that participated in pyrimidine syn-
thesis, as a biomarker of early recurrence in HCC [80]. In 
addition, single-cell whole genome sequencing (scWGS) 
is also an important technology. Hong et al. demonstrated 
the oncogenic properties of cGAS-STING signaling by 
this technology. Their work provided a strategy for the 

Fig. 2   Single-cell sequencing procedure and new technologies (By Figdraw.)
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Table 2   Methods based on different omics to single-cell sequencing technologies

Technology Method

Name Feature

Single-cell genome sequencing Amplification and sequencing of genomes at the 
single-cell level [25]

SMOOTH-seq [26]
DOP-PCR [27]
MDA [28]
MALBAC [29]
LIANTI [30]
PEP-PCR [31]
dd-scCNV-Seq [32]

Single-cell epigenome sequencing Resolving the mechanisms that regulate transcrip-
tional activities at the epigenetic level [33]

scRRBS [34]
scATAC-seq [35]
scChIC-seq [36]
scNOME-seq [37]
Smart-RRBS [38]
PBAT [39]
scBS-Seq [40]
scWGBS [41]
scPBAT [42]
scChIP-seq [43]
CUT&Tag [44]
Paired-Tag [45]
MERFISH [46]
sciMAP-ATAC [47]

Single-cell transcriptome sequencing Sequencing the transcriptomic information at the 
level of single cells [48]

10X Genomics Chromium [48]
Smart-seq2 [48]
VASA-seq [49]
CEL-seq2 [50]
Drop-seq [51]
inDROP [52]
MARS-seq [53]
SCRB-seq [54]
Smart-seq [55]
scCARE-seq [56]

Single-cell spatial transcriptome sequencing Preserving spatial information while measuring 
the expression of genes [57]

MIA [6]
Cell2location [58]
SPOTlight [59]
RCTD [60]
Seurat [61]
DestVI [62]
spatialDWLS [63]
DSTG [64]

Single-cell ribosome sequencing Measuring translational dynamics and ribosome 
behavior on specific transcripts in single cells 
[65]

STAMP [19]
Ribo-ITP [66]
scSLAM-seq [67]



	 Clinical Reviews in Allergy & Immunology

treatment of chromosomally instable cancers that overex-
press IL-6R [81]. And Huang et al. discussed the ability of 
the technology in terms of genome coverage, homogeneity, 
reproducibility, etc. This work facilitates the researcher in 
selecting a suitable kit [27].

Single‑Cell Transcriptome Sequencing

Single-cell transcriptome sequencing is a technology that 
sequences the transcriptomic information at the level of sin-
gle cells. It is applied to studying gene expression in individ-
ual cells. At the same time, it solves the problem of cellular 
heterogeneity that cannot be addressed by sequencing tissue 
samples. This technology includes full-length RNA sequenc-
ing and non-full-length RNA sequencing, with the hottest 
applications currently being Smart-seq2 for the former and 
10X Genomics for the latter. They all have their own advan-
tages. For example, Smart-seq2 has better coverage, can 
detect rare transcripts, and has a wider range of applications, 
while 10X Genomics is high throughput, is affordable, and 
can capture single cells more accurately [48]. In the follow-
ing section, we are going to introduce the research progress 
made by single-cell transcriptome sequencing, using full-
length RNA sequencing as an example.

Full-length scRNA-seq can yield highly complex librar-
ies that contain thousands of different genes with excellent 
sensitivity and specificity for transcriptional quantifica-
tion [49]. These full-length libraries have the advantage 
of detecting transcriptional isoforms, dissecting SNV, and 
allowing the assembly of VDJ regions of TCR and BCR 
[82]. Compared with non-full-length RNA sequencing, full-
length RNA sequencing can discover more new genes and 
is more suitable for low-abundance transcripts and variable 
splicing transcripts. And full-length RNA sequencing has 

lower data noise for mRNAs with low expression levels [48]. 
Anand et al. investigated the mechanisms of drug resistance 
in a type of leukemia (ETP-ALL) with NOTCH1 mutations 
by full-length scRNA-seq analysis of tumor and microenvi-
ronmental cells. This study uncovers interactions between 
signaling, cellular plasticity, and immunity, illustrating the 
multidimensional nature of tumor heterogeneity. On this 
basis, they proposed combination therapies targeting dif-
ferent cancer states and immune functions, which may be 
successful in eradicating tumor cells that undergo immune 
evasion through simultaneous transcriptional programs [83]. 
In a paper published in 2020, Hagemann-Jensen M et al. 
described Smart-seq3, a technology that combines a full-
length transcriptome counting strategy. Compared to Smart-
seq2, Smart-seq3 is much more sensitive. It can detect thou-
sands of transcripts in each cell. The authors also anticipate 
that Smart-seq3 will be able to describe the cellular features 
of different tissues and organisms on a large scale [84].

Single‑Cell Epigenome Sequencing

Single-cell epigenome sequencing complements single-
cell transcriptome sequencing. It resolves the mechanisms 
that regulate transcriptional activities at the epigenetic 
level [33]. The stable pattern of gene expression is main-
tained in part by epigenetic modifications of DNA and 
histones. The five main categories of mechanisms that 
regulate gene expression without altering DNA sequence 
are DNA methylation, chromatin accessibility, histone 
modifications, DNA–protein interactions, and chromatin 
steric structure [85]. Corresponding research methods 
are now available for each type of mechanism. Examples 
include scRRBS, a bisulfite-based sequencing method 
to detect DNA methylation at the level of single cells 

Table 2   (continued)

Technology Method

Name Feature

Single-cell multi-omics sequencing Linking multi-omics information such as 
genomics, transcriptomics, and epigenomics in 
single cells [68]

scCOOL-seq [69]

scTrio-seq [70]

G&T-seq [71]

TARGET-seq [72]

scM&T-seq [73]

SNARE-seq [74]

scCAT-seq [75]

scNMT-seq [76]

CITE-seq [77]

LIGER [78]
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[34], scATAC-seq, which identifies DNA regulatory ele-
ments involved in repressing or activating gene expres-
sion [35], scChIC-seq, which analyzes histone modifi-
cations at single-cell resolution [36], and so on. There 
are also single-cell epigenomic multi-omics techniques 
such as scNOME-seq that can analyze chromatin acces-
sibility and DNA methylation status of individual cells 
[37]. Recently, Gu et al. also introduced Smart-RRBS, 
a new method for single-cell methylome and transcrip-
tome analysis [38]. Dynamic regulation of the epigenome 
facilitates the establishment and maintenance of cellular 
identity and may support cellular plasticity and behavior. 
The single-cell epigenome complements the transcriptome 
by providing insights into cell type-specific gene expres-
sion regulation. It is widely used in studies that dissect 
cellular gene regulatory networks and link genetic factors 
to disease risk. Yu et al. analyzed peripheral blood mono-
nuclear cells (PBMCs) from SLE patients using methods 
including scATAC-seq and identified several transcrip-
tion factor (TF) activation patterns and key TFs, seven 
of which showed important binding sites in SLE patients. 
Their findings revealed key TFs in PBMCs in patients with 
SLE and provided helpful insights for epigenetic therapy 
[17]. Zhang et al. performed single-cell chromatin acces-
sibility assays on a large number of adult human tissues 
and, in conjunction with previous studies, systematically 
explained non-coding variants associated with specific 
human characteristics and diseases, providing advanced 
insights for analyzing gene regulatory programs in human 
cell types across tissues, organs, systems, and life stages 
[86].

Single‑Cell Spatial Transcriptome Sequencing

The spatial organization of cells plays a central role in nor-
mal development, homeostasis in vivo, and pathophysiol-
ogy. Spatial transcriptomics can preserve spatial information 
while measuring the expression of genes. Srivatsan et al. 
introduced sci-Space into this technique, which resolves 
larger spatial heterogeneity while retaining single-cell reso-
lution. Their study applied to mouse embryonic develop-
ment revealed differences in spatial patterns of different cell 
types, and they anticipated that sci-Space would facilitate 
the establishment of single-cell spatial maps of mammalian 
development [57]. In addition, Baccin et al. systematically 
constructed the molecular and cellular atlas of the bone 
marrow (BM) niche in the bone, sinus, and small arteries 
combining single-cell and spatially resolved transcriptom-
ics. Their study reveals the cellular and spatial organization 
of the BM niche, providing a new perspective for system-
atically dissecting the complex organization of BM [87]. 
In the context of tumor therapy, Qi et al. found a positive 

correlation between a type of fibroblast (FAP +) and a type 
of macrophage (SPP1 +) in colorectal cancer. In addition 
to single-cell analyses, they verified their close association 
by immunofluorescence staining and spatial transcriptom-
ics. The results of this study provide a potential therapeu-
tic option to improve treatment outcomes by disrupting the 
associated fibroblast-macrophage interaction [88].

Single‑Cell Ribosome Sequencing

Single-cell ribosome sequencing (scRibo-seq) combines 
nuclease footprint with the construction and expansion of 
small RNA libraries to measure translational dynamics in 
individual cells, providing further evidence for the transla-
tional process and significant differences between cells that 
appear to be identical. It also provides a ribosome analy-
sis method that measures ribosome behavior on specific 
transcripts in a single cell population with high sensitivity 
and high resolution to individual codons. These advantages 
allow the translation process to be resolved in greater detail 
and provide evidence for widespread alterations in transla-
tional regulation during mitosis [65].

Although this new technology has not yet been widely 
applied to the study of clinical diseases, researchers have 
been refining the method to maximize its benefits. For exam-
ple, Brannan et al. developed STAMP (Surveying Targets by 
APOBEC-Mediated Profiling) to explain the role of RNA-
binding proteins in gene expression and RNA processing in 
individual cells. It enables the study of translational land-
scapes at unprecedented cellular resolution [19]. Ozadam 
et al. developed ribosome profiling via ITP (Ribo-ITP). 
This method provides high coverage and resolution ribo-
some occupancy results from low input samples like single 
cells. The authors’ team used this method to characterize the 
translation of individual oocytes and embryos during early 
mouse development [66]. It is believed that the technology 
will have a bright future of application with the researchers’ 
explorations.

Single‑Cell Multi‑omics Integration Analysis

Single-cell multi-omics techniques link genetic, transcrip-
tional, and epigenetic information in individual cells. In 
addition to the previously mentioned genomics, transcrip-
tomics, and epigenomics, it is also possible to integrate 
analyses such as proteomics and metabolomics. Nam et al. 
discussed emerging single-cell multi-omics analysis and 
experimental techniques. Data captured and integrated 
suggest that cancer is the result of a complex interaction 
between genetic and non-genetic factors in the evolution of 
somatic cells [89]. Stephenson et al. performed a single-
cell multi-omics analysis of multiple PBMCs from patients 
with different severity of novel coronavirus pneumonia. 
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This study highlighted the coordinated immune response 
that promoted the understanding of COVID-19 pathogen-
esis and revealed single-cell components that can be used as 
therapeutic targets [68]. In addition, Fasolino M et al. also 
performed a single-cell multi-omics analysis of pancreatic 
islets, revealing a new cellular state in type 1 diabetes (T1D). 
Their study revealed cell types and processes that might be 
involved in the immunopathogenesis of T1D and provided 
an innovative program for the comprehensive exploration 
and discovery of human pancreatic functions [90].

Single‑Cell Sequencing Combined with Artificial 
Intelligence

With the development of artificial intelligence (AI), the 
scope of application of AI tools in the life sciences is 
expanding, and it is gradually showing great potential in the 
field of single-cell sequencing. Combined with AI, single-
cell data can be analyzed and understood more effectively 
[21]. Chen et al. created an AI tool that uses single-cell 
sequencing data from the Drosophila visual system to iden-
tify genes expressed only in certain cell types. By feeding 
scRNA-seq data into their algorithm, they identified genes 
that are uniquely expressed at different developmental stages 
in most cell types in the Drosophila visual system and dis-
covered a completely new cell type [91]. Besides, deep 
learning algorithms developed from AI have emerged as a 
powerful tool for the analysis of scRNA-seq data, which can 
identify potential information from scRNA-seq data, favor-
ing the interpretation of heterogeneity between different 
scRNA-seq experiments [92]. And Bao et al. demonstrated 
the method’s reliability for biomedical applications [93].

Single‑Cell Sequencing Based on Third‑Generation 
Sequencing Platform

Third-generation sequencing (TGS) is a single-molecule 
sequencing technology that does not require PCR amplifi-
cation for the sequencing process. It has long read lengths, 
much longer than the second-generation sequencing [13]. 
To address the challenge of detecting structural variation 
(SV) and extrachromosomal DNA (ecDNA) in single cells, 
Fan et al. developed a new scWGS method based on a TGS 
platform and named it SMOOTH-seq. In their study, they 
evaluated methods to detect CNV, SV, and single nucleotide 
variants (SNV) in cancer cells and showed that SMOOTH-
seq safely and efficiently detects SV and ecDNA in single 
cells but showed relatively limited accuracy in detecting 
CNV and SNV. Overall, however, SMOOTH-seq has ena-
bled scWGS to enter a new phase of development due to its 
ability to generate high-fidelity reads [26]. Fan et al. also 
developed a new scRNA-seq technique based on a TGS 

platform named SCAN-seq, which has higher sensitivity and 
accuracy. In addition, they used the technique to analyze 
mouse preimplantation embryos and showed that it distin-
guished cells at different developmental stages and identified 
many transcripts that exhibited developmental stage-specific 
expression patterns. They also found that SCAN-seq has 
high accuracy in identifying allele-specific gene expression 
patterns within individual cells. This technology represents a 
breakthrough in the field of single-cell transcriptome analy-
sis [22].

Single‑Cell Sequencing Technology Combined 
with Organoid Studies

Organoids are 3D cellular collections of organ-specific cell 
types that develop from stem or progenitor cells. They are 
capable of self-assembling in a way similar to that in vivo 
through cellular sequencing and spatially restricted lineage 
differentiation [94]. Single-cell sequencing technologies, 
especially scRNA-seq, allow for a comprehensive classifi-
cation of cell types. In combination with organoid studies, 
single-cell sequencing facilitates a better understanding of 
how organoids apply to the development of the correspond-
ing organ and the mechanisms of related diseases [95].

Yoshihara et al. used scRNA-seq in a study to generate 
functional human islet-like organs for the treatment of diabe-
tes and performed three biological replicates to improve the 
reliability of the results [96]. Czerniecki et al. used technolo-
gies including scRNA-seq to identify parietal, mesenchymal, 
and partially differentiated compartments in organoids and 
to identify pathways that can dilate the vascular endothe-
lium. They also developed an automated platform that allows 
for high-throughput screening in combination with other 
analytical techniques. This platform unexpectedly revealed 
the role of myosin in polycystic kidney disease [97]. In a 
review, Khedoe et al. suggest that combining models such 
as organoid and organelle technologies with advanced ana-
lytical platforms such as single-cell sequencing may help to 
elucidate the pathogenic mechanisms of systemic sclerosis-
related interstitial lung disease (SSc-ILD) and identify new 
therapeutic targets [98]. In addition, a systematic review 
of recent advances in scRNA-seq, organoid, and their cur-
rent application areas was conducted by Yin et al. in 2021, 
summarizing the advantages of combining scRNA-seq and 
organoid technologies in modeling disease and organ devel-
opment, drug development, and stem cell physiology [23].

Formalin Fixation and Paraffin Embedding 
in Single‑Cell Sequencing

Formalin Fixation and Paraffin Embedding (FFPE) sections 
can detect visual features of disease that can be correlated 
with valuable clinical data. FFPE technology is a valuable 
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resource for medical pathology and mechanistic studies, 
drug discovery, and retrospective studies due to its advan-
tages such as long preservation time and the ability to corre-
late clinical and multi-omics data. Progress in multi-imaging 
techniques has greatly enhanced the ability to characterize 
healthy and lesion tissues at the level of single cells. And 
CODEX, a method of detection, provides insight into the 
spatial relationships of single cells in tissues. Black et al. 
performed a multi-cycle imaging procedure on FFPE and 
fresh frozen tissue using methods that included both tech-
niques [99]. McDonough et al. evaluated DNA extraction 
methods using FFPE samples from different tissue types. 
This work helps to select the best NGS method, and the 
selection of DNA extraction and library preparation meth-
ods affects the capabilities of archival tissues in NGS [100]. 
However, genetic material (DNA and RNA) used for NGS 
can be problematic due to fixation. Cazzato et al. discussed 
the use of FFPE tissue samples in NGS execution, focus-
ing on the problems that arise when using this material for 
nucleic acid extraction. They also developed the most effec-
tive strategies to prevent and decline SNV and other fixation 
artifacts [24].

Significance of Single‑Cell Sequencing

Single-cell sequencing enables heterogeneous analysis, 
which is the core reason why this technology can be used in 
research in major medical fields. The significance of single-
cell sequencing in the study of AIDs and other diseases will 
be described in several ways as follows.

Constructing a Cell Atlas

Cell atlas is the digitization of cells. It uses a matrix of num-
bers to describe the characteristics of each cell and clas-
sify them systematically. Mapping various cell types in the 
human body is currently a major goal in the field of scien-
tific research, which contributes to a deeper understanding 
of biology, medicine, and diseases. It has many therapeu-
tic implications, with applications as diverse as anti-tumor 
immunology, vaccine development, regenerative medicine, 
and so on [101].

Wang et al. analyzed the composition of peripheral blood 
immune cells in patients with RA, SLE, and primary sicca 
syndrome (pSS) using scRNA-seq data. The results showed 
a strong gene expression in megakaryocyte (MK) expansion 
and identified certain subpopulations of MKs with marked 
cellular heterogeneity [102]. Zhang et al. used a compre-
hensive strategy based on typical correlation analysis of 
scRNA-seq profiles to identify 18 unique cell populations 
driving inflammation in RA joints. They combined the strat-
egy with bulk cell counting and transcriptomics to identify 

several cell state expansions in RA synovium. The identi-
fication of these cell populations facilitates the elucidation 
of RA pathogenesis [103]. Other scientists have also con-
ducted animal experiments. Zakharov PN et al. investigated 
islet-infiltrating cells from autoimmune diabetic mice using 
scRNA-seq. The data revealed transcriptional heterogeneity 
between lymphocyte and myeloid subpopulations. A pro-
gressive activation program experienced by resident mac-
rophages in the islet microenvironment was also observed. 
This study reveals that diabetic autoimmunity arises from 
distinct transcriptional cell populations. It provides a single-
cell picture that defines the staging of autoimmune diabetes 
[104]. To investigate the effects of aging on related AIDs 
by affecting lymph node function, Li et al. used techniques 
such as scRNA-seq to map immune cells in the cervical 
draining lymph nodes of mice associated with experimental 
autoimmune uveitis (EAU). The results suggest that aging 
counteracts EAU injury in aged mice by modulating the role 
of immune cells, especially Th17 cells [105].In addition, 
the germinal center (GC) response is essential for adaptive 
immunity as well as for establishing peripheral immune tol-
erance. Its dysfunction may lead to AIDs. To understand the 
gene regulation of the GC response, King et al. produced 
single-cell transcriptomic and epigenomic profiles of human 
tonsils, characterized different immune cell subpopulations, 
and constructed trajectories of gene expression during B 
cell functioning. These analyses provide a new and effec-
tive resource for explaining the gene expression and cellular 
interactions in AIDs [106]. In addition to AIDs, single-cell 
sequencing has also played a role in the construction of atlas 
for other diseases. Suo et al. analyzed nine prenatal tissues in 
conjunction with scRNA-seq and other techniques to create a 
developmental map of the human immune system spanning 
nine organs. They revealed the process of blood and immune 
cell formation, which will help to enhance the understand-
ing of immune diseases. They also identified a novel type 
of B cell, as well as unique T cells that appear in early life 
stages. This work provides new research resources and bio-
logical insights to inform cell engineering and regenerative 
medicine research [107]. To further characterize the cellular 
features of aging and those ameliorated by caloric restriction 
(CR), Ma et al. have established the most comprehensive 
single-cell transcriptome sequencing and single-cell nuclear 
transcriptome sequencing profiles to date. They describe 
possible mechanisms of action of CR to delay aging and 
explain the possibility of amelioration of aging through 
metabolic intervention acting on the immune system [108].

Contributing to the Pathogenesis

Pathogenesis refers to the combination of physiological, bio-
chemical, genetic, and environmental factors that cause the 
occurrence of a disease. It's important to the prevention and 
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treatment of diseases. On the one hand, single-cell sequenc-
ing can identify cell subtypes, reveal inter-cell interactions, 
and elucidate the pathogenic process of diseases in terms of 
abnormalities in physiological and biochemical pathways. 
On the other hand, it can be used for cytogenetic analysis 
to search for the origins of diseases from the expression of 
genetic material.

Wang et al. analyzed samples from non-small cell lung 
cancer patients with scRNA-seq. They mapped the whole-
body immune cell transcriptome and revealed the central role 
of cytotoxic and effector T cells, NK cells, and macrophages 
in the immune microenvironment between lung adenocar-
cinomas and squamous carcinomas. This study deepens the 
understanding of the pathogenic process of lung cancer, and 
these cellular interactions can be used to design personal-
ized therapeutic regimens for patients in clinical practice 
[109]. What’s more, Wang et al. identified immune cell sub-
populations on PBMCs by techniques such as scRNA-seq 
and found similar transcriptional profiles in several AIDs 
such as RA and SLE, with some gene expression profiles 
being associated with ribosome assembly and hemostasis. 
This provides advanced insights into the peripheral immune 
cell profiles of several immune diseases including RA and 
SLE and suggests that aberrant regulation of MK expansion 
may be one of the pathogenic mechanisms of these diseases 
[102]. Wu et al. analyzed CD45 + cells by scRNA-seq to 
identify immune cell subsets involved in the pathogenesis of 
RA subtypes. They identified several molecules associated 
with synovial immune cell abnormalities and revealed the 
significance of anti-citrullinated peptide antibodies (ACPA) 
in RA with the help of immunohistochemical staining. Their 
data suggest differences in cellular and molecular pathways 
in the pathogenesis of RA subtypes with different serologic 
responses and highlight the importance of precise treatment 
based on ACPA status [110]. In addition, numerous studies 
have shown that virus infection is an important factor in the 
initiation of AIDs [111]. Single-cell sequencing can reveal 
the peripheral immune characteristics of patients with virus 
infection [112, 113], which can also contribute to the patho-
genesis of AIDs caused by virus infection.

Helping in Disease Diagnosis

Due to its high resolution, single-cell sequencing can detect 
characteristic cellular molecules of some diseases, which 
can be used as a clinical indicator for screening, identifica-
tion, and diagnosis of diseases.

Zheng et al. analyzed data differences of skin damage 
in skin tissues from discoid lupus erythematosus (DLE) 
patients, SLE patients, and healthy controls (HCs) by 
scRNA-seq. On the one hand, they found that the percent-
age of T cells, B cells, and NK cells was higher in DLE than 
in SLE. This facilitated the differential diagnosis between 

DLE and SLE. On the other hand, amplification of some cell 
subpopulations was found in DLE and SLE compared to HC, 
and cellular communication between cell types such as fibro-
blasts and macrophages/dendritic cells was more complex 
in DLE and SLE. In conclusion, they elucidated the hetero-
geneous features of skin lesions between DLE and SLE and 
identified some specific cell subtypes and ligand-receptor 
pairs, which provide advantages for the diagnosis and treat-
ment of lupus erythematosus [114]. What’s more, Zhang 
and Lee constructed TCR and BCR sequences from a large 
amount of peripheral blood RNA-seq data from SLE and RA 
patients and then analyzed the clonality and diversity of the 
immune sequences between them, revealing characteristic 
changes in the proportions of cellular subpopulations in both 
diseases [115]. Trzupek et al. demonstrated that the presence 
of LGALS9 and some other components in platelets can 
be used as a clinical biomarker of RA. This study provides 
advanced insights into the diagnosis and treatment of these 
two diseases [116]. In addition, Chang et al. demonstrated 
the effectiveness of cell-based noninvasive prenatal testing 
(cbNIPT) by single-cell sequencing and further explored the 
role of scWGS and haplotype analysis with cbNIPT for vari-
ous monogenic disorders including genetic deafness, hemo-
philia, and greater vestibular aqueduct syndrome. It shows 
that cbNIPT based on scWGS and haplotype analysis has 
great potential for prenatal diagnosis of various monogenic 
diseases [117].

Identifying Therapeutic Targets

In the same way that single-cell technologies can be used to 
elucidate the pathogenesis of disease, research that focuses 
on certain key genes, molecules, cells, or pathways of action 
in the pathogenesis of disease can lead to the discovery of 
new targets for disease treatment.

Liu et  al. analyzed peripheral blood samples at the 
molecular and single-cell level in conjunction with pheno-
typic, transcriptomic, and BCR profiling and elucidated the 
mechanism of impaired incompetent B cells in SLE patients, 
revealing the key role played by IL-4 in reversing incompe-
tent B cells in SLE and improving the understanding of B 
cell autoimmunity. They established a theoretical basis for 
the treatment of SLE through the blockade of IL-4 signaling. 
This work provided a subsequent and potentially clinical 
therapeutic approach for early intervention and prevention of 
SLE [118]. Kobayashi et al. identified an inflammatory gene 
module and a single cell population associated with SSc 
pathophysiology by combined analysis of bulk and scRNA-
seq analyses. They may serve as candidate therapeutic tar-
gets for SSc [119]. Martin JC et al. applied single-cell tech-
nology to ileal CD lesions and identified a cellular module 
leading to resistance to anti-TNF therapy. This study points 
out, on the one hand, the limitations of current diagnostic 



Clinical Reviews in Allergy & Immunology	

assays. On the other hand, it highlights the potential of 
single-cell tools in identifying new targets for therapy and 
tailoring therapeutic opportunities [120]. Hua X et al. used 
single-cell sequencing after constructing a mouse model of 
experimental autoimmune myocarditis (EAM) to identify 
genes involved in the inflammatory response to myocarditis 
and investigated the immune network during the transition 
from myocarditis to cardiomyopathy. They found that mac-
rophages play an important role in all stages of the disease. 
They identified clusters associated with inflammation, in 
which the level of Hif1a-type expression correlated with 
the degree of inflammation. They suggested that Hif1a-type 
inhibitors could attenuate inflammatory cell infiltration 
in EAM and could be potential therapeutic targets in the 
clinic [121]. There are also researchers having made use 
of scRNA-seq datasets to analyze the relationship between 
cancer stemness and immune checkpoint inhibitor response. 
Zhang Z et al. developed the Stem.Sig gene as a potential 
therapeutic target and found the potential application of this 
research in overcoming immune tolerance [122]. Lee et al. 
applied scRNA-seq to the clinical evaluation of an oncogene 
homologue (HRAS), demonstrating the efficacy of scRNA-
seq in observing the tumor microenvironment and identi-
fying molecular and cellular therapeutic targets in certain 
refractory cancers [123].

Developing Prognostic Models

Prognostic models are used to predict the probability of 
a patient’s stage of disease progression, whether they are 
cured, whether they die, and other events at some point in 
the future. Single-cell sequencing can screen for key genes 
to help clinicians or researchers develop prognostic models 
and make more accurate prognostic judgments.

Wang et al. combined machine learning algorithms and 
bioinformatics of single-cell sequencing analysis to analyze 
common biomarkers and pathways in SLE and metabolic 
syndrome (MetS). They successfully constructed prognostic 
models using the screened genes, which are associated with 
immune and metabolic processes. They also constructed an 
effective diagnostic model for the two diseases and found 
that two biomarkers expressed mainly by monocytes had 
the highest diagnostic efficacy. This work provides advanced 
insights into the pathogenesis of SLE combined with MetS 
and the development of new combination therapies [124]. 
Zhang et  al. investigated immune cell dysregulation in 
peripheral blood samples from SLE patients by scRNA-seq 
and some other technologies. The results revealed that the 
abundance and dysfunction of CD8 + CD27 + CXCR3- T 
cells could be used as a potential biomarker for SLE diag-
nosis and prognosis. They experimentally constructed a 
dynamic network biomarker (DNB) model whose scores 
accurately predicted SLE disease progression and could 

provide recommendations for clinical treatment such as drug 
dosage determination [125]. Mao and Xu used single-cell 
sequencing data to identify the cell types that contribute to 
bladder cancer (BC) aggressiveness and combined several 
analytical techniques to localize the genes involved to fur-
ther develop a BC prognostic model to analyze feedback on 
immunotherapy from patients at different stages, and the role 
of these prognostic genes was validated by techniques such 
as Western blot [126]. Sun et al. analyzed data by techniques 
including scRNA-seq from patients with intrahepatic cholan-
giocarcinoma (ICC) and found a relationship between SPP1 
CD68 tumor-associated macrophages (SPP1-TAM) and clin-
icopathological features of the disease. They also recognized 
the prognostic significance of SPP1-TAM and pointed out 
that it can be an independent poor prognostic indicator for 
survival in ICC [127].

Single‑Cell Sequencing Applied to Various 
AIDs

Systemic Lupus Erythematosus

SLE is an AID in relation to multiple organs, mainly affects 
young women, and may present with symptoms like fever, 
sensitivity to light, rash, and so on [128]. The development 
of SLE is associated with aberrant activation of T and B 
lymphocytes and the formation of immune complexes in tis-
sues and organs by a large number of autoreactive antibodies 
and antigens. Many studies have reported that peripheral 
blood T lymphocyte deficiency may be one of the pathogenic 
mechanisms of SLE. There is also evidence that B cells play 
an important role in the pathogenesis of SLE. The diversity 
of TCR and BCR is also involved in the determination of 
the autoimmune response [129]. To further understand the 
pathogenesis of SLE, many researchers have conducted stud-
ies with the help of single-cell sequencing.

Nehar-Belaid et al. analyzed PBMCs from children with 
SLE and control children using scRNA-seq. It was sug-
gested that the expression of interferon-stimulated genes 
(ISGs) in the cells of pediatric patients with SLE was much 
higher than that in the cells of HC subjects. The high expres-
sion of ISGs was mainly found in immune cells, especially 
plasma cells. The expansion of such a unique subpopulation 
allowed for the classification of patients with high disease 
activity. It was also demonstrated that a similar subpopula-
tion is also amplified in adult patients. This study lays the 
foundation for exploring the transcriptional signature of 
SLE and the origin of disease heterogeneity [130]. Zheng 
et al. revealed peripheral blood cell types in SLE patients, 
identified the associated TCR/BCR, and characterized the 
biological process of its pathogenesis by single-cell sequenc-
ing. Their findings first elucidated the differences in immune 
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cell subpopulations between SLE patients and HCs. They 
explored the transcriptional profiles of these subpopulations 
to figure out the pathogenesis of SLE. And several TCR/
BCR that they identified could be used as diagnostic or ther-
apeutic targets. In conclusion, they used single-cell sequenc-
ing to reveal the transcriptomic profile of immune cells from 
SLE patients and their immune functions [131]. Perez et al. 
also developed “multiplexed scRNA-seq” to explore cells, 
transcription, inheritance, and variation associated with SLE 
[132]. Recently, Dong et al. performed single-cell sequenc-
ing and immunoassay analysis of BM and peripheral blood B 
cells from SLE patients and HCs. They reported for the first 
time the presence of developmental differentiation disorders 
of BM early B cells in some SLE patients. This study reveals 
the abnormal immunological characteristics of BM B cells 
in SLE patients, which will be helpful for accurate typing 
and precise diagnosis and treatment of SLE patients, and 
also provides advanced perspectives for further exploring 
the pathogenesis and intervention strategies of SLE [133]. 
Furthermore, Trzupek et al. used a single-cell multi-omics 
technology with proteins and mRNAs to map high-resolu-
tion T cell and NK cell populations in the blood of patients 
with SLE, providing a new peripheral blood cellular marker 
of the disease’s activity [116]. Cui et al. have also made use 
of scRNA-seq data, which were integrated and analyzed to 
identify patterns of transcriptional and epigenetic regulation 
in SLE and revealed cellular subpopulations associated with 
these mechanisms [134]. The above studies showed that SLE 
is closely associated with abnormalities in the number or 
function of T and B cells and that the abnormal TCR/BCR 
clonotypes can be used as diagnostic or therapeutic targets. 
Most current cell atlas of SLE involves only peripheral blood 
cells, but SLE can also cause damage to parenchymal organs 
such as kidneys, lungs, and liver [135]. Researchers can try 
to construct a cell atlas of the tissues and organs involved 
in SLE and systematically compare the similarities and dif-
ferences in cell types between them. In addition, attempts 
can be made to construct a cell atlas of the various subtypes 
of SLE and to analyze single-cell changes before and after 
treatment. And most of the current studies are using scRNA-
seq to reveal the transcriptomic features of SLE. Perhaps 
more genomic or epigenomic studies could be conducted 
in the future.

Rheumatoid Arthritis

RA is an AID with synovitis as the pathological basis. It 
is characterized by symmetrical, aggressive arthritis of the 
hands and feet with positive serum rheumatoid factor, which 
can affect joint function and often involves extra-articular 
organs [136]. Synovial macrophages and synovial fibroblasts 
(SFs) are the core target cells of RA. Identifying key cell 
subpopulations in inflammatory tissues and their activation 

status is a significant step in identifying new therapeutic 
targets for RA.

Many investigators have found that a subpopulation of 
fibroblasts located in the parietal lamina undergoes signifi-
cant expansion and is associated with RA activity. How-
ever, the exact mechanisms underlying the differentiation 
and expansion of these cells remain unclear. Many scientists 
have been working to investigate the mechanisms involved. 
Wei et al. made use of scRNA-seq to identify the key role 
of NOTCH3 signaling in the differentiation of certain fibro-
blasts. The signaling can drive transcriptional and spatial 
gradients in vascular endothelial fibroblasts. They also con-
ducted animal experiments using mice as a model and found 
that deleting the NOTCH3 gene or blocking NOTCH3 sign-
aling attenuated the inflammatory response and prevented 
joint damage. These findings suggest that synovial fibro-
blasts are regulated by endothelium-derived Notch signaling, 
which underlies the inflammation and pathology in inflam-
matory arthritis [137]. Cheng et al. have reviewed the break-
throughs achieved by scRNA-seq technology in recent years 
in the study of two types of synovial cells, SFs and synovial 
macrophages [138]. In addition, many studies have begun 
to focus on the role of fibroblast-like synoviocytes in the 
pathogenesis of RA and have used the new technique of sin-
gle-cell combined with comprehensive multi-omics analyses 
to analyze the process of their action [139]. For example, 
Kenney et al. used multicomponent spatial and single-cell 
transcriptomics to investigate changes in cellular composi-
tion in the sinuses of co-draining lymph nodes to explain 
the molecular mechanisms by which aberrant lymphatic 
drainage and B cells lead to severe RA. And they identified 
that macrophages and CD6 + T cells may play an important 
role in IgG2b class switching [140]. These studies identified 
abnormal cell subpopulations in RA and revealed the mech-
anisms by which inflammatory signals such as NOTCH3 
signaling act on targets including synovial fibroblasts and 
synovial macrophages to cause arthritis. In the future, stud-
ies on changes before and after treatment in single cells, 
especially immune cells, could be initiated more extensively.

Systemic Sclerosis

SSc is a relatively rare chronic AID of connective tissue 
characterized by cutaneous fibroplasia and vascular onion 
skin-like changes that may eventually progress to skin scle-
rosis and vascular ischemia, which can involve the skin and 
may also affect organs such as the heart, lungs, and digestive 
tract [141].

Apostolidis et al. identified endothelial cell (EC) mark-
ers and characteristic pathways associated with SSc injury 
with the help of scRNA-seq to explain the mechanism of 
SSc injury and propagation. The results showed that EC in 
SSc patients is related to vascular injury, activation, and 
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generation as well as extracellular matrix production. They 
also identified two top markers of EC in SSc [142]. Gaydo-
sik et al. made use of scRNA-seq to study immune responses 
mediated by T cells in the affected skin of SSc patients and 
identified a special cluster of T cells that may be associated 
with B cell responses. Single-cell transcriptome analysis has 
a strong advantage in analyzing specific T cell heterogeneity. 
It facilitates the identification of functional genes associated 
with SSc, which could be useful in determining the immune 
mechanisms of SSc and suggesting more targeted and inno-
vative therapies [143]. Kobayashi et al. also characterized 
SSc-associated gene network modules and immune cell 
clusters at single-cell resolution, providing new candidate 
targets for the treatment of SSc [119]. In addition, to gain 
more insight into how alterations in the fibroblast phenotype 
contribute to SSc-ILD fibrosis, Valenzi et al. made use of 
scRNA-seq of lung tissue samples from healthy individu-
als and SSc-ILD patients to identify transcripts of the mes-
enchymal cell population. They compared and found that 
myofibroblasts underwent the greatest phenotypic changes 
in SSc-ILD, where the expressions of collagen and other 
pre-fibrotic genes were also substantially upregulated. This 
study suggests that myofibroblast differentiation and prolif-
eration are key pathological mechanisms of SSc-ILD fibro-
sis [144]. These studies explain some of the mechanisms 
by which SSc causes skin sclerosis and vascular damage. 
They revealed abnormal T cells in the skin that mediate the 
immune response causing fibrosis as well as pathways that 
damage ECs. As fibroplasia is a feature of SSc, future single-
cell studies on SSc could focus on myofibroblasts and their 
subtypes. It is also feasible to analyze cell atlas of different 
subtypes of SSc.

Systemic Vasculitis

SV is a group of chronic AIDs with inflammatory cell infil-
tration of blood vessels, vascular destruction, and tissue 
ischemia and necrosis as the major pathological changes. It 
can often lead to multi-system and multi-organ dysfunction 
or can be limited to a particular organ [145]. This group 
of diseases includes giant cell arteritis (GCA), polyarteri-
tis nodosa (PAN), Kawasaki disease (KD), Behcet disease 
(BD), ANCA-associated vasculitis (AAV), Henoch-Schon-
lein purpura (HSP), and so on.

Wang et al. used single-cell techniques to map immune 
cells in the blood of GCA patients more comprehensively, 
identifying selected cellular subpopulations that were sig-
nificantly correlated with clinical phenotypes and treatment 
response. They found that immature neutrophils can lead 
to protein oxidation and enhanced endothelial permeability 
through respiratory bursts. The same population has been 
detected in other SVs. These findings suggest a relation-
ship between immature neutrophils and pathogenesis and 

establish the clinical cellular profile of GCA, and the authors 
sequentially propose different therapeutic approaches for 
systemic vascular inflammation [146]. Carmona EG et al. 
have used single-cell transcriptome analysis to reveal the role 
of cytotoxic CD4 + T cells in the inflammatory and vascular 
remodeling process of GCA. They also made recommenda-
tions for targeting CTL as a potential treatment option [147]. 
Narsinh et al. applied scRNA-seq with endovascular biopsy 
to study the course of pathogenic vertebral basilar artery 
aneurysm in patients with PAN and identified a subpopula-
tion of endothelial cells associated with cerebral aneurysms 
in PAN [148]. Wang et al. analyzed PBMCs isolated from 
patients with acute KD using scRNA-seq. They found that 
monocytes are a major source of pro-inflammatory media-
tors and that each cell type has a unique global and dynamic 
immune response throughout the disease. The finding 
facilitates understanding of the pathogenesis of KD and its 
treatment. They suggested that PBMC was a therapeutic tar-
get for KD [149]. Zheng et al. analyzed PBMCs from BD 
patients and healthy donors using scRNA-seq. Their analy-
sis demonstrated that C1q-high monocytes can affect the 
inflammatory response in BD by enhancing phagocytosis 
and promoting the secretion of pro-inflammatory cytokines, 
suggesting that C1q could be used as a therapeutic target 
and an indicator of clinical evaluation for BD [150]. What’s 
more, Shi et al. performed a multi-omics single-cell study of 
BD, identifying extensive cellular heterogeneity and disease-
associated immune responses in terms of transcription and 
epigenome [151]. In conclusion, abnormal immune cells and 
cytokines in peripheral blood are suggestive of SV. As SV 
encompasses a list of diseases, it is necessary to construct a 
comprehensive atlas to link the various diseases.

Sicca Syndrome

SS is a chronic inflammatory AID. It mainly affects the exo-
crine glands, often resulting in dry mouth and eyes due to 
hypoplasia of the salivary and lacrimal glands. In addition 
to this, it can involve other exocrine glands and organs, with 
clinical signs of multi-system damage [152].

Horeth et al. made use of scRNA-seq of the submandibu-
lar gland (SMG) of an established mouse model of pSS to 
detect and characterize the molecular and cellular heteroge-
neity of the SMG cell population. Single-cell transcriptome 
studies revealed the diversity of immune cell dysregulation 
in SS, particularly revealing the activation status of salivary 
gland epithelial cells. In summary, their extensive studies 
have not only revealed pathway mediators and biomarkers 
of the disease but also demonstrated the complex nature of 
the cell populations in the SMG that may promote researches 
in SS. These new findings facilitate the understanding of 
the basic molecular mechanisms and cellular states of SS 
and will provide more effective information for identifying 
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therapeutic targets [153]. Similar to the above studies, to 
explore the cellular and molecular mechanisms related to 
the pathogenesis of SS, Hong et al. analyzed PBMCs from 
pSS patients and HCs using scRNA-seq, revealing immune 
cell subsets and susceptibility genes associated with pSS. 
The results suggested that the number of T cells, the per-
centage of cytotoxic T cell subsets, the expression levels 
of interferon, and susceptibility genes such as HLA-DRB5 
were higher in pSS patients than in HCs. These data reveal 
this disease-specific cell subpopulation and provide some 
new targets for pSS. The investigators also hypothesized 
that cytotoxic T cells may be related to the pathogenesis 
of pSS, providing a possible direction for the treatment of 
pSS [154]. These studies identified abnormal immune cell 
populations in the peripheral blood and abnormal activation 
of glandular ECs of SS. The current studies mainly focus on 
transcriptional characteristics of SS by scRNA-seq. More 
single-cell technologies could be applied to reveal genomic, 
epigenomic, and even proteomic information.

Inflammatory Bowel Disease

IBD is an idiopathic inflammatory disease of the intestine. It 
mainly includes ulcerative colitis (UC) and Crohn’s disease 
(CD) [155]. Common etiologies are related to environmen-
tal, genetic, infectious, and immune factors.

To investigate the mechanisms determining mucosal dys-
function in IBD patients, Mitsialis et al. used mass spectrom-
etry to analyze immune cell populations of IBD patients and 
HCs at single-cell resolution. The results showed increased 
numbers of T regulatory cells, CXCR3 + plasma cells, 
and other inflammatory cytokine-producing cells in the 
IBD patient samples. The findings were then validated by 
scRNA-seq. They also comparatively investigated the differ-
ences in inflammatory responses between patients with UC 
and CD. The results of this study could help in developing 
specific treatments for patients with different types of IBD 
[156]. In addition, a study reported an increase in Gasder-
min B (GSDMB) in IBD. Gasdermins belong to a family of 
structurally related proteins that are often found in studies 
on febrile diseases. Among them, GSDMB is well associ-
ated with genetic susceptibility to chronic mucosal inflam-
mation [157, 158]. This study determined the specificity 
of epithelial cells to inflammatory colonocytes by single-
cell analysis. They found that the proliferative activity of 
GSDMB-deficient cells was reduced and the adhesion of 
GSDMB-deficient intestinal epithelial cells was increased, 
which was detrimental to wound healing. They concluded 
that GSDMB could regulate epithelial repair independently 
of apoptosis and that it was a key factor in restoring the 
function of the epithelial barrier and reducing inflammation. 
It was of therapeutic importance for diseases with barrier 

function including IBD [159]. These studies revealed spe-
cific inflammatory cells and inflammatory cytokines acting 
on the intestinal mucosal ECs. More detailed cell atlas with 
more samples of the two diseases could be constructed in 
the future.

Dermatomyositis

DM is a non-purulent inflammatory lesion mainly involv-
ing the transverse muscle with a predominantly lympho-
cytic infiltrate and may be associated with a variety of skin 
lesions. It is mainly characterized by symmetrical weakness 
of the upper body, often involving multiple organs, and can 
be combined with other connective tissue diseases and even 
tumors.

DM lesions are similar to cutaneous lupus erythematosus 
(CLE) lesions to the extent that they are often indistinguisha-
ble. To identify unique features of both, Tsoi et al. compared 
the transcriptional profiles of DM and CLE lesion tissues to 
identify a potentially novel molecular signature. Previous 
studies have shown that DM and CLE share common IFN-I 
signaling pathways such as IFN-κ upregulation, while at the 
same time, there are other inflammatory pathways present 
in CLE. In addition, they noted that DM lesions can be dis-
tinguished from CLE by a certain genetic biomarker, which 
includes upregulated expression of IL-18. Using scRNA-
seq, they further identified keratin-forming cells as the pri-
mary source of IL-18 increase in patients with DM. This 
study emphasizes the pathogenic role of IL-18 in DM and 
has important clinical significance for differentiating DM 
from CLE [160]. In addition, for a long time, there has been 
a lack of appropriate biomarkers and therapeutic approaches 
to control juvenile dermatomyositis (JDM) due to the poor 
understanding of the cell types that mediate this disease. 
Neely et al. used single-cell sequencing combined with a 
proteomic approach to study immunophenotypes and dis-
ease-related specific genes in PBMC from JDM patients in 
different stages of the disease. They yielded a large amount 
of investigationally significant data. These data provided 
new insights for probing immune dysregulation in JDM 
and new resources for follow-up studies in myositis [161]. 
These studies revealed that upregulation of IL-18 expres-
sion is a characteristic manifestation of DM, and the infiltra-
tion of specialized lymphocytes is also suggestive. Future 
single-cell studies could focus on the differences in cell atlas 
between two different types of DM in adults and juveniles.

IgG4‑Related Diseases

IgG4-related disease (IgG4-RD) is a malignant, infectious, 
and inflammatory disorder mediated by multiorgan immu-
nity. It is characterized by significantly increased serum 
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IgG4 levels. The main pathological features of the disorder 
are lymphoplasmacytic infiltration, storiform fibrosis, and 
occlusive phlebitis [162]. Pharmacological treatments such 
as glucocorticoids are preferred [163], the degree of fibrosis 
is strongly correlated with responsiveness to immunosup-
pressive therapy, and the specific antigens and T cell clones 
responsible for the disease are paramount in elucidating its 
pathogenesis [164].

In an attempt to clarify the transcriptional profiles of 
immune cell subpopulations of IgG4-RD at the level of 
single cells, Wu et al. assessed specific cellular subpopula-
tions and pathways in IgG4-RD PBMCs by using single-cell 
sequencing. They identified relevant cell types and isoforms, 
which strengthened the understanding of transcriptional pro-
files and cellular heterogeneity of IgG4-RD [165]. Mune-
mura et al. used techniques such as scRNA-seq to study cer-
tain immune cells in diseased tissues of IgG4-RD patients 
to identify cellular factors that promote class switching in 
this type of fibrotic disease. Their analyses revealed a sub-
population of IL-10-expressing Tfh cells associated with 
infiltration of affected organs in IgG4-RD patients [166]. 
Li et al. also made use of scRNA-seq analysis of SMG and 
PBMC from IgG4-RD patients and controls. They identified 
three new immune cell subpopulations and a high degree 
of overlap between the B cell and T cell infection-related 
pathways of SMG and PBMC. This work reveals the cellular 
and molecular changes of IgG4-RD at single-cell resolution 
and provides new perspectives on the etiology and thera-
peutic targets of this disease and AIDs in general [167]. In 
conclusion, single-cell sequencing plays an important role 
in revealing the characteristic transcriptional profiles of the 
immune cell subpopulations in IgG4-RD. As storiform fibro-
sis and occlusive phlebitis are also features of IgG4-RD, 
single-cell studies could focus on fibroblasts and vascular 
ECs.

Immune‑Mediated Kidney Disease

Immune-mediated kidney disease is a group of chronic glo-
merular diseases with similar immunopathological features. 
The damage is mainly caused by the deposition of immune 
complexes. And the clinical manifestations include proteinu-
ria, haematuria, edema, and other symptoms of nephropathy. 
This group of diseases includes IgA nephropathy (IgAN), 
lupus nephritis (LN), membranous nephropathy (MN), and 
so on [168].

Tang et al. used scRNA-seq to map the transcriptome 
of IgAN to elucidate the molecular mechanisms of renal 
injury in this disease [169]. Zambrano et al. also made use 
of scRNA-seq analysis of glomerulosa-associated cells in 
IgAN mice in animal experiments, revealing the role of ECs 
in the early pathogenesis of IgAN [170]. Zeng et al. found 
that NK cell numbers and toxicity were reduced in patients 

with IgAN by scRNA-seq of peripheral blood single nucle-
ated cells. They also found that a distinct subpopulation 
of B cells inhibiting NF-κB signaling and a subpopulation 
of monocytes expressing interferon-inducible genes were 
positively associated with disease progression. This study 
successfully revealed early transcriptomic changes in IgAN 
immune cells, providing new perspectives for the identifica-
tion of new biomarkers and treatment of glomerulonephri-
tis [171]. Zheng et al. also used single-cell transcriptomics 
to reveal the immune mechanisms of IgAN, providing an 
advanced idea about the treatment of the disease [172]. In 
addition, Chen et al. found a positive correlation between 
CD163 + dendritic cells (DC3s) and the severity of LN by 
scRNA-seq, making renal DC3 counts a possible indicator 
for guiding therapeutic decisions for patients with LN in 
the clinic [173]. Fava et al. analyzed renal biopsies from 
LN patients by combining single-cell transcriptomics and 
proteomics. They identified a role for IL-16 in the patho-
genesis of LN, providing a potential therapeutic target and 
biomarker for the disease [174]. Fava et al. also integrated 
urine proteomics with renal single-cell transcriptomics to 
define the IFN-γ response gradient in LN, which facilitates 
the identification of immune mechanisms and pathways of 
the disease thereby enabling diagnosis and personalized 
treatment [175]. Tang et al. analyzed the local immune 
response in LN kidneys by single-cell sequencing and spa-
tial transcriptomic analysis and identified a role for APOE 
monocytes, providing a new therapeutic target [176]. What’s 
more, Shi et al. applied scRNA-seq to idiopathic membra-
nous nephropathy (IMN) to reveal the characteristics of 
immune cells in patients’ renal tissues to explore the molec-
ular mechanisms of IMN pathogenesis [177]. Xu et al. also 
made use of scRNA-seq to reveal interactions between renal 
cells in IMN. They characterized the transcriptional profile 
of the disease and identified novel therapeutic targets based 
on an enhanced understanding of the pathogenesis of the 
disease [178]. These studies revealed the role of ECs, NK 
cells, DCs, monocytes, and some inflammatory mediators 
in immune-mediated kidney disease. Cell atlas of different 
subtypes of immune-mediated kidney disease needs to be 
further compared and integrated.

Others

ScRNA-seq analysis of BM cells from T1D model mice by 
Zhong et al. revealed some differences in the diversity of 
immune cells in different populations. They also found that 
the BM neutrophil/B lymphocyte ratio was negatively cor-
related with osteoporosis. This study used scRNA-seq to 
reveal, for the first time, the characteristics and heterogeneity 
of BM immune cells in streptozotocin-induced T1D mice. 
It provided a reference for the treatment of T1D and the 
prevention of T1D-related osteoporosis [179]. To study the 



	 Clinical Reviews in Allergy & Immunology

transcriptome of individual cells in patients with myasthenia 
gravis (MG), Jin et al. used single-cell sequencing to find 
that B cells, CD4 + T cells, and monocytes showed more 
heterogeneity in patients with MG. They also identified a 
subpopulation associated with the disease, CD180- B cells, 
which suggests a higher IgG composition and is associated 
with disease activity and anti-AChR antibodies. This study 
further elucidates the cellular heterogeneity of MG and pro-
vides several specific cellular markers for subsequent stud-
ies [180]. Pan et al. made use of scRNA-seq to study the 
differences and associations between papillary thyroid can-
cer and Hashimoto’s thyroiditis (HT). They found a unique 
molecular signature of predicted copy number changes in 
epithelial and mesenchymal cells in cancer cells, as well as 
an association of tumor-infiltrating B lymphocytes with a 
concomitant HT origin. It facilitates a deeper understanding 
of the two diseases and their differential diagnosis [181]. Lu 
et al. found elevated expression of phosphoglycerate kinase 
1 (PGK1) in CD4 + T cells of myocarditis model mice by 
single-cell sequencing. They speculated that PGK1 may be 
a key regulator of CD4 + T cell metabolism. And they pro-
posed that autoimmune myocarditis can be suppressed by 
inhibiting PGK1 to reprogramme the metabolism of CD4 
T cells [182].

In summary, single-cell sequencing has been widely 
applied to a variety of AIDS. Some representative studies 
are summarized in Table 3.

Limitations and Prospect

Since the first breakthrough in scRNA-seq methods in 2009 
[186], single-cell sequencing has seen tremendous develop-
ments in technology, algorithms, and clinical applications. 
As previously described, single-cell sequencing has evolved 
from a single perspective of the genome, epigenome, tran-
scriptome, and so on to more comprehensive joint multi-
omics analyses and has progressively merged with AI, 
organoid research, third-generation sequencing, and so on, 
providing a powerful tool for life science research. Based 
on the technology’s feature of high resolution at the cellular 
level, it stands out in the field of heterogeneity research. It 
contributes to the construction of cellular maps, the under-
standing of pathogenesis, and the diagnosis, treatment, and 
prognosis of diseases, greatly advancing the progress of 
medical research including AIDs.

Although single-cell sequencing is relatively well estab-
lished and has been widely used in the field of AIDs, there 
are still some limitations and challenges. We propose some 
future directions for research to overcome the ongoing chal-
lenges, to explore the greater potential of the technology in 
AIDs in the following areas.

Limitations

The cost of performing RNA-seq is determined by the type 
and depth of sequencing, the type of library used, sample 
size and quality, and other factors. Currently, the cost of 
scRNA-seq ranges from €1,000 to €9,000 per sample, and 
these costs do not include bioinformatics services [187]. Sin-
gle-cell sequencing does have higher accuracy and reliability 
compared to traditional sequencing, but it is also extremely 
costly due to the complexity of dealing with individual cells 
and the high depth of sequencing. What’s more, in experi-
ments using single-cell sequencing, there is often a high 
noise level in the data due to differences in capture times, 
operators, reagent batches, or equipment and technology 
platforms [188]. Such batch effect can lead to false-positive 
or false-negative results, rendering experimental results 
inaccurate. For example, direct integration analyses of the 
same tissues using two different techniques yielded signifi-
cant differences. However, these differences could be attrib-
uted to differences in techniques rather than the biological 
differences desired by researchers. Data generated by single-
cell sequencing are sparse and noisy, yet rich in information. 
Processing, analyzing, representing, and interpreting these 
data are extremely challenging. Complicated experimental 
operations and data analysis require a high level of opera-
tor expertise, which limits the widespread use of single-cell 
sequencing. The amount of nucleic acid in a single cell is 
also a limiting factor. A single cell contains only about 4–6 
picograms of DNA, whereas the second-generation sequenc-
ing usually requires a hundred nanograms of DNA to start 
with. It is too small to be directly detected by sequencing 
[189, 190].

Enhancing Economic Efficiency

Although the cost of performing individual cells using 
scRNA-seq technology has been significantly reduced, the 
total cost for each sample remains high, which is a major 
limiting factor for the application of the technology. There-
fore, approaches to improve the economics of single-cell 
sequencing would greatly expand its application. Several 
low-cost alternatives through the use of specific libraries 
and extensively optimized sequencing technologies have 
now emerged. Other researchers have suggested that targeted 
RNA-seq is also beneficial in reducing costs if the specific 
transcripts of interest are known in advance [191, 192]. In 
the future, we still need to explore more ways to enhance 
the economic efficiency of single-cell sequencing to address 
biological reproducibility in research and expand its applica-
tion in the field of AIDs.
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Table 3   Some experiments in AIDs based on single-cell sequencing

Disease Researches

Contents Significance

SLE Resolving cellular chromatin accessibility at single-cell resolu-
tion [17]

Uncovering key TFs in PBMCs

Mapping T cell and NK cell populations at single-cell resolution 
[116]

Identifying new biomarkers of disease activity

Analyzing the role of anergic autoreactive B cells in SLE [118] Demonstration of the role of IL-4 and discovery of new biomark-
ers

Analyzing shared genes for SLE and MetS [124] Helping develop a new combined treatment approach
Comparative study of immune cell dysregulation of SLE patients 

[125]
Constructing a DNB model to aid in disease diagnosis and prog-

nosis
Mapping SLE heterogeneity at the level of single cells [130] Further clarification of the origin of transcriptional signatures and 

heterogeneity
Analyzing immune cells and TCR/BCR repertoire at single-cell 

resolution [131]
Revealing the transcriptomic profile of immune cells from SLE 

patients and their immune functions
Investigating the relationship between SLE variants and cell-

specific molecules [132]
Exploring cellular composition, transcriptional profiles, and 

genetic variation associated with SLE
Study of the development of B cells in the BM of SLE patients 

[133]
Revealing immunological features of abnormal differentiation of 

BM B cells in SLE
Integrated analysis of the pathogenesis of SLE in different cell 

populations [134]
Revealing cellular subpopulations associated with transcriptional 

and epigenetic regulation in SLE
RA Analysis of synovial tissue from RA patients at single-cell 

resolution [103]
Facilitating the elucidation of RA pathogenesis

Study of ACPA and RA heterogeneity [110] Highlighting the need for different treatments based on ACPA 
status

Investigating the role of Notch signaling in RA pathogenesis 
[137]

Identifying the critical role of NOTCH3 signaling

Assessment of cellular changes in lymph node sinuses and their 
association with RA development [140]

Identification of a mechanism for cellular interactions during RA 
development

Analyzing the role of synovial tissue macrophages in RA [183] Identifying phenotypic changes over time and a potential thera-
peutic strategy for RA

Analyzing the origin and role of macrophages in RA [184] Revealing the functional diversity of synovial macrophages
SSc Study of markers and pathways associated with SSc damage 

[142]
Identifying two markers of EC in SSc

Study of T cell-mediated immune responses in SSc [143] Discovering a unique T cell population and providing new insights 
into the mechanisms and therapeutics

Analysis of myofibroblast and fibroblast heterogeneity in SSc-
ILD [144]

Identifying the critical role of myofibroblasts in SSc-ILD fibrosis

Multi-omics analysis of the effect of autoantibodies on SSc [185] Demonstrating that autoantibodies can affect certain subtypes
SV Mapping immune cell populations of GCA patients [146] Determining the cellular characteristics of GCA and associated 

treatments
Investigating the role of CD4 + T cells in the pathogenesis of 

GCA [147]
Uncovering the role of CD4 + T cells and suggesting a novel treat-

ment
Determining the pathogenic process of vertebrobasilar aneu-

rysms in patients with PAN [148]
Identifying relevant EC subpopulations

Exploring gene expression and immune response in acute KD 
[149]

Providing insights into the pathogenesis and treatment of KD

Exploring the immune mechanisms of BD pathogenesis [150] Discovery of C1q as a therapeutic target and clinical assessment 
for BD

SS Analysis of SMG in the pSS mouse model [153] Revealing the diversity of immune cell dysregulation in SS
Analyzing immune cell subsets and gene expression in pSS 

patients [154]
Revealing specific immune cell subpopulations and providing new 

targets for pSS
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Supplementing Disease‑Related Cell Atlas 
and Pathogenic Mechanisms

As mentioned earlier, single-cell sequencing has a high 
resolution up to the single-cell level, which can be applied 
to constructing a cellular atlas and explaining disease-
causing mechanisms. Although the cellular maps of 
some diseases have been basically mapped, there are still 
some diseases, especially AIDs with heterogeneity as one 
of their main characteristics, that have yet to be further 
explored. We hope to utilize single-cell sequencing and 

other technologies to continue to explore the cellular het-
erogeneity of AIDs that have not yet been studied or to 
conduct more in-depth studies on AIDs that have already 
been studied like mapping different subtypes or stages of 
the same disease. In recent years, the study of cell atlas 
across tissues has been gradually carried out [193]. Cell 
atlas related to AIDs can also be carried out in this direc-
tion. Supplementing the disease-related cell atlas will help 
to better explain the pathogenic mechanisms of AIDs. For 
these purposes, improving the data analysis capabilities 
of the technology is an important step. Several methods 
have been developed to remove the batch effect [194]. 
What’s more, with the concerted efforts of scientists, many 

Table 3   (continued)

Disease Researches

Contents Significance

IBD Characterization of immune cell populations in IBD patients at 
single-cell resolution [156]

Helping in developing therapies for patients with different types 
of IBD

Exploring the role of GSDMB in IBD [159] Revealing the role of GSDMB in repairing epithelium and elimi-
nating inflammation

DM Comparative study of DM and CLE [160] Highlighting the role of IL-18 and implications for differentiating 
DM from CLE lesions

Identification of cells associated with disease activity in JDM 
[161]

Providing new insights for probing immune dysregulation in JDM

IgG4-RD Assessment of specific cell subpopulations and pathways for 
IgG4-RD [165]

Enhancing understanding of the cellular heterogeneity and tran-
scriptional features involved in the pathogenesis

Investigating cellular drivers of class switching in disease [166] Revealing a new subpopulation of Tfh cells and the process lead-
ing to B cell class switching

Characterization of transcription in affected tissues and cells at 
the single-cell level [167]

Providing valuable insights into disease etiology and therapeutic 
targets

IgAN Analyzing kidney transcription at single-cell resolution [169] Mapping the transcriptome of IgAN
Exploring the mechanisms of IgAN glomerular injury [170] Revealing the role of ECs in the pathogenesis
Exploring transcriptomic changes in IgAN immune cells [171] Providing new perspectives for the identification of new biomark-

ers and treatment of glomerulonephritis
Analyzing immune events in the development of IgAN [172] Revealing the immune mechanisms in the development of IgAN

LN Single-cell analysis of the single-cell landscape of the kidney in 
LN [173]

Providing evidence that renal DC3 counts can be an indicator to 
guide LN treatment

Identifying an IFN-γ response gradient and implicating IL-16 in 
LN [174]

Identifying the roles of IL-16 as well as IFN-γ in LN

Exploring the cellular composition and the cells associated with 
the autoimmune response [176]

Identifying a role for APOE monocytes in LN

MN Showing the immune cell landscape in the kidneys of patients 
with IMN [177]

Revealing characterization of immune cells in renal tissues of 
IMN patients

Analyzing the transcriptomic landscape of IMN at single-cell 
resolution [178]

Revealing interactions between renal cells in IMN

Others Revealing the relationship of BM and osteopenia in STZ-
induced T1D mice [179]

Providing a reference for the treatment of T1D and the prevention 
of T1D-induced osteoporosis

Study of cell populations in patients with MG at single-cell 
resolution [180]

Elucidating the cellular heterogeneity of MG and providing spe-
cific cellular markers

Mapping the transcriptome of papillary thyroid cancer and HT 
[181]

Revealing differences and associations between papillary thyroid 
cancer and HT

Studying the role of PGK1 in CD4 + T cells and autoimmune 
myocarditis [182]

Providing a promising strategy for the treatment of autoimmune 
myocarditis
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methods of data analysis are now available, including prin-
cipal component analysis, neighbor graphs, and clustering 
cells. As mentioned by Kharchenko in his review, differ-
ent methods have their own advantages and disadvantages 
[2]. The direction of future studies could be to integrate 
the advantages of each method and develop user-friendly 
platforms.

Integrating Single‑Cell Sequencing into Routine 
Clinical Diagnostics and Personalized Medicine

With the development of single-cell technology, the cost 
and the ability to analyze data have improved considerably. 
And with the advent of Multiple Annealing and Looping-
based Amplification Cycles, a technological breakthrough in 
single-cell amplification has also been achieved [25]. Single-
cell sequencing has been sufficient for some scientific and 
clinical applications. However, the challenges have not yet 
been completely overcome. For example, the ideal single-
cell whole-genome amplification is one in which every locus 
on the genome is amplified to an equal magnitude and with 
zero allele drop-out rate, but there is no technology that can 
do this yet [25, 27, 79–81]. Lower costs, stronger data analy-
sis tools, and more advanced gene amplification technolo-
gies are key to integrating single-cell sequencing into routine 
clinical diagnostics and personalized medicine for AIDs.

Discovering New Targets and Developing 
the Corresponding Drugs

The ultimate goal of all technological developments is to 
expand their application in the treatment of clinical dis-
eases. Utilizing the extremely high resolution of single-cell 
sequencing technology, many AID-specific targets, includ-
ing key cells, mediators, and conduction pathways, have 
been identified, and corresponding therapeutic drugs have 
been or are being developed, as mentioned in the previous 
section. To discover more targets and develop correspond-
ing drugs, we can develop tools that replace cell culture or 
mouse models, thereby reducing time and economic costs 
for better experimental research.

Performing New Technical Innovations 
and Multi‑omics Combined Analysis

The innovations already available in single-cell sequencing 
have been described, but there are still many aspects that 
can be developed and can be combined with other technolo-
gies to enable multi-omics co-analysis. For example, during 
single-cell sequencing analysis, phenotypic parameters of 
the cell such as the spatial organization or the microenviron-
ment are mostly lost [195], whereas the newly developed 
single-cell spatial transcriptome sequencing measures gene 

expression while preserving the spatial information. We 
can integrate more cellular phenotypic parameters with the 
transcriptome to reconfigure the spatial structure of the cell. 
Jovic et al. in their review mention that combining scRNA-
seq and other genetic screening tools can further expand 
the application of this technology [196], and examples of 
Perturb-seq that can assess the transcriptional effects of 
knocking out multiple genes with CRISPR are also given 
[197]. We believe that more similar combinatorial technolo-
gies will emerge to take single-cell sequencing to the next 
level of application and further dissecting diseases including 
AIDs.

Conclusions

Based on the high-resolution feature of single-cell sequenc-
ing at the cellular level, it stands out in the study of AIDs 
characterized by immune cell heterogeneity. The technology 
has evolved from a single view of the genome, epigenome, 
and transcriptome to more comprehensive joint multi-omics 
analyses. Moreover, it is gradually integrating with AI, 
organoid research, third-generation sequencing, and so on, 
contributing to the construction of cellular maps and the 
understanding of pathogenesis, diagnosis, treatment, and 
prognosis of diseases, which has greatly contributed to the 
advancement of medical research, including that on AIDS. 
If we can continue to promote the integration of single-cell 
sequencing with other technologies to simplify the process 
and reduce the cost, we will be able to further expand the 
application of this technology for the benefit of patients suf-
fering from diseases like AIDs.
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