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Abstract
Eosinophils are often considered as the pathologic landmark of chronic rhinosinusitis with nasal polyps (CRSwNP). Many 
studies emphasize their pivotal role in mucosal remodeling by their innate action via cytotoxic proteins degranulation. 
Eosinophil nasal recruitment from the bloodstream through endothelium diapedeses requires the intricate action between 
the nasal epithelium, epithelial cell-activated type 2 innate lymphoid cells, and adaptive immune cells secreting alarmins, 
cytokines, and specific chemokines. This immune pathway refers to a T-helper 2 (T2)-driven lymphocyte response, often 
considered as the main inflammatory process in CRSwNP in western countries. The release of T2 cytokines, among which 
interleukin (IL)-4, IL-5, and IL-13, fundamentally contributes to this immune response. New biologic agents capable of 
blocking T2 cytokines have been developed in the field of eosinophil-associated diseases, shifting the paradigm of treatment 
for patients with CRSwNP. The first part of this review describes each step of the eosinophil journey from hematopoietic 
stem cell maturation to nasal mucosa homing. The different eosinophil activation processes and their inflammatory functions 
are also described. This is followed by a discussion on currently available biologic therapies in CRSwNP with a specific 
focus on eosinophilic response. Beyond an eosinophil-blocking strategy, a cluster analysis of specific T2 biomarkers could 
be required to best predict the response to such biologic therapies in the future.
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Introduction

Chronic rhinosinusitis with nasal polyps (CRSwNP) is 
a major concern with a prevalence of 2–4% in western 
countries [1]. Symptoms of loss of smell, nasal congestion 
and/or nasal obstruction, and rhinorrhea have a significant 
impact on social and physical quality of life. They also cause 
a significant economic burden due to absenteeism and cost 
of treatment [2]. CRSwNP is associated with bronchial 
hyperreactivity or asthma in 31 to 42% of cases [3]. Non-
steroidal anti-inflammatory drug-exacerbated respiratory 
disease (N-ERD) is also reported in 9.7% of patients [4].

Many pathophysiological mechanisms involving both 
innate and adaptive immune systems have been described 
to explain the persistent inflammation within the nasal 
mucosa [5]. It is believed that the disease originates at 
the epithelial barrier, where it is triggered by a specific 
sinonasal microbiotic environment, under certain genetic 
predisposition and inflammatory conditions [6, 7]. The 
immune response itself then promotes inadequate wound 
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healing of the epithelium, triggering abnormal tissue 
remodeling which leads to polyp formation [8, 9]. The 
intricate mechanistic hypotheses reported in the literature 
underline the important heterogeneity of CRS. The disease 
has multiple clinical presentations and biological features, 
with variable response to treatment (as demonstrated by new 
biologics targeting specific cytokines), shedding light on the 
probable inaccuracy of a single physiopathological model to 
explain chronic sinonasal inflammation [10].

Over the last few years, several studies have been 
conducted to delineate clinical and biological phenotypes 
of CRSwNP in relation with biomarker expression. 
Inflammatory endotypes have been described, with 
Caucasian population prone to lymphocytic T helper type 
2 (Th2) inflammatory pathway (so called T2 inflammation) 
with an eosinophilic-skewed response and Asian population 
prone to Th1 or Th17 inflammatory pathways (T1 and T17 
inflammation) [10]. The differences in biological patterns 
when considering ethnic origin may account for genetic 
factors, as US-second-generation Asians with CRS exhibit 
more non-eosinophilic patterns [11]. Environmental factors 
may also play a role in the inflammatory pattern, as seen 
in Thai patients with CRS symptoms who showed more 
eosinophilic patterns associated with more staphylococcus 
aureus colonization [12].

CRSwNP in the Caucasian population is biologically 
associated with overexpression of relevant T2 cytokines 
(Interleukin (IL)-4, IL-5, IL-13), leading to eosinophil (EO) 
recruitment and activation within nasal polyps. This profile 
is clinically associated with more frequent failure of steroid 
treatment, increase need for surgery to control the disease, 
and more frequent concomitant asthma compared with T1/
T17 “neutrophilic-associated” CRSwNP [1]. The concept of 
“Eosinophilic Chronic Rhinosinusitis with or without Nasal 
Polyps” needs to be refined to account for suspected different 
underlying biological pathways. A minor part of Caucasian 
CRSwNP can exhibit a relatively EO deficient inflammatory 

infiltrate with a predominant T2 cytokine profile. In that 
perspective we should also consider priming and activation 
status of EOs in the bloodstream and nasal mucosa to better 
describe CRSwNP endotypes beyond a given cytokine 
cluster of expression.

In western countries, the EO mediator is always regarded 
as a major actor of CRSwNP inflammation. EOs belong 
to the innate immune system. They account for a small 
proportion of blood leukocytes (<  5%) and are mostly 
tissue-resident cells. The two main roles of EOs have long 
been supposed to be host defense against helminths and 
allergic inflammation maintenance. Several studies have 
brought new insights in the field of EO-associated diseases 
and biology. They allow us to reconsider EOs as pluripotent 
actors in many inflammatory diseases and physiologic 
conditions [13] (Fig. 1).

Our review aims to describe EO involvement in CRSwNP 
when considering cell maturation, nasal homing, cytolytic 
properties. and interaction with the immune system. Each 
step leads to a better understanding of new treatment options 
offered by biologics in nasal polyposis.

From Bone Marrow to Nasal Polyps

EO Development and Maturation

EO lineage commitment has been reviewed by Mack 
et al. in 2020 [14]. Many available results come from 
mice studies and still need to be confirmed in human 
models. Herein, the review will focus on data obtained 
from human EO cell-line studies. Like other leukocytes, 
EOs are generated in the bone marrow from eosinophil 
progenitors (EoPs). These progenitors seem to derive 
from a common myeloid precursor (CMP), although EO 
might possibly derive from earlier progenitors [15]. The 
whole process depends on a precisely tuned combination, 

Fig. 1   Eosinophil effectors 
functions. Eosinophil activation 
is mediated by a wide variety of 
surface receptors that respond to 
diverse stimuli. Upon activa-
tion, eosinophils promote host 
protection via direct effects 
on pathogens or tumoral tis-
sues, immune responses by 
modulation of lymphocyte 
and dendritic cell function, 
and airway inflammation via 
tissue damage, remodeling, and 
mucous hypersecretion. They 
are also involved in homeostatic 
functions (adipose, thymic and 
mammary gland development)

91Clinical Reviews in Allergy & Immunology  (2022) 62:90–102

1 3



in both time and quantity, of non-specific transcription 
factors, including GATA-binding protein transcription 
factors (whose main factor is GATA-1, C/EBP proteins, 
and PU.1) [14] (Fig. 2). According to McNagny et al.’s 
description of EO differentiation from other cell-
lineages via subtle modifications in transcription factors, 
some authors speculate that different inf lammatory 
environments could modify transcriptomic pathways, 
and consequently eosinophilopoiesis at the bone marrow 
level [16]. Along with their role in regulating EO 
differentiation, GATA-1, C/EBP, and PU.1 are involved 
in the transcription of several important EO proteins 
such as Major Basic Protein-1 (MBP-1), Eosinophil 
Peroxidase (EPO), or C-C Motif Chemokine Receptor 3 
(CCR3) [17–19].

EoPs can be defined by a CD34+ IL-5 receptor alpha 
(IL-5Ra)+ CMP phenotype as these cells can only 
differentiate into EOs [15]. The interaction of IL-5Ra 
with its ligand on the EoPs membrane plays a pivotal role 
in EO maturation, proliferation, and survival properties. 
Activation processes through IL-5Ra is also essential 
to promote massive EO migration within tissues under 
inflammatory circumstances, such as CRSwNP [20].

IL-5 production is supported by Th2-cytokine 
secreting cells, mainly innate lymphoid cell type 2 (ILC2) 
and Th2 lymphocytes, but also at the mucosal level by 
mature EOs themselves leading to a self-stimulating 
survival loop under inflammatory circumstances [21, 
22]. IL-5 independent activation pathways have been 
described in IL-5 deficient mice with almost normal 

Fig. 2   Eosinophil journey from bone marrow maturation to nasal 
migration. Eosinophil (EO) develops in the bone marrow. Tran-
scription factor (such as GATA-1, C/EBP proteins and PU.1) and 
cytokines (such as interleukin (IL)-5, IL-3 and GM-CSF) are essen-
tial for its differentiation from CD34+  common myeloid precursor 
(CMP) to IL-5Ra+ eosinophil progenitors (EoP) and mature EO. 
Once mature, IL-5 controls the EO migration from the bone mar-
row to the blood. EO chemotaxis in nasal mucosa is mediated by the 
combination of the local production of cytokines and chemokines 
controlled by alarmins (thymic stromal lymphopoietin (TSLP), IL-25 
and IL-33) secreted by epithelial cells after damage associated molec-
ular pattern (DAMP) release under epithelial barrier dysfunction. 
The expression of homing molecules (Very Late Antigen (VLA)-4, 
CD11a) and of CD44 on the EO surface is required to allow inter-
action with their counter-ligands expressed on inflamed endothelium 
of the nasal mucosa. C-C Motif Chemokine Receptor 3 (CCR3)-
binding eotaxins 1, 2, and 3 are also produced by epithelial cells and 

fibroblasts at baseline and under lymphocytic T helper type 2 (Th2) 
stimulation. Regulated on Activation, Normal T Cell Expressed and 
Secreted (RANTES) and dysregulated prostaglandin D2 (PGD2) 
secretion are involved in the process of EO directional migration into 
the extravascular compartment. IL-4 and IL-13 released by Th2 cells 
and type 2 innate lymphoid cells (ILC2) contribute to EO chemotaxis. 
EO exhibit prolonged survival in nasal mucosa due to their protec-
tion from cell death by locally produced cytokines such as IL-5 and 
GM-CSF. Once activated, EO are able to express cytokines and cyto-
toxic granules proteins. These cytotoxic proteins (Major Basic Pro-
tein-1 (MBP), Eosinophil Peroxidase (EPX), Eosinophil Cationic 
Protein (ECP), Eosinophil Derived Neurotoxin (EDN)) are involved 
in nasal mucosa damage and tissue remodeling. Eosinophil progeni-
tors (EoPs) have been identified in CRSwNP within nasal mucosa and 
might subsequently mature in the presence of a favorable local micro-
environment
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numbers of circulating and tissue-resident EOs, possibly 
via a Macrophage Inflammatory Protein-1 alpha (MIP-1α 
or CCL3)-CCR1 interaction on EoPs [23, 24]. Less 
specific cytokines are also important in promoting EO 
differentiation, proliferation, and activation, i.e., IL-3 
and GM-CSF whose receptors share a common β chain 
subunit with IL-5 and IL-4, leading to EO activation in 
an IL-5-dependant manner [24, 25]. Interestingly, some 
cytokines produced by damaged nasal epithelium seem 
to be involved in EoPs differentiation even before IL-5 
exposure, as for example IL-33 [26].

Both mature EOs and CD34+ IL-5Ra+ EoPs are able 
to migrate from the bone marrow to other extramedullary 
sites via the bloodstream. EoPs could play a direct role 
in eosinophilic inflammation and have been identified 
in CRSwNP within nasal mucosa [27]. EoPs might 
subsequently mature in the presence of a favorable local 
microenvironment, as demonstrated ex vivo in allergic 
nasal mucosa after exposure to IL-5 [28].

Circulating Eosinophils in CRSwNP

Blood EO counts in CRSwNP patients with uncontrolled 
disease, or comorbid asthma stays most of the time within 
normal ranges, compared with healthy patients [29]. On 
the contrary, blood EO counts in some other eosinophilic 
disorders (helminth infection, hypereosinophilic 
syndrome) can easily ascend over 1.5 G/L, making 
eosinophil blood count a poor phenotyping marker 
in eosinophilic chronic rhinosinusitis diagnosis in 
comparison. However, some authors referred to absolute 
blood EO count as a possible prognostic factor of disease 
control, as they hypothesized that it would correlate 
to a lower number of tissue EO, which has yet to be 
demonstrated [30].

Beyond these considerat ions,  other  specif ic 
approaches to blood EO “activated status” could be 
more relevant to describe patient’s inflammatory status. 
Circulating EOs can exhibit an activated phenotype 
as demonstrated by Dupuch and al., with a significant 
increase of EOs expressing activation markers CD49d 
(Very Late Antigen-4 (VLA-4)), CCR3, and CD25 
(IL-2Rα) in patients with CRSwNP, and a higher 
oxidative metabolism compared with control patients 
[31]. Similarly, the activation status of blood EOs based 
on CD69 and CD44 membrane expression cytokines 
can be correlated to concomitant asthma in CRSwNP 
[29]. In a prospective study including patients with 
corticosteroid resistant CRSwNP, we showed that IL-5Ra 
was less expressed on EO membrane in nasal polyps 
of asthmatic patients. No difference was observed for 
IL-5Ra expression on EOs collected from blood samples 
of the two different patient populations [29].

Eosinophil Tissue‑Recruiting Modalities in CRSwNP

EOs are mainly tissue-resident cells with an estimated time 
spent in blood circulation of one day and a tissue lifetime 
believed to last up to several days [32].

After bone marrow maturation and their release into 
the blood stream, EOs are recruited at the level of the 
nasal mucosa where they start to exert their multiple 
functions (Fig. 2). Even though numerous studies tried 
to assess for a diagnostic mucosal EO threshold, there is 
no specific cut-off in quantitative tissue eosinophilia to 
reliably differentiate between eosinophilic CRS and non-
eosinophilic CRS. Even if there is not yet an international 
consensus on the measure, a generally accepted 10% 
ratio of EO in nasal secretions seems to be in favor of 
eosinophilic CRS. A meta-analysis suggested that a 
count of 55 EOs or more per high-power field (× 400 
magnification) on histologic specimens was specific 
enough to define eosinophilic CRS. This result still has 
to be reinforced by future studies as it appeared that 
included studies displayed a wide range of cut-off values 
(from 5 to 120) [33]. A higher tissue EO count could be 
associated with a more aggressive disease and a poorer 
disease outcome [34]. In a prospective study including 
36 consecutive patients who underwent endoscopic 
sinus surgery for CRSwNP resistant to optimal medical 
treatment, we showed that mucosal eosinophilia was a 
marker of concomitant respiratory disease [35].

The expression of homing molecules (VLA-4, CD11a 
(Integrin αL), and of CD44 (Homing Cell Adhesion 
Molecule (H-CAM)) on the EO surface is required to 
allow for adherence onto endothelial cells and diapedesis 
into target tissues. This expression can be further 
modulated to maintain EOs within mucosal tissues after 
transendothelial migration [29]. We also showed that the 
expression of β integrins (VLA-4, CD11a) by EO purified 
from blood samples and nasal polyps of patients with 
steroid resistant CRSwNP was reduced both in asthmatic 
and non-asthmatic patients [29]. EO chemotaxis in nasal 
mucosa is mediated by a combination of locally produced 
cytokines and chemokines controlled by alarmins, 
released by triggered epithelial cells. Thymic Stromal 
Lymphopoietin (TSLP), IL-25, and IL-33 are produced 
after damage associated molecular pattern (DAMP) release 
[36, 37]. CCR3-binding eotaxins 1, 2, and 3 (C-C Motif 
Chemokine Ligand (CCL)11, CCL24, CCL26) are also 
produced by epithelial cells and fibroblasts at baseline and 
under Th2 inflammatory stimulation [38, 39]. Regulated 
on Activation, Normal T Cell Expressed and Secreted 
(RANTES/CCL5) and dysregulated prostaglandin 
secretion with increased chemotactic Prostaglandin D2 
(PGD2) (via Chemoattractant-homologous Receptor 
expressed on TH2 cells (CRTH2) expressed by EOs) and 
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fewer anti-inflammatory Prostaglandin E2 (PGE2) are 
also involved in this process and contribute to upregulate 
the local inflammatory processes [40, 41]. Along with 
their own chemotactic abilities, these chemokines are 
able to promote a pro-Th2 inflammatory environment, 
through ILC2 activation and Th2 lymphocytes recruitment 
[36]. Subsequent production of IL-4, IL-13, and IL-5 
contributes to EO attraction via the upregulation of 
endothelial adhesion markers [36, 42, 43].

EO tissue migration can be described as a stepwise 
procedure. Tethering and rolling are mediated by selectins, 
whereas firm adhesion and extravasation are mediated 
by integrins [44]. Only few studies described the role of 
adhesion molecules during human EO transendothelial 
migration in CRSwNP. Some authors showed that EO 
mucosal infiltration was related to the increased expression 
of Vascular Cell Adhesion Molecule-1 (VCAM-1) in nasal 
polyps [45, 46]. On the contrary Symon et al. showed no 
increase in the expression of VCAM-1 in nasal polyps but 
an overexpression of InterCellular Adhesion Molecule-1 
(ICAM-1), P-selectin, and E-selectin [47]. Patel et al. found 
that EO tethering to IL-4 activated endothelial cells required 
P-selectin and VCAM-1 [48]. More recently, Eweiss et al. 
found that VCAM-1 expression was increased on nasal 
polyps vessels compared with the mucosal surface of healthy 
patients. This upregulated expression of VCAM-1 did not 
statistically correlate with the importance of EO mucosal 
infiltration and was comparable between nasal polyp tissue 
and inferior turbinate mucosa [49].

Eosinophil Behavior in CRSwNP Mucosal Settings

EOs exhibit many roles in CRSwNP pathophysiology: 
cytotoxic function, immunoregulation, and chemotaxis 
(Fig. 1). Some are well-described, others are still in debate. 
Many hypotheses supporting EO pivotal role in CRSwNP 
are based on the analysis of biomarkers expression from total 
nasal polyp homogenates. Mechanistic assumptions may be 
incomplete and need to be considered with caution.

EOs can secrete multiple well-known cytotoxic cationic 
proteins (Major Basic Protein-1(MBP), Eosinophil 
Peroxidase (EPX), Eosinophil Cationic Protein (ECP), 
Eosinophil Derived Neurotoxin (EDN)) and reactive oxygen 
species (ROS) and more than 30 cytokines, chemokines, and 
growth factors involved in immunoregulation (Th1 cytokines 
(Interferon gamma, IL-12), Th2 (IL-5, IL-4, IL-13, IL-9) 
but also tumor necrosis factor alpha (TNFα), IL-6, IL-10, 
proliferation-inducing ligand (APRIL), tumor necrosis factor 
(TGF)-β, and vascular endothelial growth factor (VEGF)) 
[50].

All of these molecules are stored within large, 
dense granules called “specific granules,” distinct from 
smaller “primary granules” containing Charcot-Leyden 

crystal protein (also known as Galectin-10), lipid bodies 
producing eicosanoids, including cysteinyl leukotrienes, 
prostaglandins, and thromboxanes [51]. Storages 
within granules, along with transcription of preformed 
cytoplasmic mRNA, enable pro or anti-inflammatory 
responses, with a fast release of preformed mediators after 
EO stimulation by either cytokines, immunoglobulins, 
platelet activation factor, or pattern recognition receptors 
[52–55]. Several ways of granule releasing have already 
been described [56] (Fig. 3):

•	 Compound exocytosis is a common cell mechanism 
leading to the fusion of secretory vesicles with the 
membrane and exteriorization of the granule contents.

•	 Cytolysis, with liberation of intact granules, able to 
release their cytotoxic activities inside the inflamed 
tissue long after the death of the EO.

•	 Piecemeal degranulation (PMD), an intriguing 
mechanism of specific-granule-content delivery, with 
differential secretion within EO granules, therefore 
leading to a precise cytokine-specific secretion despite 
heterogeneous granule contents.

•	 “ETosis,” for extracellular DNA traps, is a recently 
described mechanism during which EOs release DNA 
“nets” associated with granule contents, either in an 
eosinophil-living mechanism involving mitochondrial 
DNA or a non-apoptotic cell-death mechanism involving 
nuclear DNA [57, 58]. ETosis can be triggered by 
lipopolysaccharide (LPS), complement factor 5a, 
eotaxin, or TSLP exposure and seem to be involved in 
the mechanism of antibacterial defense but can also 
promote inflammatory maintenance, acting as a DAMP 
[59]. ETosis could be compared with formerly described 
cytolytic EOs, found in tissue sections, and associated 
with free functional granules.

Degranulating patterns are mostly CD63-associated 
regulated mechanisms, as EO stimulation with eotaxin1/
CCL11 seems to promote PMD, whereas stimulation with 
TNFα seems to induce preferentially exocytosis [60].

As EOs mainly exhibit secreting functions, degranulation was 
studied in several studies, on small populations of patients with 
CRS. Armengot et al. studied EO degranulation on 582 EOs 
from nasal polyps of 36 patients using electronic transmission 
microscopy [61]. They showed that 30% of EO were inactive; 
42% exhibited signs of piecemeal degranulation. Cytolysis 
involved 27% of EOs and could eventually be related to ETosis 
phenomenon. In that study, apoptosis was negligible (0.3% of 
EOs). The degranulation process can be initiated in IL-3 or 
IL-5 primed EOs (EOs that have been in contact with IL-3 and 
IL-5) after interacting with IgG, IgA and IgE antibodies, CCR3-
binding eotaxins, RANTES or Monocyte Chemoattractant 
Protein-4 (MCP-4), complement components, or fibrinogen 
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[53, 62–65]. However, as most of those results derive from 
in vitro models, they must be considered with caution as they 
do not reflect in vivo interactions within intricate inflammatory 
environments. So far, no study focused on degranulation patterns 
frequency and their relationship with disease severity.

Extracellular release of cytotoxic proteins is suspected to 
play a role in nasal mucosa remodeling, as blood and tissue 
overexpression of specific cytotoxic proteins from activated 
EO is associated with mucosal disease severity [66]. Tsuda 
et al. described that in vitro exposure of epithelial cells to 
EDN affected the epithelium to mesenchymal transition 
pathway with overexpression of Matrix MetalloProteinase-9 
(MMP-9) mRNA. As EDN and MMP-9 are abundant 
in nasal polyps, they suggest that EDN could play a role 
in CRSwNP airway remodeling [67]. This hypothesis is 
concordant with a previous study analyzing in vitro impact 
of ECP on bronchial epithelial cell remodeling where 
overexpression of endothelin-1, TGF-alpha, TGF-beta1, 
platelet-derived growth factor (PDGF)-beta, epidermal 
growth factor (EGF) receptor, MMP-9, fibronectin, and 
tenascin were observed [68]. EDN also seems to act as an 
alarmin, attracting dendritic cells and maintaining a pro-Th2 
environment [69].

Eosinophil extracellular trap formation or ETosis is a 
recently described EO function. It was observed in nasal 

secretions, partly explaining their viscosity in CRSwNP 
due to their high DNA and protein concentrations, and 
trapping pathogens to facilitate their clearance [57]. ETosis 
can be activated in primed EOs by TSLP, complement 
factor 5a, LPS, and eotaxins [70, 71]. ETosis association 
with staphylococcus aureus antigens is interesting as 
staphylococcal-associated IgE production has been widely 
described as a keystone for CRSwNP onset [72]. ETosis was 
observed in 8.8 ± 4.8% of nasal EOs and was associated 
with increased expression of both IL-5 and periostin along 
with higher levels of staphylococcus aureus colonization 
[73]. Ex vivo procedures with exposure to staphylococcus 
aureus at the epithelial barrier showed a significant increase 
in immediate ETosis. The same results were observed with 
staphylococcus epidermidis when incubated with TSLP 
[70]. As a consequence, ETosis seems to be associated with 
disease severity in both eosinophilic chronic rhinosinusitis 
and non-eosinophilic chronic rhinosinusitis [74].

Along with their secretory abilities, EOs play a role in 
chemotaxis [44]. They are able to locally attract other cells 
involved in the mucosal inflammatory response, including 
Th2 lymphocytes, neutrophils, dendritic cells or monocytes/
macrophages via MBP-1, cationic proteins, or chemokines 
releasing [21, 69, 75, 76]. EO-produced CCL23 could also 
attract macrophages, monocytes, and dendritic cells locally 

Fig. 3   Processes of eosinophil granules secretions. Resting eosinophil 
shows the cytoplasm packed with granules full of contents with typi-
cal morphology. Each granule has a central dense core surrounded by 
a delimiting membrane a. Eosinophils may secrete their granule pro-
teins by classic exocytosis (individual granule fusion with the plasma 
membrane and release of the total granule content) or compound 
exocytosis (intracellular granule–granule fusion before extracellu-
lar release) b, piecemeal degranulation (vesicular transport of small 
packets of materials from the secretory granules to the cell surface) 

c, ETosis (intact granules entrapped in web-like extracellular DNA 
traps) d, and/or cytolysis (extracellular deposition of intact granules 
upon cell lysis) e. More than one process can be involved in inflam-
matory responses. Storages of proteins (enzymes, cytokines, growth 
factors, and chemokines) within granules, along with transcription 
of preformed cytoplasmic mRNA, enable pro or anti-inflammatory 
responses, with a fast release of preformed mediators after EO stimu-
lation
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[21]. EOs can also play a minor antigen-presenting role, 
can contribute to prolonged B cell survival, and can support 
efficient IgA class-switching via APRIL secretion [77, 78].

EOs are also involved in tissue homeostasis and 
regeneration via regulatory and anti-inf lammatory 
mechanisms [79]. They are consistently found in tissues with 
high epithelial cell turnover and major stem cell activity 
(small intestine, uterus, bone marrow, adipose tissue) [80]. 
The Local Immunity And/or Remodeling Repair (LIAR) 
hypothesis described by Lee et al. accounts for the nuanced 
EO role in both healthy and diseased patients. Instead of 
EOs exclusively mediating innate host defense, the authors 
suggested that accumulating tissue EOs become regulators of 
LIAR in both healthy and pathologic conditions [81]. Such 
hypotheses could be supported by variations in the local 
cytokine environment, differential effects on inflammatory 
and anti-inflammatory processes, or heterogeneous EO 
subpopulations [82, 83].

From Pathophysiology to Biologic Therapies 
in CRSwNP

Over the last 15 years, biologic therapies targeting EOs 
markers and T2 inflammation pathways have been developed 
to target life-threatening eosinophilic disorders, like 
hypereosinophilic syndromes or severe asthma. Consisting 
of monoclonal antibodies (mAb), these molecules have also 
been thoroughly evaluated in other eosinophilic disorders 
such as atopic dermatitis, eosinophilic esophagitis, and 
subsequently in eosinophilic CRSwNP [84] (Fig. 4). Pro-
T2 inflammatory profiles have been associated with medical 
and surgical failure in CRSwNP [85]. Biologics offer new 
therapeutic options when both steroids and endoscopic 
sinus surgery are insufficient to control disease severity and 
improve quality of life in the long term.

Anti‑immunoglobulin E

Anti-IgE mAb (omalizumab) was first used in asthmatic 
patients, but quickly assessed in CRSwNP as a high 
production of IgE can be found in nasal polyps, 
independently of associated allergy [86]. The therapeutic 
potential of omalizumab was reinforced after studies 
reported higher concentrations of staphylococcus aureus 
enterotoxins IgE in nasal polyps [87]. In small randomized, 
double-blinded, placebo-controlled studies, patients treated 
with anti-IgE mAb showed an improvement in CRS-related 
symptoms and endoscopic nasal polyp score (NPS), with 
decrease use of local steroid [88, 89]. Recently, 2 phase III 
trial studies including respectively 138 and 127 patients 

showed that omalizumab significantly improved endoscopic 
findings, clinical symptoms, and patient-reported outcomes 
in severe CRSwNP with resistance to optimal medical 
treatment [90]. No change in blood EO count was reported 
in these studies (Table 1).

Anti‑Th2 Cytokines (IL‑5, IL‑4, IL‑13)

Improvement in CRSwNP symptoms and/or radiologic score 
and/or nasal polyp size and/or surgery incidence has been 
described with anti-Th2 cytokines biotherapies [91–95]. 
The promising results of these double-blinded placebo 
controlled studies have been summed up in a review and a 
recent Cochrane analysis [96, 97].

Anti-IL-5 drugs have proved to be broadly effective with 
a decrease in blood EO count when patients are treated with 
rezlizumab and mepolizumab (Table 1). Immunomodulation 
of neutrophil-mediated inflammatory response was also 
suggested with decrease in serum IL-6, myeloperoxidase 
(MPO) and IL-1β levels (Table 1). The variable response 
to anti-IL-5 monotherapies in CRSwNP could be explained 
by a lower expression of IL-5R transmembrane protein in 
tissue eosinophils inside nasal polyps, possibly mediated by 
transcription modifications following GM-CSF and/or IL-3 
and/or IL-5 stimulation [29, 98–100]. An increase in soluble 
IL-5Ra via a proteinase-mediated mechanism, or possibly 
via endocytic process of the whole receptor, has been 
advanced to explain these results [98, 101]. The findings 
of a multicentric randomized, double-blinded, placebo-
controlled study with benralizumab (anti IL-5R) are still 
pending (OSTRO Clinical Trial Number: NCT03401229). 
Benralizumab is a humanized monoclonal antibody that 
targets the IL-5Ra chain. Unlike targeting soluble IL-5, this 
agent can induce antibody-dependent cellular cytotoxicity 
(ADCC) that can result in EO depletion.

Antibodies targeting the alpha subunit of IL-4 and IL-13 
receptors show the most promising results in CRSwNP. 
Two multicentric randomized, double-blinded, placebo-
controlled studies including respectively 276 and 447 
patients demonstrated a significant improvement of CRS-
related symptoms with a reduced polyp size and improved 
CT opacification [95]. A transient and non-significant 
increase in blood EO count was reported in both SINUS-24 
and SINUS-52 studies. This is consistent with the hypothesis 
that dupilumab blocks EO nasal migration by inhibiting the 
production of EO-activating chemokines via a Th2 pathway 
(Table 1; Fig. 4).

Ongoing Development of Targeted Therapies

Other targeted molecules are engineered to block EO 
functions at different levels (activation phase, homing stage, 
and degranulation) (Table 2):
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A phase III clinical trial with oral anti-CCR3 treatment 
in patients with asthma or eosinophilic bronchitis 
demonstrated no clinical improvement despite high EO 
blood counts [102]. More recently, R321, a CCR3-binding 
inhibitory peptide scaffold with nanoparticles showed some 
efficiency in blocking EO recruitment in blood and airways, 
and decreasing airway hyperresponsiveness in a mouse 
eosinophilic asthma model [103].

Bertilimumab blocking Eotaxin1/CCL11 pathway has been 
evaluated in a phase IIa clinical trial on patients with pemphigus 

or pemphigoid auto-immune skin diseases associated with 
severe skin hypereosinophilia (Clinical Trial Number: 
NCT02226146). Results were promising with a substantial 
improvement in disease activity after only 3 doses, pushing 
for further studies to clarify the exact impact of bertilimumab.

Siglec-8 is a surface receptor expressed only on mature 
EOs, basophils, and mast-cells. Siglec-8 activation by its 
sialoglycan ligand induces EO apoptosis, thus making 
Siglec-8 an interesting target in eosinophil-mediated diseases. 
AK002/Antolimab, an anti-Siglec 8 antibody, is capable of 

Fig. 4   Mechanism of action of biologic therapies for treatment of 
CRSwNP. Some agents target immunoglobulins (Ig) (omalizumab), 
cytokines (mepolizumab, reslizumab), or chemokines (bertilimumab). 
Others target lymphocytic T helper type 2 (Th2), type 2 innate lym-
phoid cells (ILC2), or eosinophil (EO) surface receptors (respectively 
dupilumab, benralizumab, and anti-Siglec-8 mAb). Omalizumab 
binds to soluble IgE produced by B cell and blocks IgE interaction 
with mast cell and basophil via the high-affinity receptor for the Fc 
region of immunoglobulin E (FCɛRI). Mepolizumab and reslizumab 
target soluble interleukin (IL)-5, whereas benralizumab targets the 
IL-5 receptor alpha chain (IL-5Ra) reducing EO activation and sur-

vival. Dupilumab targets the IL-4 receptor alpha chain (IL-4R) and 
blocks the downstream signaling of IL-4 and IL-13 (i.e., release of 
eotaxin and thymic stromal lymphopoietin (TSLP) by the nasal epi-
thelium, skewed-Th2 differentiation of naive helper T cell (Th0), 
activation and differentiation of B cells into plasma cells, tuning of 
ILC2). Anti-Siglec-8 mAb induce antibody-dependent cellular cyto-
toxicity activity (ADCC) leading to EO depletion. Tezepelumab binds 
to TSLP consequently reducing EO chemotaxis in nasal mucosa and 
type 2 cytokines release. Bertilimumab blocks eosinophil chemotaxis 
via eotaxin1/CCL11 pathway
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inducing apoptosis and NK cell-dependent antibody-derived 
cytotoxicity on IL5-primed EOs in the bloodstream as well 
as on EOs collected from human lungs [104]. A multicenter 
phase II randomized, double-blinded, placebo-controlled trial 
evaluating this treatment in eosinophilic gastritis showed 
histologic and symptomatic improvements [105].

Anti-GM CSF monoclonal antibody KB003 was tested 
on patients with uncontrolled asthma. The primary outcome 
was Forced Expiratory Volume1 (FEV1) after 6 months of 
treatment, and secondary outcomes included exacerbation 
rate, general control of asthma, and safety of use. No statistical 
differences were found between the treatment group and the 
placebo group, except for patients with baseline blood EO 
count ≥ 0.3 G/L in the KB003 group [106].

Several clinical trials using blocking monoclonal 
antibodies against alarmins are in being conducted in 
refractory asthma but also in CRSwNP. Tezepelumab, a 
monoclonal antibody targeting TSLP, showed a decrease 
in asthma exacerbations compared with placebo in patients 
with uncontrolled asthma in a phase II clinical trial [107].

Perspectives

Describing the specific roles of EOs in CRSwNP is a 
challenging task, as nasal polyps are complex and heterogeneous 
inflammatory microenvironments harboring multiple 
inflammatory cells with intricate functions. Within the nasal 

mucosa, EOs can express either innate cytotoxic functions 
or immunoregulatory functions through different secretory 
pathways. The exact triggers of EO activation within the nasal 
mucosa and their impact on disease severity remain unclear. 
This may in part explain some heterogeneous results observed 
in recent clinical trials, as we can presume that EO role is 
incompletely understood. Another point of complexity is the 
intertwined inflammatory pathways involved in inflammatory 
mucosal diseases. EOs are one of the actors of a complex process 
but it would be a mistake to picture them as the major player of 
the equation. From a clinical standpoint, it seems that multi-
treatment approaches using biologics hold the most promising 
candidates to effectively target all aspects of the inflammatory 
response in patients with CRSwNP.

From a research and development perspective, a more 
functional approach to the behavior of EOs in the bloodstream 
and in tissues would be of great help to delineate specific 
target mechanisms. Many research teams now try to conduct 
large proteomic and transcriptomic analyses off nasal polyps 
in order to extrapolate EO functions in CRSwNP. Meanwhile, 
EO isolation and purification from tissues are still not easy to 
achieve. In vivo studies using animal models are only partially 
adequate, as EOs can exhibit functional differences between 
species. Finally, in vivo analysis of human EOs requires large 
blood samples and fresh nasal mucosal tissue, which could be 
considered invasive from an ethical standpoint.

Development of new in vivo study models, such as nasal 
mucosa organoids, could be important tools to better understand 

Table 1   Biological findings of randomized, double-blinded, placebo-controlled studies with monoclonal antibody therapies in CRSwNP [88–95]

BEC blood eosinophil count, ECP eosinophil cationic protein, EO eosinophil, MPO myeloperoxidase, NI not investigated

Type of biologics Level of 
evidence

Subjects Biological findings in the treatment group

Anti-IgE Pinto et al. [88] 2b 14 patients with CRS received omalizumab 
(n = 7) or placebo (n = 7)

No change in EOs counts in nasal lavage

Gevaert et al. [89] 2b 24 patients with CRSwNP + asthma received 
omalizumab (n = 7) or placebo (n = 7)

No change in BEC

Gevaert et al. [90] 1b 138 CRSwNP patients received omalizumab 
(n = 72) or placebo (n = 66) (POLYP-1)

127 CRSwNP patients received omalizumab 
(n = 62) or placebo (n = 65) (POLYP-2)

NI

Anti-IL-5 Gevaert et al. [91] 2b 24 CRSwNP patients received rezlizumab 
(n = 16) or placebo (n = 18)

Significant decrease of BEC, serum ECP, 
soluble IL-5Ra and nasal ECP

Gevaert et al. [92] 2b 30 CRSwNP patients received mepolizumab 
(n = 20) or placebo (n = 10)

Significant decrease of BEC, serum soluble 
IL-5Ra and nasal IL6, MPO, IL1β

Bachert et al. [93] 1b 105 CRSwNP patients received mepolizumab 
(n = 54) or placebo (n = 51)

Decrease of BEC without correlation to 
responder rate

Anti-IL-4/IL-13 Bachert et al. [94] 2b 60 CRSwNP patients treated with dupilumab 
(n = 30) or placebo (n = 30)

Significant decrease of serum total IgE and 
eotaxin-3

Transient increase of BEC
Bachert et al. [95] 1b 276 CRSwNP patients treated with dupilumab 

(n = 143) or placebo (n = 133) (SINUS-24)
448 CRSwNP patients treated with dupilumab 

(n = 295) or placebo (n = 153) (SINUS-52)

Constant decrease of serum total IgE, 
eotaxin-3, periostin and nasal ECP, IL-5, 
total IgE, eotaxin-3

Transient increase of BEC
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the role of EOs in CRSwNP. This review calls for collaborative 
thinking in the fields of proteomic analysis, cellular studies, and 
new in vivo research models to improve our understanding of 
this complex but fascinating disease.
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