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Abstract
Atopic dermatitis (AD) is the leading chronic skin inflammatory disease and the initial manifestation of atopic march. Available
evidence supports the notion that primary prevention early in life leads to a decreased incidence of AD, thus possibly decreasing
the subsequent occurrence of atopic march. Nutritional status is essential to a proper functioning immune system and is valued for
its important role in AD. Essential nutrients, which include carbohydrates, proteins, lipids, vitamins, and minerals, are transferred
from the mother to the fetus through the placenta during gestation. Various nutrients, such as polyunsaturated fatty acids (PUFAs)
and vitamin D, were studied in relation to maternal status and offspring allergy. However, no strong evidence indicates that a
single nutrient or food in mothers’ diet significantly affects the risk of childhood AD. In the light of current evidence, mothers
should not either increase nor avoid consuming these nutrients to prevent or ameliorate allergic diseases in their offspring. Each
essential nutrient has an important role in fetal development, and current government recommendations suggest specific intake
amounts for pregnant women. This review discusses evidence on how various nutrients, including lipids (monounsaturated fatty
acids, PUFAs, saturated fatty acids, and short-chain fatty acids), carbohydrates (oligosaccharides and polysaccharides), proteins,
vitamins (A, B, C, D, and E), and trace minerals (magnesium, iron, zinc, copper, selenium, and strontium) in maternal status are
associated with the development of AD and their possible mechanisms.
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Introduction

Atopic dermatitis (AD) or atopic eczema, similar to other
a t op i c d i s o r d e r s s u ch a s a s t hma and a l l e rg i c
rhinoconjunctivitis, is a growing problem worldwide, affect-
ing approximately 10–20% of young children globally. AD is
an inflammatory disease characterized by pruritic skin lesions,
immunodysregulation, disrupted epidermal barrier function,
and immunoglobulin E (IgE)–mediated sensitization to food
and environmental allergens [1]. AD is a complex inflamma-
tory process in which innate and adaptive immune cells

contribute to the complex immune network underlying cuta-
neous inflammation. The imbalance between T helper (Th) 1
and Th2 cells results in an increased secretion of interleukin
(IL)-4, IL-5, and IL-13 by Th2-expressing cells [2]. The dam-
age to and dysfunction of the epidermal barrier and the lack of
antimicrobial peptides on the skin surface lead to a significant-
ly increased risk of skin infections in AD patients [3]. The
chronic relapsing inflammation of skin and the disrupted skin
barrier cause severe itchiness and wound infection, largely
impairing the quality of life [4, 5]. As a multifactorial disease
and given that approximately 60% of the onset of childhood
AD occurs before the age of 1 year, a variety of factors in the
early years of life are being studied [5]. AD commonly de-
velops as the initial manifestation of atopic march, and sensi-
tization through the skin is likely an important initial step in
the development of other allergic diseases [6]. Evidence indi-
cates that primary prevention through the application of emol-
lients early in life leads to a decreased incidence of AD [7],
thus possibly decreasing the subsequent development of atop-
ic march. Nutrition, as a major environmental factor, is valued
for its important role in AD. Maternal diet and antenatal/
perinatal nutrition have gained interest because of their
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considerable influence on the nutrition status during the first
year of life, which may in turn alter the immune response, thus
manipulating the chances of developing future atopy [8–10].

Essential nutrients, which include carbohydrates, proteins,
lipids, vitamins, and minerals, are transferred from the mother
to fetus through the placenta during gestation. Maternal nutri-
tion status could thus substantially affect fetal development by
altering fetal genome expression and consequently give rise to
diseases after birth or later in adulthood, a phenomenon
termed “developmental programming” or “fetal program-
ming” [11]. Various food categories, including vegetables,
fruits, dairy products, nuts, fish, oil, and antioxidants, were
studied for the associations between maternal intake and off-
spring atopy in the past few decades [8, 12–18]. However,
clinicians only recently focused more attention to the effect
of individual nutrients. Maternal diet may also affect the con-
tent of breast milk, in which certain food allergens such as
peanut could be detected [19]. The intake of dietary supple-
ments in large amounts, for example, vitamin D, may also
elevate its level in breast milk [20]. However, whether the
changes in breast milk content may alter the incidence
of AD development among breastfed children remains con-
troversial [21, 22]. In this article, we will review individual
nutrients in maternal diet during pregnancy and/or
breastfeeding and their effect on the development of AD in
the offspring.

Lipids

Lipids are main constituents of human body cells and play an
important part in physiological functions; thus, they are criti-
cally required for fetal development [23]. Given the natural
deficiency of certain fatty acid desaturases in human beings,
we cannot synthesize specific crucial fatty acids, that is, es-
sential fatty acids, and must acquire them from dietary
sources. Fatty acids directly influence the behavior of a num-
ber of proteins involved in immune cell activation, including
those associated with T cell responses, antigen presentation,
and fatty acid–derived inflammatory mediator production
[24]. Fatty acids can have powerful antiinflammatory and im-
munomodulatory activities in a wide array of diseases (e.g.,
autoimmunity, arthritis, and infection) [25]. Studies reported
the relation of fatty acids and development of allergies.
Saturated, unsaturated, and short-chain fatty acids (SCFAs)
will be discussed here.

Saturated Fatty Acids

Saturated fatty acids (SFAs) refer to the fatty acids without
double bonds. These molecules are mostly present in animal
fat products and certain plant oils. The modernWestern dietary
pattern is rich in foods of animal origin, such as red meat and

dairy products, which contain abundant SFAs. In contrast to
polyunsaturated fatty acids (PUFAs), SFAs are usually consid-
ered “bad fats” because their high intake is associated with a
variety of diseases, including cardiovascular diseases, metabol-
ic syndrome, or cancer [26]. Palmitic acid (PA) is the most
common SFA in the human body [27], accounting for around
65% of SFAs and 28–32% of the total fatty acids in serum [28].
PA can posttranslationally modify proteins in a process called
palmitoylation, in which PA is covalently linked to proteins
through a thioester bond, thus regulating protein function and
performing pathogenic roles in metabolic syndrome, cardio-
vascular diseases, cancer, neurodegenerative diseases, and in-
flammation [29]. PA also promotes cell apoptosis and autoph-
agy through stimulation of phosphorylation of mitogen-
activated protein kinases and AMP-activated protein kinase,
inhibition of the phosphorylation of Akt and mammalian target
of rapamycin [30], and stimulation of NO production through
the production of superoxide, nuclear factor (NF)-κB activa-
tion, and increase in inducible NO synthase protein content
[31]. PA can stimulate an inflammatory response through the
Toll-like receptor (TLR) 4 signaling pathway [32].

The quantification of SFA intake is difficult, although sev-
eral serum markers, such as myristic acid, have been deter-
mined as good reflectors of dietary intake [33]. Most studies
approximate the amount of SFA intake by detailed record of
daily diet with further calculation. Other research relates the
consumption of SFAs to atopic diseases, but the findings are
inconsistent [34, 35]. A study on adolescents showed a posi-
tive association between SFA intake and asthma [36]. Hoppu
et al. in Finland used a software to quantify different nutrient
proportions in breastfeeding mothers [37]. They observed that
atopic mothers had higher percentage of fat and SFAs and
lower percentage of carbohydrates of total energy intake than
non-atopic mothers; a higher SFA intake during breastfeeding
was associated with higher atopic sensitization of infants in
terms of skin-prick test (odds ratio (OR) 1.16; 95% confidence
interval (CI) 1.001–1.36; p = 0.048) [37]. Saito et al. conduct-
ed a questionnaire-based study on 771 Japanese mother–
infant pairs and observed that maternal intake of either
PUFAs, SFAs, or monounsaturated fatty acids (MUFAs)
showed no association with atopic eczema in infants aged 3–
4 months [38]. Barman et al. demonstrated that children with
atopic eczema or other allergic diseases had significantly
higher cord blood PUFAs levels, whereas those who remained
non-allergic at the age of 13 had lower cord blood PUFAs
levels and higher SFA and MUFA levels [39]. The authors
also reported no correlation in most fatty acid levels between
mothers’ and children’s sera except for one in the long-chain
(LC) PUFA species. The result agrees with the assumption of
previous studies indicating that SFAs and MUFAs mainly en-
ter the fetal circulation by passive diffusion [40]. No conclu-
sion could be made for the role of dietary SFAs in childhood
AD based on the current evidence. Nevertheless, daily SFA
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intake per person, whether pregnant or not, is designated to a
limited amount by many health authorities because of its ev-
ident association with other health problems [41].

Monounsaturated Fatty Acids

Oleic acid is the most abundant MUFA in the human diet
(C18:1 n-9). In Mediterranean countries, olive oil is the main
source of MUFAs. Other oil sources of MUFAs include cano-
la, peanut, sunflower, corn, soybean, and safflower oil [42].
MUFAs are associated with atopy development. A European
ecological study [43] showed that a high MUFA intake
(palmitoleic and oleic acids) was positively associated with
sensitization prevalence in 20–44-year-old adults (OR 1.59;
p = 0.035). In a German prospective study, Nagel et al. [44]
revealed a significantly positive association between the die-
tary intake of oleic acid (C18:1) and hay fever in adulthood
(OR 2.86; 95% CI 1.22–6.70; p = 0.04). However, the mech-
anism of MUFAs has not been studied, and the association

between maternal MUFA intake and offspring atopy has not
been well studied.

Polyunsaturated Fatty Acids

The main categories of PUFAs are ω-3 LC PUFAs and ω-6
LC PUFAs, and both are characterized by multiple double
bonds in the long hydrocarbon chain, with the first double
bond located between the third and fourth carbons or between
the sixth and seventh carbons, respectively. Both classes of
PUFAs are important (Fig. 1). Omega-6 PUFAs are subject
to consumption for energy and the major ingredients for pro-
inflammatory eicosanoids [45]. The metabolites of ω-6
PUFAs include the eicosanoids prostaglandin (PG)E2 and leu-
kotriene (LT)B4, which are proinflammatory and neutrophil
chemotactic agents [46]. The modern Western diet often pro-
vides more than the necessary amount of ω-6 PUFAs, and
excessive ω-6 PUFAs are associated with a variety of health
problems, including obesity, cardiovascular diseases, and pro-
inflammation status [45, 47]. Omega-3 PUFAs, on the other

Fig. 1 Mechanism of PUFAs.
Theω-6 PUFAs, such as AA, are
precursors for PGE2 and LTB4,
which are proinflammatory me-
diators and chemoattractants. The.
ω-3 PUFAs, such as EPA and
DHA, are precursors for PGE3
and LTB5, which compete with
AA in the synthesis of PGE2 and
LTB4, respectively. The less po-
tent eicosanoids and
antiinflammatory mediators, such
as protectin and resolvin, reduce
the inflammatory process and ex-
ert a protective role in various
diseases
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hand, have gained vast interests over the years because of their
multiple health benefits [48]. The incorporation of ω-3
PUFAs into the lipid bilayer increases the membrane fluidity,
thereby enhancing membrane-mediated processes, such as
phagocytosis and endosome/exosome formation, which regu-
lates the function of immune cells [49]. Omega-3 PUFAs
might inhibit the production of PGE2, which is derived from
arachidonic acid (AA), and Th2 responses [50], affect the
TLRs, and decrease the transcription of proinflammatory
genes, influencing the immunologic response [51–54].
Given that ω-3 and ω-6 fatty acids are metabolized by the
same enzymatic pathway in a competitive manner, an imbal-
ancedω-6 PUFA-to-ω-3 PUFA ratio in the diet is implicated
in various diseases [55, 56]. A high proportion of ω-3 LC
PUFAs in diet lowers the incidence of cancer, cardiovascular,
and neurological diseases [47, 48] and possibly alleviates the
inflammatory process and allergic reaction [57–59].

The most well-known members of theω-3 LC PUFA fam-
ily are the 20-carbon eicosapentaenoic acid (EPA) and the 22-
carbon docosahexaenoic acid (DHA). Oily fish (salmon, tuna,
mackerel, sardines, herring, etc.) or commercial fish oil are
abundant sources of EPA and DHA. The intake of fish oil
had been proven to alter the composition of cell membrane
lipids. In a study by Yaqoob et al. in 2000, regular supplemen-
tation with fish oil capsule (2.1 g EPA + 1.1 g DHA) signifi-
cantly increased the percentage of EPA in the plasma mem-
brane in 4 weeks (from 0.5 to 3.7%), replacing the relatively
abundant 20-carbon AA (2.0 to 1.3%), which belongs theω-6
PUFA family and is also the main ingredient of pro-allergic
eicosanoids, namely, PGs and LTs [60]. The substitution of
AA to EPA dampens the prostanoid signaling pathway, most
significantly the PG endoperoxide H synthase-1, which is re-
sponsible for downstream products that finally convert into
PGDs, PGEs, and PGFs [61]. EPA is also a substrate to 5-
lipoxygenase which competes with AA in the pathway of
transforming AA into LTB4 [62]. When supplemented to
healthy pregnant women, ω-3 LC PUFAs not only increase
EPA and DHA levels in serum or plasma, lowering the levels
of the ω-6 LC PUFA family, but also significantly decrease
the PGE2 level. Prenatal supplementation of ω-3 LC PUFAs
is recommended in health programs of several countries based
on proofs of their multiple health benefits. The European Food
Safety Authority has recommended in their 2010 report the
supplementation of 100–200 mg preformed DHA in addition
to the daily adequate intake (250 mg EPA + DHA daily) for
mothers during pregnancy and lactation [63]. Guidelines from
the UK government (Scientific Advisory Committee on
Nutrition & Committee on Toxicity) also recommend that
pregnant and lactating women should consume 1–2 portions
(around 140 g each) of fish per week, with at least one being
an oily fish. One to two portions of oily fish per week will
provideω-3 LC PUFAs approximately equal to 450 mg EPA
and DHA daily [64]. However, an amount exceeding the

upper limit of two portions of oily fish per week leads to the
intake of additional contaminants, particularly methylmercury
[65].

Scientific evidence shows that alteration of PUFA ratio in
maternal diet changes the serum fatty acid profile and
cytokine/chemokine profiles of the fetus and the offspring risk
of AD (Table 1). Dunstan et al. first examined in 2003 the
effect of fish oil supplements in Australian pregnant mothers
on their children [66]. In this double-blind, placebo-con-
trolled, randomized clinical trial (DBPCRCT), 40 atopic
mothers received fish oil capsules, and 43 in the control group
received olive oil capsules from 20 weeks of gestation until
delivery. As a result, the fatty acid composition of neonate red
blood cell showed significantly increased ω-3 PUFAs in the
fish oil group compared with the control group; the plasma IL-
13 level of the fish oil group was significantly lower, whereas
no differences were observed in other cytokines (IL-4, IL-5,
IL-6, IL-10, IL-12, tumor necrosis factor (TNF)-α, and inter-
feron (IFN)-γ) or IgE levels between groups [66]. On the
other hand, in a later German multicenter, DBPCRCT in
2008, Krauss-Etschmann et al. studied Th1 and Th2-related
molecules in the cord blood and observed the increased
mRNA for transforming growth factor (TGF)-β, a cytokine
associated with induction of tolerance, and decreased mRNA
for Th2-related cytokines IL-4 and IL-13 in the fish oil-
supplemented group (p < 0.01) [71]. Other studies showed
the correlation of oily fish intake/supplementary fish oil with
decreased inflammation- or allergy-associated cytokine PGE2

and LTB4 and increased T cell protein kinase C ζ (PKCζ), a
kinase isoform which exists in significantly low levels in ne-
onates with allergic diseases, particularly eczema [67, 68, 72,
95]. The changes in cytokine profile by maternal supplemen-
tation of EPA orDHA are implicative of the antiallergic role of
prenatally administered ω-3 LC PUFAs.

Several studies investigated the direct association of clini-
cally diagnosed childhood AD with modification of maternal
dietary fatty acid composition during prenatal stage or lacta-
tion. However, the results were inconsistent. Furuhjelm et al.
conducted a DBPCRCT in Sweden involving 145 pregnant
women (70 suppliedwith daily 1.6 g EPA + 1.1 g DHA and 75
with placebo) and followed up their 117 children up to 3 years
old [74]. A lower incidence of IgE-associated eczema was
detected in the ω-3 LC PUFA supplement group (p < 0.05).
Interestingly, the ω-6/ω-3 LC PUFA ratio of the mothers’
serum showed no statistically significant difference in the
study [74]. Other clinical trials, including a larger trial by
Palmer et al. involving 706 mother–infant pairs, had failed
to find clinical differences in the incidence of offspring AD
between intervention and placebo groups [69, 72, 75]. The
results of observational studies also varied. Many studies gen-
erated promising, statistically significant results, indicating
that maternal ω-3 LC PUFA supplement reduces the risk of
childhood AD [8, 14, 17, 77, 79–81, 83]. A recent
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Table 1 Studies on maternal PUFAs and offspring AD

Interventional study

Study group Study design/intervention/population Significant results about AD in intervention
group compared to placebo/control

“The Infant Fish Oil Supplementation Study
(IFOS)” in Perth, Australia [66–70]

Study design: DBPCRCT
Intervention: fish oil capsule vs placebo
Duration: GA 20 weeks until delivery
Population and size: atopic pregnant mothers

(n = 98)

↑ω-3 PUFA level in erythrocyte membrane [66]
↓ Plasma IL-13 [66]
↓ IL-6, IL-10 production in neutrophils [67]
↓ LTB4 (only trend) production in neutrophils

[67]
↑ PKCζ expression in neonatal T cells [68]
↓ AD severity [69]
↔ No difference in frequency of AD [69]

In Neuherberg, Germany [71] Study design: DBPCRCT, multicenter
Intervention: fish oil (DHA + EPA) vs placebo
Duration: GA 22 weeks until delivery
Population and size: pregnant women (n = 311)

↑ mRNA of TGF-β in maternal and cord blood
↓ IFN-γ in mothers’ blood
↓mRNA of IL-4, IL-13, and CCR4 in cord blood
↓ Natural killer cell and CD8+ T cells in cord

blood

“The Salmon in Pregnancy Study (SiPS)” in
Southampton, UK [72, 73]

Study design: randomized, single-blind con-
trolled trial

Intervention: 2 portions of oily fish/week vs ha-
bitual diet

Duration: GA 20 weeks until delivery
Population and size: pregnant women (n = 123)

↑ DHA and EPA intake [73]
↑ Percentage of DHA and EPA in maternal and

cord plasma phosphatidylcholine [73]
↓ IL-2, IL-4, IL-5, IL-10, TNF-α, and PGE2

production in cord blood mononuclear cell
[72]

↔No differences in IgE and skin prick tests [72]

In Linköping, Sweden [74] Study design: randomized placebo-controlled tri-
al

Intervention: DHA + EPA vs placebo
Duration: GA 25 weeks to 3–4 months of

breastfeeding
Population and size: pregnant women (n = 145)

with positive family history of atopic diseases

↓ Prevalence of food allergy at 1 year old (2% vs
15%)

↓ Incidence of IgE-associated eczema (8% vs
24%)

“The Docosahexaenoic Acid to Optimize Mother
Infant Outcome (DOMInO) Trial” in Adelaide,
Australia [75, 76]

Study design: randomized controlled trial
Intervention: fish oil capsule vs vegetable oil

capsule
Duration: GA 21 weeks until delivery
Population and size: mother-infant dyads

(n = 706) at high risk of atopic diseases

↓ Percentage of atopic eczema (7% vs 12%), not
significant after adjustment

↓ Sensitization to egg (9% vs 15%)
↔ No difference in IgE associated allergies

Observational study

Study group Study design/methods/population Significant results about AD

In Aberdeen, UK [17] Study design: population-based study, single
center

Methods: questionnaire, skin prick tests and
blood tests since GA 12 weeks until 5 years
after birth

Population and size: mother-children dyads
(n = 1924)

↓ Doctor-confirmed eczema for maternal fish
consumption

“The Kyushu Okinawa Maternal and Child
Health Study (KOMCHS)” in Fukuoka, Japan
[77, 78]

Study design: prospective prebirth cohort study
Methods: self-administered questionnaire
Population and size: Japanese mother–child pairs

(n = 1354)

For maternal intake of EPA and EPA + DHA:
↓ Infantile wheeze
↔ No relation with infantile eczema

In Krakow, Poland [79] Study design: prospective birth cohort study
Methods: detailed, standardized, face-to-face in-

terview every 3 months after delivery to 1 year
Population and size: mothers giving birth to term

babies (n = 469)

↓ Risk of infantile eczemaa for maternal fish
consumption

In Sabadell, Spain [80] Study design: population-based birth cohort
study, single center

Methods: blood sampling at GA 12 weeks and
questionnaire when the child is 6–14 years old

Population and size: non-atopic mothers (n = 211)
and children

↓ Atopic eczema for maternal LC PUFA
↓ Atopic eczema for cord blood DHA, totalω-3

and ω-3 LC PUFAs

“The Generation R Study” in Rotterdam, the
Netherlands [81, 82]

Study design: prospective population-based co-
hort study
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observational study published in 2019 by Gardner et al.
based on a racially diverse cohort suggested an in-
creased OR (OR 1.25; 95% CI 1.01–1.54) of childhood
AD in mothers with increased ω-6 PUFA intake, but no
association was found with ω-3 PUFA intake alone nor

with ω-6/ω-3 PUFA ratio [83]. Other studies either re-
ported no significant differences in the clinical outcomes
[84, 86, 88, 90, 123] or inverse findings (that is, ω-3
LC PUFA supplement increased the risk of childhood
eczema) [92, 124].

Table 1 (continued)

Methods: questionnaire, blood tests and lung
function tests

Population and size: mothers from early
pregnancy to post-delivery, in pairs with
children (n = 4976)

↑ Risk of childhood eczema for maternal total
PUFA (OR 1.16) and total ω-6 PUFA (OR
1.21)

↔ No association with total ω-3 PUFA or ω-6:
ω-3 PUFA ratio

“The Urban Child Institute CANDLE Study” in
Memphis, TN, USA [83]

Study design: prospective prenatal cohort study,
single center

Population and size: racially diverse
mother–infant dyads (n = 1131)

↑ AD in children of maternal atopy for higher
2nd trimester ω-6 PUFAs

↔ No association with prenatalω-3 PUFAs and
ω-6: ω-3 PUFAs

“The Finnish Type 1 Diabetes Prediction and
Prevention (DIPP) Nutrition Study” in Finland
[84, 85]

Study design: multidisciplinary population-based
prospective birth cohort study, multicenter

Methods: questionnaire (181 item FFQ)
Population and size: newborn infants with

HLA-conferred susceptibility to type 1 diabe-
tes (n = 2441)

↔ No association with atopic eczema in dietary
fats and fatty acids after adjustment for
confounders

“The Avon Longitudinal Study of Parents and
Children (ALSPAC)” in Avon, UK [86, 87]

Study design: prospective population-based co-
hort study, multicenter

Methods: questionnaire and blood tests, including
cord blood

Population and size: 14,541 pregnancies resulting
in 14,062 live births (born to 13,866 mothers).
n = 1238 and n = 2945 for cord and maternal
analyses, respectively

↑ Eczema at 18–30 months old for the ratio of
AA: EPA in cord blood RBC (OR 1.14)

↔ No longer significant after adjustment

“The Growing Up in Singapore Toward healthy
Outcome (GUSTO) birth cohort” in Singapore
[88, 89]

Study design: prospective population-based co-
hort study

Methods: detailed interview and blood tests
Population and size: mother–infant pairs,

n = 1162; n = 883 analyzed for eczema out-
come.

↔ No association with offspring rhinitis,
eczema, wheezing in maternal total ω-3, ω-6
PUFA status and the ω-6:ω-3 PUFA ratio
after adjustment

“Life-style Related Factors on the Immune
System and the Development of Allergies in
Childhood PLUS the influence of traffic
emissions and genetics (LISAplus) study” in
Munich, Germany [90, 91]

Study design: prospective population-based birth
cohort study

Methods: questionnaires completed at 2, 6, and
10 years old. Cord blood and blood tests.

Population and size: children (n = 436) from the
Munich LISAplus birth cohort

↔ No association with eczema or other allergic
diseases inω-3 LC PUFA,ω-6 LC PUFA, or
the ω-6:ω-3 ratio in cord blood

“Child, Parent and health: Lifestyle and Genetic
constitution (KOALA) cohort” in the
Netherlands [92, 93]

Study design: prospective population-based birth
cohort study

Methods: blood tests for mother at GA
34–36 weeks and for children at age
24 months. Repeated parental questionnaires.
Home-visit by trained nurse for atopic derma-
titis at age 24 months

Population and size: mothers (n = 1275) and
children (n = 807 for home visit and n = 951
for follow-up at 6–7 years) from the KOALA
cohort

↓ Risk of eczema in the child with high ratio of
maternal ω-6:ω-3 LC PUFAs

↓Risk of eczema in the first 7 months of life with
AA

“Perturbateurs endocriniens: Étude Longitudinale
sur les Anomalies de la Grossesse, l’Infertilité
et l’Enfance (PELAGIE) cohort” in Brittany,
France [94]

Study design: prospective population-based birth
cohort study

Methods: questionnaires (FFQ) at 2 years old
Population and size: mothers (n = 1500) from the

PELAGIE cohort

↔ No association with childhood eczema in
maternal seafood consumption

a The results also showed that exposure to air pollutants prenatally and postnatally positively correlates with the occurrence of infantile eczema

DBPCRCT double-blind, placebo-controlled, randomized clinical trial, GA gestational age, IL interleukin, LTB4 leukotriene B4, PKCζ protein kinase C
ζ,DHA docosahexaenoic acid, EPA eicosapentaenoic acid, TGF-β transforming growth factor-β, IFN-γ interferon-γ, CCR4 C-C chemokine receptor 4,
TNF-α tumor necrosis factor-α, PGE2 prostaglandin E2, LC PUFA long-chain PUFA, FFQ food frequency questionnaire, AA arachidonic acid
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In general, several studies suggest the protective role of low
ω-6/ω-3 PUFA ratio (low ω-6 and/or high ω-3) in maternal
diet, whereas other research showed no effect. Meanwhile,
several studies obtained the opposite results. Carefully de-
signed large-scale studies with longer follow-up periods may
be required to generate more solid results. Ethnic and environ-
mental diversity and different risk stratifications of mothers
giving birth to babies with atopic diseases should also be
considered in future studies.

Short-Chain Fatty Acids

SCFAs contain less than six carbon atoms, with acetate, pro-
pionate, and butyrate being the most common. SCFAs are the
main energy sources for enterocyte regeneration; they modu-
late the enteric microbial community and contribute to in-
creasing host health [125]. SCFAs have antiinflammatory
properties, including the reduction in expression and signaling
of different proinflammatory cytokines, induction of nitric ox-
ide synthesis and metalloproteinases, reduction and activation
of lymphocyte proliferation [126], promotion of regulatory T
cell (Treg) generation in the colon of mice [127, 128], increase
in intestinal IgA secretion, and improvement of Th1/Th2 ratio
[129]. Supplementation of SCFAs at high concentration re-
duces inflammation through altered cytokine expression and
enhances tissue repair andmucus secretion [125], affecting the
abundance of bacterial populations in intestines [130].

The potential role of SCFAs in eczema has been addressed
recently. One study noted the lower levels of different SCFAs
compared with non-allergic controls in 1-year old allergic
children [131]. Another study noted the inverse correlation
of severity of eczema with the amount of butyrate-producing
bacteria (r = − 0.52, p = 0.005) in 6-month-old infants [132].
Kim et al. noted the lower amounts of SCFAs in fecal samples
of children with later developing eczema in a DBPCRCT of
probiotics supplement in pregnant mothers and infants in the
first year of life [133]. The intestinal SCFAs may play an
important role in the development of eczema in early life,
but direct maternal supplementation has not been studied.

Carbohydrates

Carbohydrates are the main energy source of humans.
Different sources of carbohydrates have variable digestion
rates. Thus, their effects on blood glucose and insulin levels
also vary. High glycemic index foods, including rice, white
bread, and potatoes, cause a sharp rise in blood glucose levels
which declines rapidly, whereas low glycemic index foods,
such as fruits or dairy, have slowly digestible carbohydrates
that result in a lower postprandial glucose response [134].
Immune cells have various demands for nutrients, including
glucose, glutamine, and fatty acids, which are metabolized to

generate adenosine triphosphate for energy expenditure; com-
petition for nutrients of different immune cells may regulate
immune responses [135]. Dietary fiber describes a variety of
plant-based carbohydrates that are resistant to digestion by
human gastrointestinal enzymes. They include soluble fiber
(fruits, vegetables, and legumes), insoluble fiber (nuts,
wholegrain bread, or cereals), or resistant starch (cooked po-
tato and rice). Diets high in fiber and with a low glycemic
index can promote laxation, reduce blood cholesterol, and
modulate blood glucose and hence may be beneficial in preg-
nancy [134]. Saccharides, especially oligosaccharides as pre-
biotics, will be discussed here.

Monosaccharides/Disaccharides

Free sugars consisting mostly of mono- or disaccharides are
frequently added by manufacturers in foods or drinks to
sweeten the taste. Additionally, high consumption of sugar
had been linked to increased risk of atopic diseases, particu-
larly asthma [136]. However, the correlation between sugar-
rich foods and the severity of AD lacks clarity [137]. Bedard
et al. studied the association between maternal sugar con-
sumption and atopic diseases, suggesting the increased risk
of asthma and overall atopy with high sugar intake.
However, no significant association was observed between
maternal sugar intake and offspring atopic eczema [138].

Oligosaccharides

Prebiotics are a group of food ingredients that are degraded by
gut microorganisms and may induce their growth and activity,
thus changing the composition of gut microflora. Non-
digestible oligosaccharides, most commonly fructo-
oligosaccharides (FOS), galacto-oligosaccharides (GOS),
and trans-GOS, comprise mostly of known prebiotics, where-
as specific resistant starch or non-carbohydrates could also
serve as prebiotics [139]. Prebiotics are non-digestible food
ingredients that beneficially influence host health by indirect
(acting as a fermentable substrate for specific commensal host
bacteria, leading to the release of SCFAs in the gut intestinal
tract and influencing various molecular and cellular processes)
and direct effects (acting directly on several compartments and
specifically on different arrangements of cells (epithelial and
immune cells)) [140]. SCFAs, as previously stated, play a role
in the immunomodulation of gut mucosa [129]. Prebiotics
also directly promote barrier integrity to prevent pathogen-
induced barrier disruptions [141]. Absorbed prebiotics may
be in direct contact with circulating immune cells. For exam-
ple, inulin and FOS induce the secretion of IL-10, IL-1β, and
TNF-α by blood monocytes [142]. In murine models, prebi-
otics reinforce gut barrier function and reduce allergic reac-
tions [143, 144]. Compared with the more established effects
of probiotics in improving symptoms of AD, however, studies
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on postnatal prebiotics administration in human yielded in-
conclusive results [145]. Prenatal administration of prebiotics
was studied in a murine model in 2009 by Fujiwara et al., who
demonstrated the beneficial effect of supplementation during
pregnancy on reducing severity of AD-like skin lesions in
mice offspring [146]. A prior study conducted by the same
group demonstrated that by supplementing FOS in female
mice during pregnancy and lactation, the gut microbiota com-
position of suckling mice was altered. The result possibly
links maternal intake of prebiotics to a preventive role against
allergic disease development later in life.

In humans, several clinical trials used prebiotics as an al-
lergy prevention strategy by intervening in infancy by supple-
mentation of infant formula. In World Allergy Organization
Guideline for Allergic Disease Prevention, Cuello-Garcia
et al. conducted a systematic review including 22 randomized
trials with a minimum follow-up of 4 weeks, comparing any
type of prebiotics against placebo or no prebiotics [147]. They
concluded the high uncertainty of reducing the risk of devel-
oping allergies using the currently available evidence on pre-
biotics supplementation in infancy. To date, no human studies
in which prebiotics have been given to mothers during preg-
nancy and/or breastfeeding have been published; however,
two clinical studies are currently being conducted: SYMBA
is a DBPCRCT investigating the effects of maternal prebiotics
supplementation (GOS:FOS at a ratio of 9:1) from 18 to
20 weeks of gestation during pregnancy until 6 months of
lactation on the development of infant allergic disease [148];
PREGRALL is a multicenter DBPCRCT that aims to evaluate
the effectiveness of gestational prebiotics supplementation
(from 20th week of gestation until delivery, 11.8 g 9:1 GOS/
inulin powder per day) versus placebo on the occurrence of
AD at 1 year of age in high-risk children (defined as having a
maternal history of atopic disease) [149]. The outcomes of
these trials might further verify the effect of maternal prebi-
otics supplementation on allergic diseases in offspring.

Polysaccharides

Dietary fibers are non-starch polysaccharides consisting of
subtypes, including soluble fiber, insoluble fiber, and resistant
starch [150, 151]. These polysaccharides are subject to fer-
mentation of gut microbiome [152], leading to the generation
of SCFAs which deliver antiinflammatory and immunomod-
ulatory effects in a manner similar to prebiotics. Maternal diet
rich in vegetables (especially green- and yellow-leaf vegeta-
bles) and fruits during pregnancy is beneficial to offspring
with eczema [12, 16]. However, these information do not im-
ply the effect of dietary fibers given that they are inevitably
confounded by other coexisting nutrients and antioxidants
such as β-carotene. A study conducted by Pretorius et al.
[153] followed up over 600 mother–infant pairs and analyzed
the relationship between eczema or wheezes, both physician-

diagnosed or parent-reported, and the amount of dietary fiber
in different subtypes taken by mothers during gestation. Of all
different subtypes, statistical significance was observed in re-
sistant starch, which had a negative correlation with clinical
wheezes but a positive correlation with atopic eczema. Thus,
high maternal intake of resistant starch is associated with a
high risk of parent-reported eczema (adjusted OR (aOR)
1.27; 95% CI 1.09–1.49; p < 0.01) and physician-diagnosed
eczema (aOR 1.19; 95% CI 1.01–1.41; p = 0.04). The result
was contrary to the hypothesis that AD may be reduced by
immunomodulatory effects of SCFAs, which are generated by
fermentation of dietary fibers.

Proteins

Proteins are involved in both structural (keratin and collagen)
and functional (enzymes, protein transport, and hormones)
biological roles [134]. Proteins, out of all kinds of nutrients,
are the major allergens for food allergy [154]. Childhood AD
is strongly associated with food allergy, with at least 30% of
children with moderate to severe AD documented for food
allergies [155, 156]. The association between protein intake
and AD has long been discussed, and questions have also been
raised about whether maternal intake of protein food allergen
could possibly cause food allergy in children. Given their
importance in fetal development, proteins digested bymothers
are generally transferred through the placenta in the form of
amino acids by specific amino acid transport proteins [157].
Nevertheless, certain food component proteins, namely, β-
lactoglobulin (BLG) and ovalbumin (OVA), are detectable in
cord blood and placenta tissues of mothers ingesting milk and
eggs, indicating their capability to cross the placenta and be
delivered directly to the fetus, thereby mediating fetal T cell
priming [158–160]. Other studies showed that component
proteins, including BLG [161], OVA [162–164], and peanut
antigen [19, 165], are also present in breast milk.

Despite proofs of maternal–fetal passage of food proteins,
whether maternal intake of certain food proteins is associated
with increased childhood allergic diseases remains controver-
sial. Two aspects are being discussed: maternal diet modifica-
tion during pregnancy and breastfeeding. An exclusion diet
(excluding common food allergens, such as cow’s milk, egg,
nuts, or fish, in several studies) during lactation decreased the
level of related component protein levels in breast milk in
several studies [166] but caused no difference in antigen-
specific antibody production in infants [166, 167]. No differ-
ence in antibody profile was found in the fetal cord blood in
the comparison of mothers with and without diet restriction
during pregnancy [167]. In their 2008 report, American
Academy of Pediatrics (AAP) had concluded that data are
lacking to affirm the role of maternal exclusion diet during
pregnancy and lactation on childhood food allergy, and by
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far, no new clinical trial is being conducted to change this
conclusion [168]. A 2012 meta-analysis of Cochrane library
by Kramer et al. included five articles, with two studies direct-
ly addressing the outcomes of offspring atopic eczema, had
also drawn a similar conclusion, that is, the exclusion of com-
mon food allergen protein in the mother’s diet causes no effect
on the incidence of childhood allergic reactions, including AD
[166, 169, 170]. A systemic review by Netting et al. in 2014
listed seven interventional studies (five RCTs and two non-
randomized comparisons) and sixteen observational studies
examining in part the correlation between maternal diet and
eczema in children [13]. In the five reviewed RCTs
[171–175], including the Isle of Wight prevention study
[174], two eliminated cow’s milk during pregnancy and lac-
tation in the intervention group and followed up the children’s
outcomes until 18 months old [172, 175]; one had the inter-
vention group restricted from cow’s milk and egg during preg-
nancy and lactation and followed up the offspring until 5 years
of age [171]; one excluded cow’s milk, egg, and peanut from
diet and limited soy and wheat intake in the intervention group
during pregnancy and lactation and followed up the children
until 7 years of age [173]; the Isle of Wight study restricted
cow’s milk, egg, nut, and fish intake in the intervention group
during lactation only and followed up the children until
12 months old, with controlled dust mite concentration in
the environment and delayed introduction of allergenic food
[174]. Overall, these RCTs found no differences in the out-
comes in offspring AD between two groups, except for the
Isle of Wight study, which addressed a significantly greater
prevalence of eczema (OR 3.6; 95% CI 1.0–12.5) in the con-
trol group. The two non-randomized studies showed no evi-
dence of maternal restriction diet to improve the outcome on
childhood atopic eczema [176, 177]. The results of observa-
tional studies were inconsistent. One study suggested that ex-
cessive meat consumption by the mother increases the risk of
eczema [38]; however, another study failed to reach the same
conclusion [123]. Dairy product also causes no effect on the
increased risk of eczema [8, 15]. Several studies suggested a
possible protective role for maternal fish intake, which echoes
the conclusive result of this systemic review, that is, maternal
diets rich in fish, fruits, vegetables, vitamin D, and
Mediterranean dietary patterns are associated with a low risk
for allergic disease in children [8, 13]. However, fish is a
source ofω-3 PUFAs and proteins [9, 48]; thus, the causality
may very well be that from lipids rather than proteins
themselves.

Meanwhile, evidence supporting the protective role of elimi-
nating common protein allergens from maternal diet is lacking.
Both AAP and European Academy of Allergy and Clinical
Immunology advise a normal diet without restriction for aller-
genic foods for mothers who are pregnant or breastfeeding [168,
178]. An RCTwith large sample size and long follow-up period
may be needed to make further suggestions.

Vitamins

Vitamin A and β-Carotene (Provitamin A)

The vitamin A group consists of retinol (the usually called
vitamin A) and more than 600 carotenoids [179]. β-
Carotene is abundant in plants and fruits and can be converted
into vitamin A by dioxygenase in the intestinal mucosa. This
compound is a member of the carotenoid groupwhich exhibits
a strong antioxidant activity. Vitamin A can influence the im-
mune system by converting into retinoic acid (RA). RA can
inhibit Th1 cells to become pathogenic Th17 cells and block
the development of innate lymphoid cell (ILC) 2s while pro-
moting the differentiation and expansion of ILC3s and im-
printing dendritic cells (DCs) with the ability to produce
RA. In the mesenteric lymph node, RA-producing DCs can
induce gut tropism on T and B cells and promote the differen-
tiation of Treg. Furthermore, vitamin A can promote Tr1 and
Treg differentiation and inhibit NF-κB signaling in macro-
phages [180].

Many studies surveyed the effect of antioxidants on AD,
because oxidative stress takes part in the pathogenesis of AD
[181, 182]. However, studies for vitamin A or β-carotene are
limited (Table 2). Serum vitamin A levels were reported to be
significantly lower in adults AD patients compared with the
controls [183]. An Australian study by West et al. [100] in-
vestigated the association between maternal intake of β-caro-
tene, vitamin C, vitamin E, zinc, and copper during pregnancy
and the risk of offspring atopic diseases, including eczema,
wheezing, and food allergy (sample size 300). Forβ-carotene,
the result suggested no association between maternal intake
and childhood atopy. Another study based in the UK (sample
size 1942) also found no relation in the prenatal intake of β-
carotene and childhood eczema [101]. Our study with a small
sample size also showed that retinol levels were not signifi-
cantly different in breast milk for 2–4-month-old AD infants
and healthy controls [122]. Therefore, further observational
studies for vitamin A intake in pregnant and breastfeeding
mothers and RCTs with vitamin A supplementation may be
needed to clarify the role of maternal vitamin A in offspring
AD.

Vitamin B9 (Folate)

Folate, or vitamin B9, is essential for cell metabolism by act-
ing as methyl donor for DNA methylation, an important pro-
cess carried out by DNA methyl transferases [184]. Folate is
abundant in a variety of foods, including dark green vegeta-
bles, fruits, nuts, beans, grains, eggs, dairy products, and meat.
Folic acid, on the other hand, is an oxidized synthetic form of
folate and is usually used as supplement given that it is more
stable and better absorbed than folate [9]. The requirement for
folate or folic acid increases in pregnant women given the
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Table 2 Studies about maternal vitamins and offspring AD

Interventional study

Study group Study design/intervention/population Significant results about AD in

intervention group compared to

placebo/control

“The Copenhagen Prospective Studies

on Asthma in Childhood 2010

cohort” in Denmark [96]

Study design: DBPCRCT

Intervention: vitamin D3 (2400 IU/day) vs

placebo; all with a prenatal 400 IU vitamin

D3

Duration: GA 24 weeks until 1 week after

delivery

Population and size: mother–child pairs

(n = 623)

↓ Risk of persistent wheeze through

age 3 years

↔ No difference for eczema

“The Vitamin D Antenatal Asthma

Reduction Trial” in USA [97]

Study design: DBPCRCT, multicenter

Intervention: daily 4000 IU vitamin D vs

placebo; all with a prenatal vitamin

containing 400 IU vitamin D

Duration: GA 10–18 weeks until delivery

Population and size: high-risk mothers for

offspring asthma (n = 881)

↔ Lower the incidence of asthma and

recurrent wheezing at age 3 years,

but not significant

↔ No difference for eczema

In London, UK [98] Study design: randomized controlled trial

Intervention: no vitamin D, 800 IU

ergocalciferol daily until delivery or single

oral bolus of 200,000 IU cholecalciferol

Duration: GA 27 weeks until delivery

Population and size: mother–child pairs

(n = 180)

↔ No difference for atopy and

eczema risk at age 3

In Japan [99] Study design: DBPCRCT, multicenter

Intervention: vitamin D3 supplements

(800 IU/day) vs placebo

Duration: 6 months

Population and size: mothers with exclusively

breastfed infants of facial eczema at

1 month (n = 164)

↔ No difference in SCORAD at age

3 month

↑ Doctor-diagnosed food allergy at

age 2 years

Observational study

Study group Study design/methods/population Study targets Significant results about AD

“The Infant Fish Oil Supplementation

Study (IFOS)” in Perth, Australia

[70, 100]

Study design: prospective observational study

based on cohort from an associated clinical

trial (IFOS)

Methods: semi-quantitative FFQ and inter-

view since GA 28 weeks

Population and size: atopic mothers paired

with infants (n = 300)

β-Carotene

Vitamin C

Vitamin E

(Copper)

(Zinc)

↓ Risk of any diagnosed infant

allergic disease and wheeze for

higher maternal dietary vitamin C

intake.

↔ No relationships between vitamin

C and eczema.

↔ No relationships between

β-carotene, vitamin E or zinc and

any allergic outcomes.

(↓ Risk of eczema for higher dietary

copper)

In Aberdeen, UK [101] Study design: prospective population-based

cohort study, single center

Methods: semi-quantitative FFQ at GA

34 weeks, 6, 12, 24 months after birth and

cord blood sample

Population and size: mother-children pairs

(n = 1924)

β-Carotene

Vitamin C

Vitamin E

↔ No association of eczema and

wheezing in the 1st year

↓ Childhood eczema born to atopic

mothers during the 2nd year for

maternal vitamin E intake
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Table 2 (continued)

↑ “Everwheeze” and eczema during the

2nd year for maternal vitamin C

intake

In Turku, Finland [102] Study design: prospective observational

study, single center

Methods: questionnaire and personal

interview at GA 35–36 weeks; skin prick

test; breast milk collection at 1 month of

age; clinical examination for infants at 1, 3,

6, 12 months of age

Population and size: breast milk from atopic

mothers (n = 34)

β-Carotene

Vitamin C

Vitamin E (α-tocopherol)

↓ Risk of atopy in the infant (OR

0.30) for higher concentration of

vitamin C in breast milk

↔ No consistent relationship of

α-tocopherol and atopy.

“The Generation R Study” in

Rotterdam, the Netherlands

[103]

Study design: prospective population-based

cohort study

Methods: questionnaire and blood tests from

early pregnancy to child age of 48 months

Population and size: mother-infant pairs

(n = 8742)

Vitamin B9 (folate)

Vitamin B12

↑ The development of AD (aOR 1.18)

for high maternal folate

↑ The development of AD (aOR 1.30)

for high maternal vitamin B12

In Perth, Australia [104] Study design: prospective population-based

cohort study

Methods: FFQ and blood tests; pregnant

mother recruited in third trimester;

Children followed-up to 1 year old

Population and size: pregnant women

(n = 628) and their infants (n = 484)

(partially overlap with IFOS cohort [70])

Vitamin B9 (folate) ↑ Subsequent eczema for folate

supplements (especially > 500 μg

folic acid/day)

↑ Sensitization risk for cord blood

folate levels < 50 nmol/l and >

75 nmol/l

“Child, Parent and health: Lifestyle

and Genetic constitution (KOALA)

cohort” in the Netherlands [93, 105]

Study design: prospective population-based

birth cohort study

Methods: questionnaires and blood tests

Population and size: mother-child pairs

(n = 2834)

Folic acid ↔ No association with any of the

atopic outcomes

“Prevention and Incidence of Asthma

and Mite Allergy (PIAMA) birth

cohort study” in the Netherlands [106]

Study design: prospective population-based

birth cohort study

Methods: questionnaires and blood tests;

mothers recruited during pregnancy;

children followed up to 8 years old

Population and size: mother-child pairs

(n = 3786)

Folic acid ↔ No association with eczema or

other respiratory allergic outcomes

“The Osaka Maternal and Child

Health Study (OMCHS)” in

Neyagawa City, Osaka, Japan

[107, 108]

Study design: prospective population-based

birth cohort study

Methods: diet history questionnaire; Mothers

recruited during pregnancy; Children

followed up to 8 years old

Population and size: mother-child pairs

(n = 763)

Vitamin B2

Vitamin B6

Vitamin B9 (folate)

Vitamin B12

↔ No association with the risk of

wheeze or eczema in the offspring

for maternal consumption of folate,

vitamins B12, B6, and B2 during

pregnancy after adjustment

“The Mothers and Children’s

Environ-mental Health (MOCEH)

study” in Seoul, South Korea

[109, 110]

Study design: prospective population-based

birth cohort study

Methods: questionnaires and blood tests;

mothers recruited at mid- or late- pregnan-

cy; children followed up to 24 months old

Population and size: mother-child pairs

(n = 917)

Vitamin B9 (folate) ↓ Cord blood eosinophil count

↑ Cord blood IL-10

↓ Risk for offspring lower respiratory

tract infections at 6 months of age

(aOR 0.50) and AD at 24 months

(aOR 0.52)

Vitamin B9 (folate) ↔No association with childhood AD
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Table 2 (continued)

“The Conditions Affecting

Neurocognitive Development

and Learning in Early Childhood

(CANDLE) Study” in Memphis,

TN, USA [111, 112]

Study design: prospective population-based

birth cohort study

Methods: blood tests and clinical diagnosis of

atopic diseases; Serum folate measured at

2nd and 3rd trimester; Diagnosis of atopic

diseases made at 3 years of age.

Population and size: mother-child dyads

(n = 858)

↓ Odds of current wheeze at age 3

“The Generation R Study” in

Rotterdam, the Netherlands [113]

Study design: prospective population-based

cohort study

Methods: questionnaire and blood tests; data

collection at birth (cord blood), 4 years old

(eczema), and 6 years old (FeNO and Rint)

Population and size: Caucasian children

(n = 2001)

Vitamin B9 (folate)

Vitamin B12

(homocysteine)

(MTHFR gene SNP

C677T and A1298C)

↔ No association with any of the

outcome (eczema, wheezing) at

any age for cord blood folate, B12

and homocysteine

↑Risk of eczema for folate in children

carrying C677T mutations in

MTHFR

“The Southampton Women’s Survey

(SWS)” in Southampton, UK [114]

Study design: prospective population-based

cohort study

Methods: blood tests, questionnaire and

examination by trained nurse

Population and size: mother-infant pairs

(n = 497)

Nicotinamide

(metabolites:

kynurenine, kynurenic

acid, anthranilic acid,

tryptophan,

N1-methylnicotinamid-

e)

↔ No association with offspring

atopic eczema at age 6 months for

maternal nicotinamide and related

metabolite

↓ Risk of eczema at age 12 months

for nicotinamide and anthranilic

acid

“The Finnish type 1 Diabetes

Prediction and Prevention Nutrition

Study” in Finland [115]

Study design: prospective population-based

cohort study, multicenter

Methods: maternal pregnancy FFQ; allergen

specific IgE at 5 years of age

Population and size: newborn infants with

HLA-conferred susceptibility to type 1 di-

abetes (n = 931)

Citrus fruits

Vitamin D

↑ Sensitization to inhalant allergen for

citrus fruits intake (OR 1.14)

↓ Sensitization to food allergen for

vitamin D intake (OR 0.56)

“The Etude des Déterminants

pré et post natals du développement

et de la santé de l’Enfant (EDEN)

birth cohort” in France [116]

Study design: prospective birth cohort

Methods: cord blood 25(OH)D; International

Study of Asthma and allergies in

childhood-based symptom questionnaires

at 1, 2, 3, and 5 years

Population and size: newborn (n = 239)

25(OH)D ↓ Risk of transient early wheezing

and early- and late-onset AD, as

well as AD, by the ages of 1, 2, 3,

and 5 years

↔ No association with asthma and

allergic rhinitis at age 5 years

In Perth, Australia [117] Study design: prospective birth cohort

Methods: cord blood 25-hydroxyvitamin D3

[25(OH)D3] concentration; allergic out-

comes in the first year of life

Population and size: high-risk mother–infant

pairs (n = 669)

25(OH)D3 ↓ Risk of eczema for high cord blood

25(OH)D3

↔ No association with allergen

sensitization, IgE-mediated food

allergy, and eczema severity

In Southampton, UK [118] Study design: prospective cohort study

Methods: maternal blood tests at late

pregnancy; atopic eczema assessed at

9 months old; asthma at age 9 years

Population and size: mother-infant pairs

(n = 466)

25(OH)D ↑ Risk of eczema at age 9 months

(OR 3.26)

↑ Risk of asthma at age 9 years (OR

5.40)

“The Avon Longitudinal Study of

Parents and Children (ALSPAC)

study” in UK [119]

Study design: prospective population-based

cohort study, multicenter

Methods: maternal blood 25(OH)D; allergic

outcome at age 7.5 years

Population and size: mother–infant pairs (n =

5513)

25(OH)D ↔ No association with wheeze,

asthma, eczema, atopy and hay

fever at age 7.5 years.
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needs of the developing fetus for processing DNA synthesis
and rapid cell division. An inadequate periconceptional ma-
ternal folate status may lead to defects in fetal development,
most notably neural tube defects, such as spinal bifida,
meningocele, or anencephaly [184]. Hence, the importance
of folic acid status and supplementation during pregnancy
has been addressed in prenatal care programs of various coun-
tries [185]. In January 1992, the UK government first sug-
gested that pregnant women should consume 400 mg folic
acid per day for the first 12 weeks of pregnancy and preferably
before conception. Later the same year in September, the US
governmentmade similar recommendations with same dosage
(400 mg daily) for all women of childbearing age [186]. In
Asia, the Ministry of Health and Welfare in Taiwan recom-
mends a 400-mg folic acid intake before conception and an
increased amount to 600 mg daily during pregnancy.

As a key participant in DNA methylation, folate/folic acid
can therefore regulate transcriptional activity by facilitating in
the methylation of specific regulatory regions of genes, there-
by silencing their expression [9]. Given that mammals are
highly dependent on dietary methyl donors and cofactors for
the methyl groups to convey all biological methylation reac-
tions, early administration of methyl donors, such as folic
acid, in diet could cause significant epigenetic alterations
[187]. This epigenetic function may influence the Th1/Th2
polarization of the immune system. Animal studies showed
that methylation of Th1-related genes caused by in utero ex-
posure drives the Th1/Th2 balance toward Th2 reactions, thus
making the host more prone to developing atopic diseases
[188]. The reduced expression of typical Th1 cytokine
IFN-γ by methylation of the promoter region, for example,

increases the risk of AD [189, 190]. However, whether early
folic acid supplementation specifically facilitates hypermethy-
lation of cytokine expressions in a certain T helper pathway is
unclear. Further studies may be required to clarify the
causality.

Although the mechanism remains unclear, clinical studies
are being conducted to examine whether folic acid supple-
mentation during pregnancy or lactation influences the risk
of developing allergic diseases, whereas most focus on airway
allergies rather than eczema or AD. The 2012 Generation R
Study in the Netherlands conducted by Kiefte-de Jong et al. is
by far the largest in scale, with a population-based birth cohort
of 8742 children followed up from fetal life to 48 months old.
This study revealed that maternal folate > 16.2 nmol/L was
positively associated with the development of AD (aOR 1.18;
95% CI 1.05–1.33) [103]. A high maternal vitamin B12
level > 178 pmol/L demonstrated a similar association with
AD (aOR 1.30; 95% CI 1.06–1.60) in the same study [103].
Another study by Dunstan et al. in Australia in 2012 showed
that relatively high intake of folate supplement by the mother
(> 500 μg/day) increased the probability of infants to develop
eczema at the age of one than those whose mother had low
levels of folate supplement (< 200 μg/day; OR 1.85; 95% CI
1.14–3.02; p = 0.013) [104]. Interestingly, the amount of ma-
ternal folate intake from ordinary food causes no difference in
the risk of offspring eczema. The folate level in cord blood
shows no difference in children with or without eczema, but it
is possibly associated with sensitization, indicating a greater
risk when the level is either low or high (< 50 or > 75 nmol/L,
respectively) [104]. Other studies, however, showed different
trends. Two separate studies in the Netherlands [105, 106],

Table 2 (continued)

“The KOMCHS prebirth cohort”
in Japan [120]

Study design: prospective prebirth cohort
Methods: maternal diet history

questionnaire; offspring allergic
outcome by questionnaires at age 23–
29 months.

Population and size: mother–infant pairs
(n = 1354)

Vitamin D ↑ Risk of infantile eczema (aOR
1.63)

“The Prediction of Allergies in
Taiwanese Children (PATCH)
study” in Taiwan [121]

Study design: prospective birth cohort
Methods: maternal and cord blood

25(OH)D; allergic outcome at age 4
Population and size: mother–infant pairs

(n = 164)

25(OH)D ↓ Risk of eczema (OR 0.12) and
asthma (OR 0.22) at age 4 for high
maternal 25(OH)D

In Taiwan [122] Study design: prospective observational
cohort
Methods: breast milk retinol and

25(OH)D3; objective SCORAD in
infants

Population and size: breast milk for
exclusively breastfed AD and healthy
infants (n = 90)

Retinol
25(OH)D3

↔ No association with AD for
retinol
↑ objective SCORAD for lower

25(OH)D3

↔ No association with persistent
AD till age 3–4 years for
25(OH)D3

DBPCRCT double-blind, placebo-controlled, randomized clinical trial, SCORAD SCORing Atopic Dermatitis index, GA gestational age, FFQ food
frequency questionnaire, FeNO fractional exhaled nitric oxide, Rint interrupter resistance, SNP single-nucleotide polymorphism, MTHFR methylene-
tetrahydrofolate reductase, OR odds ratio, HLA human leukocyte antigen
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including one based on the KOALA cohort [105] and a
Japanese study [107] investigating outcomes on both airway
allergy and eczema, found no association between maternal
intake of folate and eczema. Two studies reported that a high
folate level in the middle of gestation possibly demonstrates a
protective rather than harmful effect on the risk of offspring
atopy. A South Korean study with a prospective cohort of 917
mother–child pairs showed that a high maternal serum folate
level (≥ 9.5 ng/mL) during gestational age (GA) of 12–
28 weeks was associated with the reduced risk of maternal-
reported AD at 24 months; however, no relationship was ob-
served for the high folate level in late pregnancy (29–
42 weeks) or AD in other ages [109]. Another recent study
based in the USA found decreased odds of wheezing in chil-
dren whose mothers had 2nd trimester folate ≥ 20 ng/mL, but
no association was noted for AD [111].

Overall, current studies focusing on the relationship be-
tween maternal folic acid/folate supplement and childhood
AD had shown inconsistent results. All research about mater-
nal folic acid status and childhood atopic diseases are obser-
vational cohort studies, partly due to the difficulties and infea-
sibility of conducting clinical trials and given that deficiency
or overdosing of folic acid during the gestation stage could be
harmful [191]. A meta-analysis investigated the effect of pre-
natal folic acid supplement on childhood risk of asthma and
discovered no association [192]. However, in the case of AD,
thus far, neither meta-analysis nor systemic review is available
to generate a conclusive result. The role of maternal folic acid
supplement on offspring AD remains unclear. A larger cohort
study with detailed documentation of maternal folic acid sta-
tus and prolonged follow-up period of the children might be
needed to gain deeper insights into this topic.

Vitamins B2, B6, and B12

Vitamins B2, B6, and B12 participate in the DNAmethylation
pathway, which is carried out mainly by folate. Deficiency in
vitamin B2, B6, or B12 may impair folate metabolism [193].
For pregnant women, these group B vitamins, including folate
(B9), are often supplemented in combination. Little is known
regarding the roles of vitamin B2 and B6 in association with
atopic diseases. A Japanese study conducted by Miyake et al.
analyzed the maternal consumption of vitamin B2, B6, folate,
and B12 and its effects on childhood atopic diseases including
AD [107]. None of the vitamins analyzed in the study affected
the risk of AD.

Vitamin B12 (cobalamin) is a group of cobalt-containing
vitamins. Although this vitamin can be synthesized by micro-
organisms in human gut, most of the vitamin B12 in our body
comes from food sources, especially those of animal origins,
such as milk, cheese, and eggs [194]. Vitamin B12 facilitates
normal physiological function in humans by multiple meta-
bolic functions. One member of B12, methylcobalamin, acts

as a co-enzyme that methylates homocysteine into methio-
nine, which is an important step to convert folate (B9) into
metabolically active form to perform its function as methyl
group donor [194]. Methylcobalamin can also suppress cyto-
kine production by T cells in vitro and modulate lymphocyte
function through augmenting Treg activities, although the
mechanism is not fully understood. Topical vitamin B12 is
effective in treating AD in both adults and children [195, 196].

Vitamin B12 is often supplemented together with folate for
pregnant women. Despite the claimed effect of improving
AD, current studies, including a Japanese study on vitamin
B group and the Generation R Study mentioned above, found
no beneficial role for vitamin B12 in childhood AD when
supplemented to mothers during pregnancy [103, 107]. The
Generation R Study identified an increased risk with maternal
supplementation of vitamin B12. One study investigated the
relation between cord blood folate, homocysteine, and vitamin
B12 levels and childhood asthma and eczema and found no
association [113].

A polymorphism in the gene encoding methylenetetrahy-
drofolate reductase, the MTHFR gene, is also being studied
for its role in manipulating folate and vitamin B12 status,
which could render susceptibility to atopic diseases. With a
prevalence of 5–15% in the general population, the single-
nucleotide polymorphism C677T in MTHFR gene reduces
the activity of the enzyme, causes decreased re-methylation
of homocysteine to methionine by vitamin B12, and subse-
quently alters folate distribution [197, 198]. The presence of
homozygous MTHFR C677T may further augment the effect
of low folate or vitamin B12 status on DNA methylation in
lymphocytes and affect the risk of developing allergic dis-
eases. Several studies investigated maternal and/or fetus
MTHFR C677T polymorphism, along with maternal folate
and vitamin B12 status, and their association with offspring
AD [199]. However, of all the genetic combinations analyzed,
no difference was found in the outcomes of the studies [103,
200].

Vitamin B3 (Niacin)

Niacin (vitamin B3) is found in a variety of food sources,
including fish, poultry, meat, mushroom, and nuts.
Nicotinamide is the amide form of niacin, which could be
supplemented by niacin intake and shares similar physiologi-
cal functions with niacin. Niacin can be converted from tryp-
tophan, an essential amino acid, by the kynurenine pathway.
An increased intake of tryptophan-containing foods or supple-
mental niacin can increase the serum level of nicotinamide;
topical and oral forms of nicotinamide are effective in the
treatment of dermatitis by reducing transdermal water loss
[201, 202].

One study carried out in the UK by El-Heis et al. ex-
amined the relation of maternal serum concentrations of
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nicotinamide and tryptophan metaboli tes in the
kynurenine pathway to the risk of atopic eczema in off-
spring [114]. The study included 497 mother–infant pairs,
and the outcomes were analyzed at 6 and 12 months of
age. The results showed that high concentrations of nico-
tinamide and anthranilic acid were associated with a low
risk of eczema at age 12 months but not at 6 months
[114]. The other metabolites showed no association with
AD. However, given the limited number of studies and
their relatively small sample size, the relationship between
maternal niacin intake and childhood AD remains to be
concluded.

Vitamin C

Vitamin C, or ascorbic acid, is a water-soluble vitamin with
well-known antioxidant properties and is abundant in fruits
and vegetables [203]. The rationale of the effect of vitamins
C onAD originates from two aspects: vitamin C plays a role in
maintaining the integrity of skin by aiding in the synthesis of
ceramides in the epidermis [204], and as an antioxidant, vita-
min C reduces the oxidative stress that plays a part in the
pathogenesis of AD [205]. Adult studies with small sample
sizes had demonstrated that serum vitamin C level is low in
patients with AD and is inversely correlated with severity in
terms of SCORing Atopic Dermatitis index (SCORAD) [183,
204].

Despite several proven rationales, however, the results of
mother–infant studies showed inconsistencies. The Australian
study by West et al. investigated the maternal intake of multi-
ple antioxidants during pregnancy; a high dietary vitamin C
was correlatedwith reduced offspring wheezes but not eczema
[100]. A breast milk analysis by Hoppu et al. measured the
antioxidant composition based on vitamin C and E levels of
34 mothers and revealed that high concentrations of vitamin C
in breast milk reduced the risk of atopy in infants (p = 0.038),
which is defined by the presence of AD during the first year of
life and a positive skin-prick test reaction at 12 months [37].
By contrast, a prospective questionnaire-based UK study of
1924 mother–infant pairs revealed that a high maternal intake
of vitamin C was associated with weak but positive risk of AD
in infants in their second year of life [101]. Results of other
studies based specifically on children population are also in-
consistent [205]. Evidence is still inadequate to make sugges-
tions for vitamin C intake of pregnant or breastfeeding
mothers.

Vitamin D

Vitamin D is a fat-soluble vitamin that occurs in two main
forms: ergocalciferol (vitamin D2, produced by plants) and
cholecalciferol (vitamin D3, derived from animals) (Fig. 2)
[206]. Humans predominately derive vitamin D by cutaneous

synthesis under the influence of sunlight, with limited vitamin
D sourced from dietary intake [207]. Therefore, the UK
Department of Health recommends that women consume a
daily vitamin D supplement of 400 IU throughout pregnancy
and lactation, whereas the AAP suggests that all infants and
children should have a minimum intake of 400 IU vitamin D
per day beginning immediately after birth. Vitamin D poten-
tially modulates allergy outcomes via its multifaceted effects
on altered epidermal barrier function, immune dysregulation,
and inadequate bacterial defense [208]. Systemically, vitamin
D is an immunomodulator that targets innate and adaptive
immune cells, including monocytes, macrophages, DCs, T
cells, and B cells. Vitamin D decreases excessive inflamma-
tion by suppressing TLR production by monocytes, enhanc-
ing the mast cell production of IL-10, inhibiting DC activation
by lipopolysaccharides, decreasing cytokine secretion from
Th1 cells, inducing Treg activities, and inhibiting B lympho-
cyte function and IgE secretion [209, 210]. Deficiencies in
vitamin D levels and/or signaling would favor a predominant
Th2 response and IgE elevation. In the skin, vitamin D ex-
hibits pleiotropic effects ranging from keratinocyte prolifera-
tion, differentiation, and apoptosis to barrier maintenance and
immunoregulatory processes [206]. Vitamin D plays an im-
portant role in epidermal differentiation and barrier function
through the regulation of calcium, antimicrobial peptides (i.e.,
cathelicidin), and TLRs [211–213]. Vitamin D prevents skin T
cell infiltration by downregulating the expression of cutane-
ous lymphocyte-associated antigen [214]. Therefore, vitamin
D deficiency might lead to the dysfunction of the skin barrier,
infiltration of T cells, and increased predisposition of patients
with AD to skin superinfection by Staphylococcus aureus or
its superantigens [213].

Although several studies reported no significant relation-
ship [215], most of the research found a negative correlation
between AD severity and vitamin D levels with dose-
dependent effects [216–218]. Low serum vitamin D levels
were associated with elevated serum IgE levels [218] and
increased house dust mite sensitization in AD patients [219].
A specific vitamin D receptor gene polymorphism occurs fre-
quently in patients with severe AD, thus suggesting the im-
portant role of vitamin D in the pathogenesis of the disease
[217]. Maternal vitamin D intake in pregnancy is associated
with the reduced risk of detection of IgE, which is specific to
food allergens, in offspring at 5 years of age [115].

Controversies surround the results regarding the associa-
tion of vitamin D status in utero and AD development. The
EDEN prospective birth cohort study in France found a sig-
nificant inverse association between the cord serum 25-
hydroxyvitamin D [25(OH)D] levels and risk of AD by the
ages of 1, 2, 3, and 5 years [116]. The prospective study with
669mother–infant pairs in Australia showed a low cord serum
vitamin D in infants that developed eczema (p = 0.018); ecze-
ma was significantly more likely to occur in those with
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vitamin D concentrations < 50 nmol/L in comparison with
those with concentrations ≥ 75 nmol/L (OR 2.66; 95% CI
1.24–5.72; p = 0.012) [117]. A UK study showed that children
born to mothers in the highest quartile of the cohort for ma-
ternal serum 25(OH)D concentration in late pregnancy had an
increased risk of eczema at 9 months of age and asthma at
9 years of age [118]. Altogether, observational studies support
a protective relationship between vitamin D status in utero and
the risk of eczema development, whereas others suggest that
high levels may be a risk factor. In an Avon Longitudinal
Study of Parents and Children (ALSPAC) study, maternal
serum 25(OH)D concentration was measured at each stage
of pregnancy and showed no association with parentally re-
ported allergic diseases (wheeze, asthma, eczema, or hay fe-
ver) or sensitization to three common aeroallergens [119].
These studies measured maternal 25(OH)D levels during
pregnancy [116, 119, 220] and/or in cord blood [117, 118,
220] at birth and reported the eczema outcomes in infants. A
major limitation of these studies is that 25(OH)D levels were
only measured once, thus failing to capture the effects of likely
changes in 25(OH)D status and exposure to the fetus over the
course of pregnancy [208]. However, limited information is
available regarding the primary prevention of allergic diseases

after vitamin D supplementation. The two combined indepen-
dent RCTs of vitamin D supplementation during pregnancy
resulted in a significantly reduced risk of asthma/recurrent
wheezing, but not eczema, in the offspring [96, 97, 221]. In
a UK randomized study, 180 women received no supplement,
800 IU per day ergocalciferol (vitamin D2), or a single bolus
dose of 200,000 IU cholecalciferol (vitamin D3) at 27 weeks
of gestation [98]. No significant differences were observed
between the control group versus the intervention groups for
atopic sensitization or risk of eczema. In exclusively breastfed
infant, our study showed that vitamin D levels in breast milk
were negatively associated with objective SCORAD at age of
2–4 months (p = 0.003) [122].

In summary, conflicting evidence is available about the
association between maternal vitamin D status and risk for
AD development in offspring. However, from the serum status
and AD severity in children and adults, vitamin D plays a
protective role in AD. Although serum 25(OH)D concentra-
tion reflects dietary intake and UVB exposure, a number of
other factors influence circulating 25(OH)D. Genetic variation
in a number of genes, including the vitamin D binding protein,
the carrier molecule that delivers all vitamin D and vitamin D
metabolites to tissues, influences serum 25(OH)D [222].More

Fig. 2 Vitamin D metabolism.
Vitamin D is mainly derived from
cutaneous synthesis under the
sunlight, with limited vitamin D
sourced from dietary intake. The
main dietary sources are egg, fish,
milk (vitamin D3 from animals),
and mushroom (vitamin D2 from
plants). After metabolized by the
liver and kidney, 1,25 (OH)2D
regulates the immune system by
various effects, such as inhibition
of T and B cell proliferation,
decrease in IgE production,
inhibition of DC activation and
maturation, and increase in Treg
generation
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double-blind placebo-controlled vitamin D intervention stud-
ies are required. These studies need to consider the supple-
ment type (vitamin D3 vs. D2), timing (a highly developed
immune system is already present by 20 weeks of pregnancy),
and dosage [9].

Vitamin E

Vitamin E is a family of fat-soluble compounds that deliver
antiinflammatory properties and act as powerful antioxidants
[205]. Two principal classes of vitamin E, tocopherols and
tocotrienols, exist, and they can be further divided into four
forms:α,β, δ, and γ [223]. These eight forms of vitamin E are
naturally present in food sources, most abundantly in plant
oils, cereals, and nuts. The strong antioxidative property of
vitamin E has inspired studies inspecting its nutrient–disease
association with AD. In adult studies including DBPCRCT,
vitamin E supplementation has significantly improved AD in
terms of symptoms, SCORAD, and serum IgE level [224,
225]. In children, a questionnaire-based study has shown that
AD patients have significantly lower dietary vitamin E intake
than those without the disease.

In mother–infant studies, however, not all results are in
agreement. A UK prospective study investigating 1924
mother–infant pairs in multiple antioxidants showed that ma-
ternal intake of vitamine E was inversely associated with the
risk of childhood eczema in atopic mothers (p = 0.024), but no
statistical significance was observed for the whole population
[101]. In the Australian study by West et al., no association
was found between maternal intake of vitamin E and eczema
in offspring [100]. In a Finnish study in which 37 atopic
mothers were enrolled, the ratios of infant serum γ- and α-
tocopherol to fat were significantly correlated with maternal
serum ratios (infant α-tocopherol/fat was higher, and γ-to-
copherol/fat ratio was lower than those of mothers), indicating
that maternal vitamin E status may affect that of the infants.
Nevertheless, the serum tocopherol levels showed no correla-
tion with the clinical presentation of AD or skin-prick test
[226]. In general, vitamin E may have a protective role against
AD, but its association with offspring ADwhen supplemented
in maternal diet during pregnancy remains unclear.

Minerals and Trace Elements

Magnesium

Magnesium assists in the activation of vitamin D, which in
turn regulates serum calcium and phosphate levels and facili-
tates immune function; this element has thus been widely
studied for its relationship with AD [227]. Magnesium itself
also exhibits antiinflammatory activity on the skin and im-
proves skin barrier function by participating in cell

proliferation and differentiation [228, 229]. In a small-scale
children’s study, AD patients had significantly lower serum
magnesium level compared with the controls (p = 0.007).
Erythrocyte zinc levels were significantly lower in AD pa-
tients in the same study [230]. However, the mechanism is
still unclear. Studies on magnesium intake in the mother–
fetal or mother–childhood atopy relationship are lacking.

Iron

Iron supplementation is essential for pregnant women, and the
World Health Organization has made recommendations of
400 μg daily iron supplement along with folic acid to prevent
maternal anemia, puerperal sepsis, low birth weight, and pre-
term birth [231]. Iron is often supplemented to infants or tod-
dlers because of possible iron deficiency or anemia associated
with exclusive breast milk or formula feeding, as suggested by
AAP [232]. The relationship between iron status and the im-
mune system is complicated. Free ferrous ion in the blood can
interact with H2O2 through a mechanism called Fenton reac-
tion, leading to the production of free radicals and increased
oxidative stress within cells [233]. On the other hand, a defi-
cient iron status may also be harmful. Poor iron status at birth
may compromise Th1 lymphocytes and bias the immune re-
sponse toward the Th2 pathway, increasing the risk of devel-
opment of allergic diseases [234].

An exploratory study by Nwaru et al. investigated the as-
sociations between maternal iron status in pregnancy and
childhood wheezing and atopy in their first 10 years of life.
A reduced maternal serum iron level is significantly associat-
ed with childhood wheezes. The risk of “doctor-diagnosed
eczema” is high with low maternal iron status, but the associ-
ation is of borderline significance [235]. In part of the
ALSPAC study by Shaheen et al., high iron levels in cord
blood are negatively associated with later onset of eczema
(OR 0.90), but the cord blood level shows no relation with
the maternal intake [236]. Fortes et al. noted that prenatal co-
supplementation of iron and folic acid leads to a fourfold
decreased risk of AD (OR 0.22; 95% CI 0.06–0.79; p =
0.02) after adjusting for possible confounding factors [237].
Although studies with large sample size are lacking, current
available evidence indicates a possible protective role of ade-
quate iron supplement in perinatal or infancy against AD.

Zinc

Zinc is an essential micro-nutrient [205] that is related to the
integrity and immune status of the skin barrier in multiple
functional pathways [238]. Zinc acts as the structural cofactor
of zinc-finger motifs, which are present in the proteins in-
volved in the expression of filaggrin, a key component in-
volved in the pathogenesis of AD [239]. Topical zinc oxide
application can alter the dermal cytokine profile into an
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antiinflammatory pattern (increased IL-10 and decreased IL-
1β, IL-6, and TNF-α levels) [239]. An in vitro study has
shown a possible antimicrobial activity of zinc oxide against
methicillin-resistant Staphylococcus aureus [240]. Although
the mechanism between zinc and AD is still not fully known,
several pilot studies have suggested the protective role of high
serum, hair, and erythrocyte zinc level against the develop-
ment of AD [238].

Dietary zinc is most abundant in meat, shellfish, nuts, and
certain vegetables. A Mediterranean diet pattern may general-
ly satisfy the zinc requirement [241, 242]; maternal
Mediterranean diet pattern may be beneficial for childhood
atopy [12]. Nevertheless, a limited number of studies focused
specifically on zinc in maternal diet and its effect in offspring
eczema or AD. Currently existing large-scale studies analyz-
ing antioxidants in maternal diet and offspring atopy discov-
ered no associations between zinc intake and childhood ecze-
ma [10, 16, 100]. Whether zinc in maternal diet would influ-
ence childhood atopic disease remains unclear.

Copper

The rationale of how copper influences the development of
allergic disease is not fully discovered. Copper is suggested to
have antioxidant activities and act as a cofactor that partici-
pates in cell growth and function [243]. A 1987 study by Di
Toro et al. investigated both zinc and copper status in allergic
children. However, in contrast to zinc, whose level in hair is
negatively correlated with development of AD, a significantly
higher hair copper level was found in children with the disease
[244]. Similarly, in 1990, el-Kholy et al. observed a signifi-
cantly high serum ceruloplasmin in children with AD
(p < 0.001), whereas high serum and hair copper levels were
associated with asthma [243].

In spite of these early studies suggesting that high copper
levels may induce atopy, recent maternal–infant studies val-
ued copper for its antioxidant role, whereas others reported
different results. The Australian study by West et al. showed
that a high dietary copper intake is associated with reduced
risk of offspring eczema and other allergic diseases [100].
Another cohort study by Martindale et al. found no relation-
ship [101]. Interestingly, maternal intake of copper showed an
opposite influence compared with the copper status of the
children themselves. Given that the role of copper in allergic
diseases is not fully elucidated, additional studies have to be
carried out to clarify the related mechanism.

Selenium

Selenium is known for its role as an antioxidant in human
health. Environmentally, selenium is ubiquitous and can be
found in rock, water, and soil. This element enters the food
chain by being taken up by plants from the soil and finally

reaches animals through bioaccumulation. The most abundant
food sources of selenium include fish, egg, meat, and
Brazilian nuts. Biologically, selenium is a key component in
several enzymes, such as glutathione peroxidase, thioredoxin
reductase, and iodothyronine deiodinases, which carry out
antioxidative functions [245]. Sufficient amount of selenium
is therefore necessary for maintaining optimal antioxidative
capacity in the body [205]. In studies, selenium status is being
linked to diseases, including AD, because of the possible role
of oxidative stress in their pathogenesis [181, 182, 246].
Limited clinical evidence supports the beneficial role of sele-
nium in improving AD. A DBPCRCT conducted in 1989 by
Fairris et al. enrolled 60 adults with AD, who were supple-
mented with either selenium-enriched yeast plus vitamin E,
selenium-enriched yeast only, or placebo. No difference was
observed in the severity of eczema or the concentration of
cutaneous selenium among groups [247].

For pregnant women, serum selenium concentration de-
creases significantly during gestation [248]; a deficient seleni-
um status is associated with multiple health problems, such as
recurrent miscarriages, preterm delivery, gestational diabetes
mellitus, thyroid peroxidase antibody-positive autoimmune
thyroiditis, and neural tube defect of the fetus [249].
Adequate selenium intake or supplement is thus suggested
by authorities, especially during pregnancy [250, 251].
Regarding the antioxidative property, several studies investi-
gated the association of maternal selenium status or selenium
supplementation and the risk of atopic diseases, including ec-
zema, in children. In the ALSPAC study that analyzed trace
elements in the umbilical cord, high cord blood selenium level
was negatively associated with childhood wheezing, but no
association was found with eczema [236]. Another study on
UK cohort by Martindale et al. revealed no consistent statisti-
cally significant associations between eczema in the first
2 years of life and total maternal intake of selenium [101]. A
Japanese cohort study of 1036mother–infant pairs by Yamada
et al. analyzed 32 measurable minerals in the hair of infants
and mothers using proton-induced X-ray emission (PIXE);
only selenium and strontium demonstrated significant associ-
ation with childhood dermatitis [252]. Selenium deficiency in
either infant or mother increased the risk of AD at the age of
10 months, but for mothers, the result was borderline signifi-
cant (p = 0.048 for infants and p = 0.062 for mothers).
Compared with childhood asthma or wheezing, of which
more evidence is needed for a relatively concrete conclusion,
little is known for selenium’s role in AD and how mother’s
selenium status affects children.

Strontium

Strontium is present in seawater and soil. The strontium we
obtain mostly originates from seafoods, cereals, and grains.
Strontium is scarcely studied for its biological role compared
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with other trace elements. Most of the physiological functions
currently known for strontium are related to the metabolism of
bones [253]. Less is known for its association with atopic
diseases. A study by Barneo-Caragol et al. revealed that stron-
tium level rose significantly during the third trimester of preg-
nancy, possibly to cope up with the oxidative damage that
developed physiologically during this period [254]. Yamada
et al. discovered that among all 32 minerals tested in infants’
and mothers’ hair by PIXE in their study, only selenium and
strontium had significant association with the risk of child-
hood AD. In contrast to selenium, whose levels in both in-
fants’ and mothers’ hair are inversely related to AD risk, the
hair strontium level inmother is positively associated with AD
risk in children [252]. With the tool, the authors of this study
developed a logistic prediction model for childhood AD using
the levels of these elements, with a sensitivity of 65.9% and
specificity of 70.5% [252].

Discussion

In consideration of children, maternal nutrition status may
have substantial effects as one of the most modifiable envi-
ronmental factors and may play a prominent role in the devel-
opment of chronic and multifactorial diseases, such as allergy.
However, studying the causality of mothers’ food intake to
offspring disease could be difficult. The nutrients from
mothers are delivered through the placenta to the fetus or
secreted in breast milk. Thus, the levels of most nutrients in
cord blood or breast milk and in mothers’ and children’s sera
must be examined to establish a robust correlation. Several
nutrients may be quantified indirectly using other specimens,
for example, minerals which can be measured in urine or hair
[252]. However, certain obstacles could prevent the acquisi-
tion of samples in real clinical settings, especially with vul-
nerable groups as subjects. Not all nutrients have highly cor-
related, measurable markers. Most of the available mother–
fetal or mother–infant studies utilized well-designed, validat-
ed questionnaires to assess the nutrient composition of mater-
nal diet; however, although they are easy to administer, such
questionnaires could be affected by recall bias [255]. The of-
ten observed inconsistencies in the amounts of specific nutri-
ents from mother’s intake, maternal serum concentration to
cord blood, and fetal serum concentration also suggest a com-
plicated physiological mechanism involved in the process of
nutrition transportation [104, 236].

Compared with childhood asthma and wheezes, studies
rarely evaluated the influence of maternal nutrition status to
examine the outcome of childhood AD or eczema. The mech-
anism behind the causality is also less explored in AD, either
in animal models or in nutrient–genome interaction. The pau-
city of studies causes difficulty in developing a solid conclu-
sion. Of all the nutrients that were reviewed,ω-3 PUFA, folic

acid, and vitamin D are the most studied. Small-scale RCTs
are conducted for ω-3 PUFA and vitamin D, of which com-
mercialized supplementary products are available because of a
relative common deficient status in modern Western lifestyle.
Other nutrients are mostly investigated in observational stud-
ies, of which several use a large sample size and long period
follow-up periods, for example, the Generation R Study or the
ALSPAC [103, 236]. However, neither solid proof nor con-
cordant results of being beneficial or risky to offspring with
AD has been found for any of the nutrients. Systemic reviews
or meta-analyses are also lacking due to the highly heteroge-
nous study designs and methodology and inadequate number
of studies.

Several studies investigated the influence of maternal diet
in terms of specific food category or dietary pattern, instead of
focusing on single nutrients. A few research suggested a po-
tentially protective role of maternal Mediterranean diet pat-
tern, which consists of high proportions of vegetables, fruits,
nuts, seafoods, and grains, against AD or other atopic diseases
[12, 13, 241, 242]. Additional intake of fish [8, 17], vegeta-
bles, and fruits [8, 16] is also beneficial [256]. Nevertheless,
whether the effect is delivered mainly by a sole key nutrient in
certain foods (e.g., ω-3 PUFA in fish or vitamin C in citrus
fruits) is unclear. One RCT specifically examined the level of
single nutrient (ω-3 PUFA) after increased intake of salmon
and detected an increase in EPA in maternal serum and cord
blood [73]. A change in the cytokine and Ig profile was also
observed in the fetus, but no difference was noted in the out-
comes [72]. This condition demonstrates that certain food
source modifications in maternal diet can alter the nutrition
status of offspring using a measurable nutrient component,
although no correlation was observed between the laboratory
test results and clinical presentations. Given the complicated
mechanisms involved in nutrition physiology, concluding the
net effect of individual nutrients would be extremely difficult,
especially when certain food or diet is composed of various
portions of different nutrients. The interplay of other environ-
mental factors, genetic factors, and microbiota also increases
the complexity. More strategically designed, carefully con-
ducted, and less biased studies are required to shed a light
on this topic.

To conclude, no strong evidence indicates that a single
nutrient or food in maternal diet significantly affects the risk
of childhood AD. Nevertheless, a balanced diet is not only
always helpful for humans in pregnancy or during lactation
but also a key to healthy immune function against allergies
and other diseases. A healthy lifestyle with healthy, balanced
dietary intake is thus encouraged.
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