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Abstract
The aryl hydrocarbon receptor (AHR) is widely expressed in immune and non-immune cells of the gut and its activation has been
correlated to the outcome of inflammatory bowel diseases (IBD). In ulcerative colitis and Crohn’s disease, there is an excessive
chronic inflammation with massive accumulation of leukocytes in the gut, in an attempt to constrain the invasion of pathogenic
microorganisms on the damaged organ. Accordingly, it is known that dietary components, xenobiotics, and some chemicals or
metabolites can activate AHR and induce the modulation of inflammatory responses. In fact, the AHR triggering by specific
ligands during inflammatory conditions results in decreased IFNγ, IL-6, IL-12, TNF, IL-7, and IL-17, along with reduced
microbial translocation and fibrosis in the gut. Moreover, upon AHR activation, there are increased regulatory mechanisms such
as IL-10, IL-22, prostaglandin E2, and Foxp3, besides the production of anti-microbial peptides and epithelial repair. Most
interestingly, commensal bacteria or their metabolites may also activate this receptor, thus contributing to the restoration of
gut normobiosis and homeostasis. In line with that, Lactobacillus reuteri, Lactobacillus bulgaricus, or microbial products such as
tryptophan metabolites, indole-3-pyruvic acid, urolithin A, short-chain fatty acids, dihydroxyquinoline, and others may regulate
the inflammation by mechanisms dependent on AHR activation. Hence, here we discussed the potential modulatory role of AHR
on intestinal inflammation, focused on the reestablishment of homeostasis through the receptor triggering by microbial metab-
olites. Finally, the development of AHR-based therapies derived from bacteria products could represent an important future
alternative for controlling IBD.
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Introduction

The aryl hydrocarbon receptor (AHR) that belongs to the fam-
ily of the basic helix-loop-helix/Per-Arnt-Sim proteins [1] is
widely expressed on vertebrate cells [2]. It recognizes and
metabolizes a wide range of molecules that include mainly
xenobiotic compounds, some chemicals such as 6-
formylindolo (3, 2-b) carbazole (FICZ), polycyclic aromatic
hydrocarbons like 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD) [3], and the environmental contaminant dioxin,

present in cigarette smoking [4]. After ligand binding, the
cytoplasmic AHR translocates to the nucleus, where it triggers
the transcription of several genes related to the metabolism of
the recognized compounds. There is an activation of the en-
zymes of cytochrome P450 family 1A1 (CYP1A1) which
metabolizes the receptor ligands, permitting a feedback mod-
ulation of AHR-induced responses. Then, following receptor
triggering, the cells express the P450 enzymes to reduce the
ligands’ availability, thus terminating the receptor activation
[5].

AHR has been implicated in many immune or inflamma-
tory processes, such as those presented in cardiovascular dis-
eases [6], multiple sclerosis [7], rheumatoid arthritis [8], de-
pression, obesity [9], and allergic responses, among others.
Then, there have been some attempts to develop novel treat-
ments for constraining inflammation, focused on AHR activa-
tion. For example, a new approach has been used based on a
nonsteroidal topical anti-inflammatory drug able to modulate
AHR. This drug, named Tapinarof, led to great improvement
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in atopic dermatitis [10, 11]. In addition, gut bacteria or its
metabolites may also trigger AHR responses. In line with that,
a recent study demonstrated that the administration of AHR
agonist or a Lactobacillus strain able to produce AHR ligands
ameliorated alterations related to metabolic syndrome, which
was shown to be associated with an impaired capacity of the
gut microbiota to metabolize tryptophan into AHR agonists in
mice and humans [12].

Despite the toxic effects triggered by its major ligands, it is
clear that the receptor plays a relevant role in the modulation
of inflammatory responses, especially on the intestinal muco-
sal surfaces. Indeed, many leukocytes such as macrophages
[13], dendritic cells [14], T lymphocytes [15], and innate lym-
phoid cells [16] express AHR and therefore its activation may
significantly influence the ongoing immune reactions, since
many genes including those related to cytokine expression,
have dioxin-response elements [17, 18]. Hence, studies have
focused on the role of AHR ligands in the resolution of in-
flammatory diseases.

Inflammatory Bowel Diseases and AHR

Inflammatory bowel diseases (IBD) such as Crohn’s disease
(CD) or ulcerative colitis (UC) are disabling conditions of the
gut, developed as a result of the interaction among loss of
tolerance, genetic predisposition, and environmental triggers
[19]. In this scenario, there is dysregulation of innate and T
cell responses with impaired influx or function of regulatory
cells [20], together with a significant local dysbiosis. In the
intestine, a large number of microorganisms coexist and par-
ticipate in the organ development, maturation, and modulation
of host responses. This complex and dynamic microbial eco-
system may be modified by genetic factors of the host [21],
infections, use of antibiotics, diet, and environmental stimuli
[19].

The AHR expression influences the establishment of mi-
crobial community in the gut [22]. For example, the ingestion
of 2,3,7,8-tetrachlorodibenzofuran (TCDF), which activates
the receptor signaling, led to disrupted mice metabolism and
altered the microbiota–host homeostasis, including the intes-
tinal bacteria composition [23]. Hence, it is plausible to as-
sume that the interaction between this receptor and intestinal
microorganisms interferes in the mucosal immunity regula-
tion. Indeed, AHR plays a protective role in gut inflammation,
as described in most studies until now.

Since dysbiosis plays a central role in the development of
Crohn’s disease and ulcerative colitis, the manipulation of gut
microbiota has been exploited for the development of new
therapies for these diseases. Accordingly, we proposed that
the downregulation of the gut inflammation could occur by
the AHR activation with commensal bacteria or its metabo-
lites, with subsequent recovery of the normobiosis and muco-
sal homeostasis. Indeed, many probiotics are derived from

these microorganisms that inhabit the healthy human gut.
Thus, species such as Lactobacillus and Bifidobacterium
could represent an important adjuvant (but not substitutive)
approach to the conventional therapies, especially for UC
[24, 25], while the benefits for CD are still not clear [26,
27]. Therefore, here we raise the discussion on the benefits
of activating AHR by bacteria derived from the commensal
microbiota and on the modulation of human intestinal inflam-
mation. However, while the effectiveness of these agents
seems promising and a wide range of data for mouse interven-
tion can be found, more clinical studies are needed to under-
stand not only their mechanisms of action but also their effects
on human gut immunity, especially regulatory responses acti-
vated by AHR pathways.

AHR in the Gut Barrier and the Initial Inflammatory
Triggers

AHR may play different roles in the inflammatory responses,
depending on the cells, tissues, or organs where the receptor is
expressed, such as in the gut. The intestinal epithelial barrier is
one of the first innate protections against pathogen invasion
due to its essential role in gut anatomy. Together with the
subjacent immune effectors, it permits the interaction with
food antigens, besides the discrimination between invaders
and commensal microorganisms that inhabit the gastrointesti-
nal tract [28].

In intestinal epithelial cells (IECs), AHR pathway is re-
quired for the development of this population from local stem
cells [29]. Also, the lack of this receptor compromises Goblet
cells and the mucus production and increases the microbial
translocation to other anatomical sites [30]. In experimental
colitis, an AHR agonist,β-naphthoflavone, attenuated the dis-
ease and reduced the responses of human epithelial colonic
cells induced by LPS treatment, indicating that the AHR acti-
vation in epithelia may, in fact, represent an important mech-
anism to regulate gut inflammation [31]. Moreover, in epithe-
lial cells, the AHR ligand FICZ reduced the IL-7 production
and ameliorated experimental colitis by decreasing the fre-
quency of activated intraepithelial lymphocytes (IEL) associ-
ated with the gut barrier and inflammation development
(Fig. 1) [32].

On the contrary, the lack of AHR or their ligands compro-
mises the epithelial barrier, since this receptor controls the
bacterial load, likewise the IEL frequency in the gut [33].
Interestingly, CD8αα+TCRαβ+ IELs become resistant to ap-
optosis simultaneously to the upregulation of AHR and IL-15
receptor after FICZ treatment in an experimental colitis mod-
el. Upon AHR activation, these cells also produced higher
amounts of IL-10 and lower IFN-γ [34], indicating a novel
pathway to be explored in future development of IBD
therapies.
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AHR in the Balance of Adaptive Immunity: From
Inflammation to Tolerogenic Responses

During experimental gut inflammation, AHR expression is
increased in an attempt to constrain the detrimental conse-
quences of colitis. Mice treated with dextran sulfate sodium
(DSS) 3% showed augmented expression of AHR than those
treated with DSS 2%, which in turn is higher than in healthy
mice, like a dose-response expression of the receptor, depen-
dent on the gut inflammation imbalance [31]. Moreover, upon
the breakdown of mucosal tolerance, the exacerbated immune
response that underlies gut damage is driven by complex in-
teractions between components of the innate and adaptive
immune responses including neutrophils, macrophages, T
lymphocytes, and inflammatory mediators, such as cytokines
and eicosanoids [35], whose production may be altered by
AHR activation. Indeed, the mice pretreatment with TCDD
was protective against the harmful DSS effects and controlled
the intestinal inflammatory reactions by a mechanism depen-
dent on prostaglandin E2 production in the gut [36].
Furthermore, besides lipid mediators, the balance between

effector T helper and regulatory cells (Tregs), which usually
constrains excessive inflammatory conditions, is essential to
determine the homeostasis in the intestinal mucosa and IBD
outcome in affected subjects [37].

In general, the AHR activation constrains T cell responses
and contributes to the inflammation control [38]. For example,
in mice exposed to the colitogenic DSS, the AHR triggering
by the dioxin TCDD restored the Th17/Treg ratio by
inhibiting Th17 proliferation and inducing Treg differentiation
[39]. Similarly, the AHR ligand 3, 3′-diindolylmethane (DIM)
alleviated experimental colitis induced by oxazolone through
reducing the Th2/Th17 cells and increasing Tregs [3]. In the
2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced gut in-
flammation, the administration of TCDD by gavage, prior to
the enema with TNBS, inhibited the response mediated by IL-
6, IL-12, IFN-γ, and TNF, besides inducing an increase in
Foxp3+ Tregs in the gut (Fig. 1) [18]. Moreover, the AHR
agonist 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid
methyl ester (ITE) was able to suppress effector cells and
induce regulation by CD39 and granzyme B in an in vitro
approach, along with the amelioration of experimental colitis

Fig. 1 The activation of aryl hydrocarbon receptor (AHR) controls
intestinal inflammation. AHR is expressed by leukocytes and non-
immune cells of the gut. Its activation by diverse ligands such as
xenobiotics and dietary products results in the suppression of
inflammatory responses, with reduction of cytokines such as IFNγ, IL-
6, IL-12, TNF, IL-7, and Th17 reactions, along with a decrease in
microbial translocation and collagen synthesis or fibrosis in the gut. On

the contrary, upon AHR triggering, there is an augment in regulatory
mechanisms mediated by IL-10, IL-22, prostaglandin E2 (PGE2), and
Foxp3 (Tregs), besides anti-microbial peptides and restoration of the
epithelial integrity. DC: dendritic cells; ILC: innate lymphoid cells; NK:
natural killer; m : macrophages; CD4: CD4 T lymphocytes; CD8: CD8 T
lymphocytes; Treg: regulatory T cell; B: B lymphocytes
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in a humanized mice model, through reestablishment of im-
mune tolerance in the intestine with Tregs [40]. In accordance,
induced Tregs express AHR and this receptor is important to
the accumulation of this population as well as its function in
the gut (Fig. 1). In fact, the activation of AHR in Tregs
protected against experimental T cell-mediated colitis [41].
In line with that, one of the drugs widely used for IBD treat-
ment, mesalamine, plays an anti-inflammatory role in colitis
by activating the AHR pathway and inducing Tregs in the
colon via activated TGF-β [42]. Thus, a large body of evi-
dences indicates that the AHR activation by ligands could be
an alternative approach to the intestinal inflammation control,
through the generation of regulatory mechanisms.

The IL-22 cytokine, produced by CD4+ T cells and innate
lymphoid cells (ILCs), plays a protective role in gut inflam-
mation as well, mainly by maintaining the integrity of the
intestinal epithelium and inducing anti-microbial peptides,
which control bacterial translocation in dysbiosis.
Considering the relationship between AHR and IL-22, mice
injected with the ligand FICZ showed regulation of the exces-
sive inflammation in experimental colitis, by mechanisms de-
pendent on goblet cell differentiation [30] and on protective
responses mediated by this cytokine [38]. The AHR activation
induced high amounts of IL-22 by CD4+ T cells; meanwhile,
the lack of IL-22 producing ILCs and CD4 T cells promoted a
more severe colitis in mice exposed to DSS [43, 44]. In addi-
tion to the protective role for the epithelium, IL-22 controls
Th17 accumulation in the gut, involving AHR activation and
local microbiota [45]. Moreover, upon receptor activation
with FICZ, there is augmented IL-22 and diminished IFN-γ
production by lamina propria cells, thus confirming a counter-
regulatory response in IBD, induced by AHR signaling (Fig.
1) [38].

Apart from the Th17-IL-22 axis, the intestinal inflamma-
tion in Crohn’s disease develops because of the chronic path-
ogenic Th1 and IFN-γ responses that mediate excessive in-
flammation and local tissue injury [46]. This cytokine induces
indoleamine 2,3-dioxygenase (IDO1), the enzyme responsible
for tryptophan conversion to kynurenine which, in turn, is an
endogenous AHR ligand. After the receptor activation by
kynurenine, the IL-10R1 is upregulated on IEC. Thus, mice
exposed to DSS and treated with exogenous kynurenine pre-
sented reduced mucosal inflammation due to an improvement
in IL-10 action [47]. When it comes to IBD long-term com-
plications, strictures are one of the main outcomes in some
patients presenting fibrosis areas in the gut and requiring sur-
gical intervention, especially in ileal chronic disease. Once
AHR activation attenuated the collagen synthesis (Fig. 1), it
could be an important target for this chronic inflammatory and
fibrotic complication of CD [48]. In a mouse model of intes-
tinal obstruction, AHR triggering by FICZ reduced the intes-
tinal permeability and the epithelial damage, by inhibiting the
myosin light chain kinase (MLCK) and the phosphorylated

MLC (pMLC) pathway [49]. Likewise, AHR activation by
FICZ reduced both the dysfunction of epithelial barrier and
the claudin-2 expression, besides maintaining the tissue integ-
rity in cell culture and in vivo studies [50, 51].

On the other hand, some toxins have been linked to the
induction of autoimmune diseases, supposedly by DNA epi-
genetic modifications during developmental exposure (unlike
in adult life), resulting in dysregulated immune responses
[52]. The correlation between TCDD, an AHR ligand, and
autoimmunity is a phenomenon observed mainly in neonatal
mice, exposed during mild-gestation or afterbirth [53–57].
This is probably because TCDD induces a disruption in thy-
mic function, which plays the most important activity in early
life on T cells selection and on autoreactive clone elimination
[53]. Furthermore, TCDD is used in mice experiments as an
AHR agonist, for the investigation of the effects of this recep-
tor on immunity. However, in humans, the aim would not be
the administration of this dioxin, but the use of protective
microbiota and its metabolites, which bind to AHR, for in-
flammation control.

Therefore, even considering the different roles in inflam-
mation, it is clear that AHR is mainly protective in IBD. Mice
deficient for AHR showed a more severe colitis, while those
treated with AHR agonist had attenuated disease progression.
Nevertheless, though the deficiency of AHR in epithelia usu-
ally results in excessive inflammation, the absence of this
receptor in T cells may lead to the amelioration of DSS-
induced colitis, probably because of the reduced infiltration
of Th17 lymphocytes in gut lamina propria [58]. In addition,
AHR is essential to the maintenance of the IEL numbers in the
intestine, as well as the local bacterial load, which increases in
the absence of this receptor, resulting in augmented epithelial
damage [33]. Indeed, recent evidences pointed to the impor-
tance of AHR ligands and gut bacteria in the modulation of
inflammatory responses [59].

AHR Modulation by Intestinal Microbiota

As cited above, some bacteria exert immunoregulatory effects
in the intestine, dependent on the activation of the AHR path-
way, which culminates in anti-inflammatory responses.
Indeed, while the maintenance of gut normobiosis is essential
to the regulation of mucosal immunity and homeostasis
(Fig. 2) [21, 60, 61], the dysbiosis contributes, undoubtedly,
to the dysregulated inflammation. It encompasses the preva-
lence of pathogenic species which predispose to host diseases
frequently caused by effector responses against the altered
microbiota, with microorganism translocation in the gut
(Fig. 2). However, studies are still necessary to unravel the
opposite scenario that involves the direct beneficial effects
of bacteria or their metabolites in the regulation of the ongoing
immune responses.
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The intestinal bacteria represent an important source of
products able to trigger AHR [62]. However, the quality of
the microbiota is essential to generate AHR ligands. For ex-
ample, a high-fat diet alters the bacteria components and their
capacity to produce some metabolites, such as tryptamine and
indole-3-acetate (I3A), both AHR agonists [63]. Moreover,
genetic polymorphisms also interfere in the microbial prod-
ucts. CARD9 (caspase recruitment domain family member 9)
is necessary to the tryptophan metabolism and IL-22 induc-
tion, which protects the intestinal epithelium in colitis, associ-
ated with AHR activation. Yet the microbiota (and metabo-
lites) of IBD patients presenting the risk allele of CARD9 does
not trigger adequately the AHR molecule, indicating a rela-
tionship among intestinal inflammation, CARD9, and AHR
activation or the production of its agonists by the host micro-
biota [64].

The tryptophan metabolites, which ameliorate intestinal in-
flammation [65], may also be derived from the microbiota and
activate the AHR target genes on mouse colonocytes (Fig. 2).
In this scenario, the modulation depends on specific agonist or
antagonist activities of ligands such as indole-3-acetate, in-
dole-3-aldehyde, indole, and tryptamine. These stimuli may
induce different patterns of gene expression after receptor
triggering, suggesting a selective AHR modulation by such
microbial metabolites [66]. For instance, Lactobacillus reuteri

originates indole derivatives from tryptophan metabolism and
then activates AHR in CD4+ T cells, which in turn downreg-
ulate the transcription factor ThPOK to the induction of
CD4+CD8αα+ intraepithelial regulatory lymphocytes [67].
These data indicated that in the presence of tryptophan, a
probiotic bacterium is able to mediate the induction of a reg-
ulatory profile to control intestinal inflammation through
AHR (Fig. 2). In addition, the supplementation of pigs’ diet
with tryptophan resulted in increased diversity of the animals’
microbiome, activation of AHR and CYP1A1 in the gut, with
IL-8 reduction and improvement of epithelial barrier in the
gut. These findings suggested once more an important rela-
tionship among tryptophan, microbial metabolism, and gut
immunity regulation [68]. However, a novel mechanism of
action of Lactobacillus reuteri was recently described in the
R2lc and 2010 strains, involving novel identified polyketide
synthase (PKS) clusters on the strains’ genome, which are able
to trigger AHR in a tryptophan-independent pathway [69].
Regarding other species, Lactobacillus bulgaricus strain
OLL1181 ameliorated DSS-colitis by activating AHR signal-
ing (Fig. 2) and inducing the gene expression of the AHR
target cytochrome CYP1A1, not only in the gut of treated
mice but also in samples of human colon cells [70].

The indole-3-pyruvic acid (IPA), which is a precursor of
AHR agonists produced by gut microbiota, can itself activate

Fig. 2 Metabolites from gut microbiota may modulate local
inflammatory responses and intestinal dysbiosis by AHR activation. In
the absence of chronic inflammation, the gut homeostasis is maintained
with an equil ibr ium between commensal and pathogenic
microorganisms, in a normobiosis condition (A). Upon local dysbiosis
and breakdown of epithelial barrier, there is microbial translocation and
triggering of innate and adaptive reactions that amplify the local tissue

damage and inflammation (B). Bacteria such as Lactobacillus reuteri,
Lactobacillus bulgaricus, or microbial products (tryptophan
metabolites, IPA, UroA, SCFA, dihydroxyquinoline and others) may
regulate the excessive inflammatory reactions after AHR activation (C)
and represent an alternative for future studies aimed at developing novel
therapies for Crohn’s disease or ulcerative colitis. IPA: indole-3-pyruvic
acid; UroA: urolithin A; SCFA: short-chain fatty acids
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AHR and control experimental intestinal inflammation (Fig.
2). The oral administration of IPA to SCID mice in the T cell
transfer colitis model reduced gut inflammation by inhibiting
the expression of IL-12, IFN-γ, TNF, and IL-1β in the intes-
tine, together with an increase in IL-10. Moreover, IPA in-
duced the differentiation and augmented suppressive potential
of Tr1 cells, as well as the accumulation of anti-inflammatory
dendritic cells in the mesenteric lymph nodes, which was
abolished by treatment with an AHR antagonist. These data
indicated a relevant modulatory potential for this metabolite
on colon inflammation through AHR activation [71].
Likewise, the oral treatment with 1,4-dihydroxy-2-naphthoic
acid—DHNA, which is an AHR activator obtained from the
cheese bacteria Propionibacterium freudenreichii ET-3, in-
duced anti-microbial peptides such as RegIIIβ and γ in the
intestine, and led to the control of inflammation in DSS-colitis
[72].

In accordance, several studies have proposed the use of
probiotics and prebiotics in the treatment of intestinal inflam-
mation, to reestablish the equilibrium between microbial pop-
ulations and their products in the gut. Besides a few older
studies (ClinicalTrials.gov Identifier: NCT02093767), a
recent clinical trial recruiting children and young adults with
IBD is being conducted in order to evaluate the effects of the
prebiotic inulin in gut bacteria and disease activity
(ClinicalTrials.gov Identifier: NCT03653481). The ingestion
of fibers is related to a reduced risk for Crohn’s disease [73]
and the short-chain fatty acids (SCFAs) butyrate, acetate or
propionate, which are derived from bacteria metabolism of
ingested fibers, play anti-inflammatory and immunomodula-
tory activities, by inducing regulatory T cells and constraining
cytokines responses in the gut [74, 75]. Moreover, SCFAs act
together with AHR ligands to increase the responsiveness and
activation of this receptor in gut epithelial cells, a fact that
could in theory, potentiate its anti-inflammatory role (Fig. 2)
[76]. Importantly, butyrate triggers AHR in human intestinal
epithelial cells, indicating once more that metabolites pro-
duced by gut microbiota may be an important source of
immune-modulatory molecules able to control intestinal in-
flammation [62].

Apart from the ligands described above, the intestinal mi-
crobiota can also metabolize dietary compounds and generate
other products that bind AHR, such as urolithin A (UroA).
This metabolite has the capacity to reduce IL-6 and TNF pro-
duction by macrophages and to bind AHR on IECs with fur-
ther induction of tight junction proteins such as claudin 4,
occludin, and zona occludens 1 (ZO1). In fact, mice with
experimental colitis have an attenuated disease when treated
with UroA (Fig. 2) and, considering that microbial transloca-
tion is a hallmark of IBD, the induction of tight junction pro-
teins would be a great advantage on the control of patients’
intestinal inflammation [77]. Furthermore, another microbial
derivative such as 2,8 dihydroxyquinoline also plays a role in

the AHR activation in human cells [78], thus pointing to an
additional important bacteria product with the ability to regu-
late gut immunity (Fig. 2).

Beyond the potential of individual bacteria species and
their metabolites to modulate AHR, the fecal microbiota trans-
plantation (FMT) could also represent a novel interesting ap-
proach to achieve intestinal homeostasis, though not fully
established yet. It consists of the transference of the intestinal
content from a healthy donor to a receptor that is often in-
flamed, aiming at controlling the gut dysbiosis and restoring
the local tolerance with beneficial microbiota. The FMT of
normal mice donors to animals with experimental colitis ame-
liorated the intestinal inflammation, with augmented AHR
expression as well as anti-inflammatory cytokines such as
IL-10 and TGF-β . There was a later increase in
Lactobacillus and Bifidobacterium bacteria in the receptors,
together with elevated indole-3-acetic acid (IAA) levels, indi-
cating a link between the AHR activation and microorganisms
able to restore the gut normobiosis [79]. Otherwise, the gut
microbiota depletion bywide range antibiotic-therapy resulted
in the atrophy of intestinal mucosa and decreased production
of antimicrobial molecules, which were restored after FMT.
The reduction of AHR activation was associated with the di-
minished antimicrobial peptides, which was rescued by mice
treatment with FICZ. These data pointed again to an interplay
between gut microbiota and AHR pathway that seemed to be
involved in the production of microbicidal molecules relevant
to the maintenance of mucosal homeostasis [80].

Conclusions and Future Perspectives

In summary, AHR interacts with endogenous ligands pro-
duced by the host, besides a wide range of molecules. Since
the signaling through this receptor is altered in IBD patients
who usually present intestinal dysbiosis, the putative activa-
tion of this pathway could envisage a novel alternative treat-
ment for such pathologies, particularly considering the bene-
ficial effects of certain bacteria metabolites in the gut homeo-
stasis (Fig. 2). Therefore, the future development of AHR-
based therapies focused on prebiotics or metabolites derived
from probiotic bacteria could represent a novel approach for
achieving intestinal health in Crohn’s disease or colitis pa-
tients. However, further clinical studies are still necessary to
establish the safety and effectiveness of this proposed therapy.
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