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Abstract
The innate B cell (IBC) population is heterogeneous and involved in the primary immune response. IBC functions
include a high ability to produce natural antibodies with IgM isotype, the elimination of apoptotic cells, and a capacity to
be cognate help to T cells. Among IBC subsets, B-1 cells and marginal zone B cells are the main producers of IgM, act
as rapid immune responders that may relocate to follicular lymphoid and differentiate to cytokine and antibody-secreting
cells shortly after infection. IBCs functions are highly dependent on their localization site and the nature of their B cell
receptor repertoire, suggesting a high plasticity range of different immune responses. In this review, we will describe the
nature and functions of the different innate-like B cell subsets, first in mice and then in humans. Besides this, we will
emphasize the strong ability of these cells to undertake different protective functions from the first line of defense
against pathogens to the regulatory role of the broader immune response.
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Introduction

The immune system is classically divided into two separate
branches. The more fundamental one, and referred to as innate
immunity, is present in all eukaryote organisms. Its main func-
tion is to sense infections through germline molecular recog-
nition in order to generate a protective response. The second
branch is referred to as the acquired immunity or adaptive
immunity and has appeared with jawed and jawless verte-
brates during the evolution [1]. The main characteristic of
the acquired immunity is to harbor a clonal antigen (Ag) re-
ceptor that is generated from a specific mechanism involving
chromosomal DNA rearrangements to specifically recognize
the pathogen [2]. Jawless fishes (lampreys) possess primary
lymphoid organs including a thymus, but they lack secondary
lymphoid organs (spleen and lymph nodes) explaining why T
and B cell–like cells harbor clonally variable lymphoid

receptors (VLR) generated through DNA rearrangement dur-
ing the lymphocyte ontogeny. The VLRB protein is expressed
on the surface of the B cell–like cells from lampreys and can
be secreted following stimulation [2], evoking the ancestor of
the B cell receptor (BCR). The VLB protein is secreted as a
pentamer, which suggests that IgM might be the primordial
antibody class. Later on, during evolution, acquired immunity
gained in specificity due to elaboration of its selection and
memory programs within secondary lymphoid organs. B cells
from the ectotherm family (e.g., lizards, snakes) have con-
served their capacity to phagocytize different pathogens
underlining the common origin of B cells and myeloid cells,
whereas this capacity is lost in mammals [3, 4]. Innate func-
tions are provided by specialized immune cells such as cells
from the myeloid-derived lineage, which have not acquired
the memory capacity. Myeloid functions include rapid and
localized responses in tissues, the ability to clean up dead cells
in a process known as efferocytosis, an elevated phagocytotic
capacity, and the ability to provide cognate help to T cells.

Growing over the past decade, new insights regarding
the functional heterogeneity of the two systems have
allowed rethinking of how the multi-layered immune re-
sponses are articulated. The recent description of innate
lymphoid cells (ILCs) has further contributed to provide
substantial pieces of evidence showing that different lym-
phoid cells participate in the time-sequential shift from an
innate to acquired immune response. As a consequence,
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this modifies the dogma of functioning of the two systems.
Together, new insights from comparative and developmen-
tal immunology bring us new perspectives for understand-
ing the complexity of the immune response; through the
observation of the compartmentalization of the immune
system into components that change rapidly or disappear
during evolution and those with a strong selective advan-
tage that were conserved throughout the evolution.

Among lymphoid cells, arguments are accumulating to
consider that B cells have conserved innate functions dur-
ing their evolution. To this end, this review will describe
the characteristics and functions of innate-like B cells
(IBCs) first in mice and then in humans. In addition, we
will highlight new insights into the biology of this subset
shedding light on the strong plasticity of these cells to
undertake different protective functions at the crossroad
between innate and adaptive immunity.

Mice IBCs Family

B1 and MZB

Among the IBC family, two major B cell subsets have
emerged and have been extensively described in mice. The
first subset is referred to as B1 cells that reside in the serous
cavities and can be dichotomized into B1a and B1b cells
based on the expression of the plasma-membrane molecules
CD5 and CD45RA [1]. The second subset, called marginal-
zone B cells (MZB), was first described in the marginal zone
of the spleen. Both subsets possess unique and shared proper-
ties and play a crucial role in the primary immune response.

One of the characteristics of B1 and MZB from mice is
their expression of invariant or semi-invariant BCR [5].
Those receptors recognize mostly non-protein antigens, such
as phospholipids, or carbohydrates shared by many pathogens
as well as by the host [6, 7].

IBCs repertoire appears to be not only restricted to
autoreactive germline-encoded elements but arise also from
a selection process. Such an assertion came from the obser-
vation that BCR of IBCs producing antibodies directed
against blood-group antigens are not germline-encoded im-
munoglobulins but result from a selection process in re-
sponse to commensal bacteria [2]. More recently, a subset
of IgM+ naïve B cells that recognizes the algal protein phy-
coerythrin (PE) was described in the spleen of Ighb mice.
Those PE-specific B cells were restricted to a single expres-
sion of the immunoglobulin variable heavy chain (VH1-81)
and these cells have conserved their capacity to differentiate
into IgM+ producing plasma cells, which supports the pos-
sibility that exo-antigen could also participate to the selec-
tion process of the pre-immune repertoire of IBCs [8]. As a
consequence, IBCs constitute a strong and protective local

defense against infection. However, the counterpart to the
use of germline-encoded V segments is their potential self-
reactivity as demonstrated for anti-type II collagen-specific
IBCs in autoimmunity [9]. These autoreactive B cell clones
are associated with a pathogenic response in patients with
rheumatoid arthritis [10, 11] uncovering the ambiguous role
of IBCs in the immune system.

Nevertheless, in most cases, IBCs possess a unique BCR
recognition signature, which suggests that a positive selection
step is critical during IBC development. In this regard and
when forcing expression of different canonical BCR during
the B cell ontogeny, IBCs are able to differentiate into new
lineages from which the BCR has been generated [12–15].
These observations raise fascinating questions about the con-
trol of central and peripheral tolerance. In other words, the
selection of IBCs for self-reactivity seems contrary to the dog-
ma of the strict discrimination between self and non-self. One
major challenge to the persistence of those autoreactive clones
is their potential to increase their BCR affinity through somat-
ic hypermutation (SHM) and class switching by recombina-
tion. However, murine B1 and MZB do not seem to undergo
extensive SHM and the main reason is related to the fact that
the antigen sequestration occurs away from the T cell area and
germinal center [16]. Again, such an assertion is not absolute
as recent studies have clearly demonstrated that a single clone
of autoreactive B cells can generate autoreactive and periph-
eral germinal center producing clones of B cells targeting
other self and non-self-antigens [17].

How are autoreactive IBCs restricted? Such a question is
based on the broad observation that IBCs express a large panel
of inhibitory receptors that may fine-tune the threshold of
antigen-BCR signaling necessary for selection. B1 cells ex-
press the T cell marker CD5, while B1b and MZB express the
myeloid marker CD11b and Fc receptor-like (FcRL)-5 known
to restrict the BCR response through the recruitment of the Src
homology protein tyrosine phosphatase (SHP-1) and may
serve as a gatekeeper to an exacerbated response [18].
Although B1 cells are suspected to be anergic based on the
expression of the CD5 molecule [19], B1 and MZB are not
intrinsically anergic and one of the main arguments for that is
the reported high level of cell surface IgM and the low level of
cell surface IgD. Furthermore, it is hardly expected that natu-
ral autoreactive IBCs are anergic cells since different studies
have demonstrated that those cells are able to respond rapidly
and efficiently to foreign pathogens [20]. B1 cells and MZB
are both activated following several types of infections
through both Ag-specific and non Ag-specific processes sug-
gesting that IBCs activation is not restricted to the engagement
of BCR but may occur fromBCR-independent signals such as
Toll-like receptors (TLR) and cytokines receptors [21–23].
The strong inter-dependence between IBCs and their micro-
environment supports an important role of the extracellular
factors to control IBC survival and activation. In this regard,
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B1 cells have the capacity to adapt to tissue-specific signals
inducing a unique phenotypic and functional imprint [24, 25].
Nevertheless, the interconnection between IBC ontogeny and
the natural B cell autoreactivity remains to be solved, probing
which specific mechanisms of selection and activation are
required to confer a broad natural response without triggering
acute autoimmune responses.

The Protective Functions of IBCs

Natural IgM Production

The Nature of the IgM-Producing CellsOne and if not the main
contribution of IBCs in the immune system is to produce and
secrete natural non-switched IgM antibodies. Expression and
secretion of IgM is one of the most ancestral attributes of B
cells. This capacity has been highly conserved during the evo-
lution and this can be explained by the fact that natural IgM is
particularly effective in removing auto-antigens from the cir-
culation [26]. Both polyclonal and somemonoclonal IgMAbs
enhance the clearance of apoptotic components from dying
cells [27] mainly through a complement-dependent mecha-
nism. When bound, IgM is an early recruiter of C1q that
activates the classical complement pathway and promotes
opsonization by phagocytes. This was demonstrated in mice
deficient in serum (s)IgM, as these mice showed reduced ap-
optotic cell clearance and C3 cellular deposition, similar to
C1q deficient mice [28]. It has been recently proposed that
B1a and MZB are the two main B cell actors involved in the
clearance of apoptotic cells and participate in the elimination
of a significant source of neoantigens [29].

B1 cells produce polyreactive and low avidity IgM anti-
body during infections including respiratory viral infections
explaining why they are locally distributed within the respira-
tory tract epithelium but also present in the lymph nodes with-
in regional and non T cell areas [20]. B1 cell development is
auto-regulated by the production and secretion of natural IgM
as mice unable to secrete IgM develop an impairment of B1
cell generation in the body cavities [30]. The accumulation of
B1 clones in lymph nodes but outside T cell areas supports a
role for these cells to the generation of high-specific response
in germinal centers by providing antigen accessibility to T
cells or to specific B cells, referred to as B2 cells.

Although B1 cells are the primary source of natural
IgM, this fundamental function is not restricted to this par-
ticular subset of B cells [31]. Some authors have proposed
that B1b (CD5 neg, CD45 low) rather than B1a (CD5 pos,
CD45RA intermediate) are more critical for natural IgM
production [32]. Furthermore, the contributions of other
tissue-localized IBCs (MZB and B1 cells from the spleens)
have also been incriminated. This increases the complexity
of defining a unique natural IgM-producing B cell popula-
tion. Such diversity is retrieved at the molecular level as

splenic B2 cells, B1 cells, and B1-derived plasma cells are
all dependent on the transcription factor B lymphocyte–
induced maturation protein 1 (Blimp-1) expression for
IgM and IgG3 production [33], while natural IgM produc-
tion by B1 cells can occur independently of Blimp-1 in
both bone marrow and in the peritoneal cavity.

During Ehrlichia muris infection, in the mantle zone of the
spleen and in the bone marrow, MZB elicits the generation of
IgM memory B cells harboring the myeloid integrin CD11c
and expressing the T cell–associated transcription factor (T-
bet) (Fig. 1, Table 1) [36, 37, 39]. In addition, the spleen
CD11c+ T-bet+ IgM memory B cell subset expresses at its
plasma-membrane the C-X-C chemokine receptor type 4
(CXCR-4) for CXCL12 (also known as SDF1), the transmem-
brane activator and CAML interactor (TACI, also known as
tumor necrosis factor receptor superfamily member 13B
[TNFRSF13B]), and CD73 an ecto-5′-nucleotidase. For the
IgG antibody response, the CD11c+ T-bet+ IgM memory B
cell subset needs contact with T cells and IL-21 signaling as
reported upon antigen challenge in lymph nodes [38]. In ad-
dition to the secretion of antibodies, CD11c+ T-bet+ B cells are
potent antigen presenting cells to T cells and this is possible
due to their localization at the T/B cell border in the spleen and
the expression of the chemokine receptor CCR7 [40]. This
observation is consistent with several reports suggesting that
CD11c and T-bet expressing B cells may be a decisive subset
in autoimmunity in mice [41] and also in humans [42].

Molecular Mechanism Controlling the IBC-Dependent Ig
Production One major question arising is: What is related
to the molecular mechanisms controlling T cell–
independent activation and antibody production in IBCs?
To this end, cytokines, as well as direct cellular interac-
tions, could provide classical and alternative pathways
leading to rapid production of antibodies associated or
not with class-switching recombination. Using Blimp-1-
GFP mice, in-depth sequencing analysis of the transcrip-
tional program of antibody-secreting cells from distinct B
cell subsets, including IBCs, based on their location and
maturity stage has revealed a tissue-specific program nec-
essary for the B cell differentiation [43]. Although a core
transcriptional signaling is conserved between plasmablast
and plasmocytes (PC) from the spleen and bone marrow-
resident PC, a specific network has been underlined be-
tween the different compartments showing the key role
played by chemokine receptors and cell adhesion mole-
cules. However, the common and natural IgM antibody-
secreting cell signature from IBCs remains to be defined,
challenged by the complexity of the different origins of
natural Ab-producing cells.

Collectively, the different steps involved in the generation
of IgM+ memory B cells or IgM-producing cells from IBCs is
still an open question and may be highly dependent on (1) the
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stimulatory antigen; (2) the tissue localization of the activa-
tion; (3) the interplay with other immune cells; and (4) canon-
ical and non-canonical intrinsic molecular mechanisms.

Initiation of a Class Switch-Specific Immune Response

In addition to their capacity to promote an effective and pro-
tective response to infection by a steady-state production of
polyreactive IgM antibodies, IBCs are also able to develop
specific class-switched responses in secondary lymphoid or-
gans. This is particularly true for MZB that could undergo
class-switching through a strict metabolic program [44] [45].
MZB produce IgM but also class-switched IgG and IgA anti-
bodies mainly in response to commensal antigens [21]. It is
the chemical nature of the antigen that locally regulates the
immunoglobulin production and drives the T-dependent or T-
independent pathway for antibody production [46]. Some an-
tigens could induce MZB activation and CXCR5 upregula-
tion, necessary for MZB relocalization into the follicular area
rich in T cells [47]; [48]. One general explanation may, on one
hand, be that T cell–independent antigens stimulate MZB to
proliferate and produce IgM and class-switched antibodies
without forming germinal centers whereas, and on the other,
T cell–dependent antigens most likely induce MZB cell mi-
gration into the follicles [49]. However, the exact role of MZB
in generating a GC reaction is still under investigation.

Additionally, MZB possess a strong propensity to interact
with other immune cells and, in particular, to promote T cell–
dependent responses within the spleen. It was demonstrated
that dendritic cells expressing CLE4A4 selectively stimulate
rapid IgG1 but not IgM production from MZB [50]. In
humans, the newly described neutrophil and B cell helper
subset (NBH) promotes MZB activation by presenting a
higher expression of B cell stimulating molecules such as
BAFF, APRIL, IL-21, and CD40L, than do classical neutro-
phils, leading to IgM production but also allowing class-
switching recombination to IgG2 or IgA [51].MZB have been
demonstrated to closely interact with natural killer (NK)-T
cells through the expression of CD1d [52]. CD1d-restricted
glycolipid antigen ligands are present on the surface of
Streptococcus pneumonia, Borrelia burgdorferi, and
Sphingomonas species [53, 54]. This interaction promotes
an early wave of response to bacterial and viral pathogens
[55]. The relationship between MZB and innate lymphoid
cells (ILC) has been recently explored and it was demonstrat-
ed that mouse ILC3 express APRIL enhancing a T cell–
independent IgG3 response from MZB [56].

Regulatory Functions of IBCs

The link between IBCs and B cell regulatory functions has been
continuously suggested since the first appreciation of the B cell
capacity to control the immune response (Fig. 1, Table 1) [57].Ta
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One of the primary functions of IBCs was related to the
control of the immune response by different means. First,
IBCs possess intrinsic regulatory functions mediated by their
natural capacity to produce IgM at a steady state or following
activation. Second, IBCs can exercise regulatory functions
through the release of anti-inflammatory cytokines such as
IL-10 upon stimulation. Third, IBCs are also able to control
the inflammatory response [58].

Regulatory Functions of IBCs: Activation Pathways One cru-
cial question remains related to the necessity or not of a BCR
engagement in the natural regulatory functions of IBCs is not
well understood. Indeed, there are arguments to consider that
part of the regulatory functions of IBCs is not strictly depen-
dent on antigen stimulation via an engagement of the BCR.
Accordingly, some studies have related a TLR pathway rather
than an antigen-specific BCR activation pathway of IBCs
leading to their redistribution in secondary lymphoid organs
in order to regulate polyreactive IgM IBC production at the
site of infection [22]. Support for such an assertion was ob-
served during influenza infection in mice with IBCs that can
rapidly migrate from local niches to secondary lymphoid or-
gans following a type-I interferon stimulation and CD11b
integrin cell surface expression in response to a TLR pathway
activation [25]. This observation has also been reported during
tetanus toxoid (tet) vaccination in humans. It was shown that
specific staining of circulating antigen-specific B cells follow-
ing tet vaccination revealed 6 days after vaccination the induc-
tion of two distinct plasmablast subsets. Indeed and along with
the increase of the antigen-selected tet-positive CD38 high
plasmablast, the authors have demonstrated the emergence
of a second and non-specific (tet− IgM+) plasmablast subset,
which represents more than 60% of the entire plasmablast
population. A complex phenotypic signature characterizes this
bystander subset with moderate expression of CD138
(syndecan-I), HLA-DR, and CD126 (IL-6 α Receptor) but
an increased expression of CXCR4 (C-X-C chemokine recep-
tor type 4). Although this study did not formally identify the
nature of this non-specific plasmablast subset, the authors
highlighted that those cells expressed a reduced expression
of Blimp-1 suggests an innate origin [59].

On the other hand, different types of infections have
demonstrated the induction of Breg cells arising mostly
from IBCs that suppress harmful Th1 or Th2 responses in
an antigenic non-specific manner [34, 60, 61]. Although
the final phenotype of this Breg subset differs from one
experimental model to another, and this is continually de-
bated, such studies have, however, demonstrated that the
greater part of the initial B cell origin is related to IBCs. As
an example using IL-10-EGFP reporter mice, the dominant
IL-10 producing B cell subset in the spleen of infected
mice with Schistosoma mansoni is composed of MZB
[61] whereas others have suggested that B1 cells were

involved [62]. It is highly likely that these two IBC subsets
are crucial in the control of infection in mouse models [63].
This raises the possibility that innate Bregs could emerge
from distinct IBC subsets (e.g., B1 and MZB) and perhaps
from all of them during an immune response with specific
attributes depending on (1) the nature of the antigen, (2)
the localization of the response, and somehow (3) genetic
and epigenetic factors that have not yet been elucidated. To
summarize, we can consider that IBCs exert their regula-
tory functions at the crossroad of promoting a protective
response in order to preserve the organism from exacerbat-
ing responses, and through recruitment activation and con-
trol of the antigen-specific response.

Innate Versus Regulatory Functions of IBCs Innate B cell func-
tions and regulatory functions of IBCs are often examined
separately but they represent the two sides of the same coin.
Infectious models represent a robust and pertinent approach to
evaluate the interplay between innate and regulatory functions
in IBCs. Among them, the mouse model infected with the
Salmonella enterica serovar typhimurium (STm) gram-
negative bacterium infection has been well studied and pro-
vides interesting information regarding the innate properties
of IBCs. STm has the capacity to introduce a specific bacterial
effector protein into the host cytosol via a specific system, the
Salmonella type III secretion system (TTSS) that can infect
most immune cell types. In this model, IBCs were described
as a significant partner in the generation of a protective re-
sponse against Stm and this response depends on the nature
of the bacteria (virulent or attenuated). Recently, a study dem-
onstrated that a STm-attenuated infection induces rapid
plasmablast production independent of the formation of ger-
minal centers, supporting a T cell–independent activation of
germline B cell clones. The authors demonstrated that the
IgM-producing cells were present at 4 days post-infection,
while IgG reaches a maximum 18 days post-infection. One
interesting finding is that almost 95% of plasmablasts gener-
ated during the primary response possess a very poor ability to
bind Salmonella antigens, suggesting no or a very low affinity
for the antigen [64]. In this study, the authors propose an
exciting concept where first an innate signal was generated
leading to a burst of low-specific IBC expansion in response
to Salmonella infection. This initial response is followed by a
second and more-specific response dependent on germinal
center-dependent somatic hypermutations taking place at
extra-follicular sites in specific patches. This finding supports
the view that engaging extremely low affinity or polyreactive
IBC cells in early and primary response achieves a high po-
tential of generating a rapid protective response that perfectly
fits with the IBCs’ fate. Another key conceptual observation
involving regulatory IBC functions and performed in
Salmonella infection mouse models comes from the ability
of the pathogen to subvert the regulatory IBC response to its
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advantage. This was demonstrated in mice lacking the capac-
ity to produce IL-10 as these mice are significantly more re-
sistant to death after infection as compared with wild type
mice, supporting the notion that IL-10 production from lym-
phoid cells including regulatory IBCs may be a critical pro-
cess for the survival of bacteria [65]. The IL-10 immunosup-
pressive role of B cells in infection was thus confirmed to be
dependent on TLR signaling since mice lacking MyD88, the
canonical adaptor for inflammatory signaling pathways down-
stream of TLR, in B cells became resistant to lethal infection
[66] while B cells have conserved their capacity to produce a
normal antibody response [67]. This paradoxical observation
is due to the absence of the MyD88 signaling pathway in B
cells leading to a defect in the IL-10-dependent B cell regula-
tory function of controlling neutrophil, NK cell, and inflam-
matory T cell accumulation at the site of bacterial replication.
From additional studies, this group formally identified surface
IgM+ CD138+ TACI+ CXCR4+ LAG3+ plasmablasts as the
critical player inhibiting anti-Salmonella immunity during the
early course of the infection through the release of two anti-
inflammatory cytokines, IL-10 and IL-35 [35, 68]. In this
latter study, the authors demonstrated that an intense burst of
IL10+ IgM+ plasmablasts was generated several hours after
infection, and decreased after 8 days reflecting the archetype
of the primary humoral response. Epigenome-wide and reper-
toire analyses have further established the origin of these reg-
ulatory plasmablasts in this model to be B1a cells and B1b
cells but not MZB [35].

The ability of pathogens to manipulate the suppressive func-
tions of B cells to counteract the anti-bacterial response is not
unique to the Salmonella infection as other intercellular bacteria
such as Chlamydia abortus and also viruses such as CMV (cy-
tomegalovirus), HIV (human immunodeficiency virus), and
HBV (human hepatitis B virus) have the capacity to induce
suppressive functions in B cells [69–73]. These models uncover
the intrinsic dual function of IBCs, initiating protective immuni-
ty while promoting regulatory mechanisms against uncontrolled
inflammation. Such feedback is a common feature in the homeo-
static system but allows us to extend our point of view of IBCs
and the general function of B cells such as immunoglobulin
production or suppressive functions. Reconciling different ob-
servations, IBCs are a fair representative of the plasticity and the
adaptability of immune cells to their microenvironment [74].
IBCs can differently respond to stimulation, change their identi-
ty, differentiate, and relocate throughout the body adapting their
function to their new location (Fig. 1, Table 1).

Other Innate B Cell Populations

Atypical IBCs

Growing evidence during the past decade points toward the
atypical capacity of IBCs to differentiate into other lymphoid

or myeloid lineages. This incredible cellular plasticity repre-
sents a reliable tool to offer the best range of responses against
organism aggression. In this regard, B cells have continuously
been described as a very plastic lineage. Interestingly, studies
have demonstrated the conversion of B cells to other immune
cell types by modification of lineage key transcription factors.
Indeed, ectopic expression of C/EBP (CCAAT/enhancer bind-
ing protein) in primary progenitor B cells and mature B cells
induces transdifferentiation of B cells toward a distinct mye-
loid cell fate including granulocytesmacrophages and dendrit-
ic cells [75–77].). In vivo, this relevance seems restricted the
ability of transdifferentiation from the pro-B cell population
and can occur during the inflammation process [78]. A new
study has highlighted the transcription factor Hoxb5
(Homeobox B5) as a master regulatory factor involved in
the lineage conversion of B cell precursors into fully
functional T cells [79]. A CD11c or CD11b B cell subset
with myeloid or dendritic attributes and T cell regulatory
functions has been described in mice [80]. These CD19 +
CD11c+ B cells (discussed above) are present in mouse
spleen, expressing Pax5 and the T cell regulatory enzyme
IDO (indoleamine 2, 3-dioxygenase), and develop from
stem cell progenitors in B cell-deficient mice (μMT
knockout) but not from CD19-knockout mice.

Are myeloid and non-B cell–restricted identity attributes
such as CD5, CD11b, and CD11c a hallmark of IBCs? Do
those characteristics represent different functional subsets?
Does it represent alternatively, a conserved evolutionary func-
tion from a common progenitor? Although these questions
remain to be solved, their investigation might bring us new
insights into the function of these populations and how these
populations could be conserved in humans.

Natural Killer B Cells

Three years ago, a study described a new innate B cell popu-
lation with NK (natural killer) attributes emerging from bone
marrow pro-B cells. These NK B cells (NKB) are present in
the marginal zone of the spleen and mesenteric lymph nodes
in both mice and humans. Murine NKB express the NK1-1
marker plus CD19 and a cell surface IgM with a limited rep-
ertoire. NKB cells exhibit a critical role in the control of mi-
crobial infection since NKB-depleted mice were more prone
to Listeria monocytogen and STm infections [81]. NKB show
a great potential to produce IL-18 and IL-12 leading to acti-
vation of NK and ILC1 against bacterial infection. The de-
scription of this population was completed in an additional
study showing that NK1-1+ CD19+ cells have the capacity
to differentiate into CD138+ Blimp1+ plasmablasts upon
LPS (lipopolysaccharide) stimulation. This has motivated
the authors to propose that NK1-1+ or NKp46+ B cells repre-
sent a phenotypic attribute of MZB [82].
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Although discrepancies exist in the characterization of
IBCs, one significant aspect to keep in mind is the capacity
of IBCs to express atypical B cell markers. Expression of
CD11b, CD11c, NK1.1, PDCA, and other atypical phenotypic
attributes in IBCs underline that the necessity that the dogma
of the strict stable phenotypic identity of B cells has to be re-
evaluated. This idea is already accepted in T cell biology
where phenotypic attributes could be transitory and related
to a functional program in many different T cell Bsubsets^
establishing the foundation of inhibitory blockade molecules
in some cancers [83, 84] and recently providing new thera-
peutic consideration in autoimmune diseases [85].

IBCs in Humans

Although an extensive amount of literature has provided evi-
dence for the high diversity of IBCs in rodent models, the study
of human IBC (hIBCs) is more challenging. One crucial feature
of hIBCs is their tissue-dependent localization and functions
that complicate experimental approaches in humans. From an
evolutionary point of view, B cell subsets become diversified.
Mouse IBCs represent a conserved B cell subset with functions
close to the myeloid lineage supporting a substantial advantage
against infections. Nevertheless, transposition to human is more
speculative perhaps because most of the tissues housing IBCs
are structurally very different (Table 2) [86].

Human B1 Cells

Characterization of the B1 cell population is the best illustration
of the complexity of studying IBCs in humans. In 2011, the
Rothstein’s group identified a homolog of the B1 subset (hB1)
in cord blood and adult circulating peripheral blood based on
their capacity to spontaneously produce IgM secretion, to stim-
ulate T cells, and to possess a tonic intracellular signal [87].
This subset expresses CD27 and CD43 among the CD19+

CD20+ B cell population, and in addition, this population was
the only one able to bind phosphoryl-choline (PC), another
hallmark of the murine B1 cells [88, 89]. Interestingly, the
hB1 subset was distinct from CD5+ B cells since the majority
of CD5+ B cells were negative for CD27 and CD43. CD5
expression in humans is mainly an inducible marker that ap-
pears upon activation decoupling its expression from a specific
subset [90, 91]. Beyond phenotypic considerations, one func-
tional aspect of this intriguing CD27+ CD43+ CD5± B cell
subset is its ability to spontaneously produce IgM within 3 h.
This unique ability has evoked the question of the real nature of
this specific subset and has raised the question of a possible
contamination with plasmablasts that also express CD43+ and
CD27+ [92, 93]. However, one recent study has further con-
firmed the presence of hB1 cells (CD20+CD43+CD27+CD70−)
in the human choriodecidual stroma of women with

spontaneous pre-term (PTL) and term (TL) labor [94].
According to these authors, choriodecidual B cells display a
unique phenotype that is distinct PTL from TL stroma since
B cells from PTL stroma exhibit an hB1 phenotype with altered
function promoting spontaneous polyreactive IgM and with a
suspected impact on pregnancy outcomes [95].

Human MZ B Cells

Among innate B cell actors, human MZ B cells contribute
mainly to a specific antigenic response leading to a rapid pro-
duction of IgM and IgG3 isotype antibodies. In addition, hu-
man MZ B cells have been described as the main humoral
actors of systemic anti-bacterial immunity [96]. Since the first
description of circulating human MZB [97, 98], some ad-
vances have established the existence of two main hMZB
subsets according to their localization.

Human Circulating MZ-Like B Cells

The circulating IgD+IgM+CD27+ B cell population harboring
some shared properties with murine MZB was first observed
in healthy children younger than 2 years old with mutations of
their immunoglobulin receptor during ontogeny, prior differ-
entiation into T-independent antigen responsive cells and from
the formation of a competent germinal center [99, 100]. In
adults, the presence of immunoglobulin-mutated V genes in
this subset has suggested different interpretations regarding
MZ-like B cell origin and in particular with the possibility to
have somatic hypermutation events outside of the germinal
centers [101] or the possibility that IgM memory B cells are
generated during the immune response in germinal centers but
without immunoglobulin class switching [102, 103]. Recent
assessment of IgM+CD27+ subsets in humans reveals the het-
erogeneity of the MZ-like B cell subset including both Btrue^
innate B cells harboring a unique repertoire and IgM-mutated
memory cells (with no or low IgD expression) displaying a
clonal relationship with switched memory B cells [104].
Additional evidence has demonstrated that the IgM+ memory
B cell repertoire presents a bias in IgVH family usage and may
be affected by age [105]. Furthermore, this study has further
underlined that the IgM+ memory B cell subset is heteroge-
neous based on the density of IgM+ expression that could be
used to dichotomize between T-dependent and T-independent
types of IgM memory cells. There is no doubt that the emer-
gence of single-cell transcriptomic analyses will bring new
insights into the biology of human MZB-like and IgM+ mem-
ory cells together with additional traits about their function in
the immune system. The ongoing characterization of MZ-like
cells in humans rises fascinating questions about how those
cells are generated during B cell development and by which
mechanisms these cells are regulated coupling tissue localiza-
tion with specific functional characteristics.
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In line with these questions, the selection of the reactivity
of MZ-like B cells in the unrestricted human repertoire is still
under investigation asking how MZ-like B cells are develop-
mentally linked to the selection of autoreactive B cells. Some
studies have revealed that autoreactive B cells against protein-
ase 3 (PR3) are not restricted to autoimmune patients but also
found in healthy controls, and in this case, they exhibit anMZ-
like phenotype (IgD+CD27+) [106]. Intriguingly, a decrease in
this subset has been reported in systemic autoimmune diseases
and with correction under treatment with immunotherapy
[107–111]. How could the proportion of circulating MZ-like
B cells reflect the tolerance breach could be asking?
Nevertheless, the intricate network established in mice
existing between this population and the control of
autoreactivity [112] offers promising future tracks for under-
standing the control of B cell tolerance in humans.

Tissues Resident Innate B Cells

Spleen human B cells located in the mantel zone area around
the germinal center are characterized by a specific cell surface
phenotype CD27+IgDlowIgMhigh [99, 113] and this phenotype
included the expression of CD45RB (MEM55 epitope) and the

absence of positive labeling for the mitotracker green (MTG)
fluorescence dye [114]. Transcriptomic analysis has defined the
transcription factor SOX7 as significantly involved in the MZ-
like B cell fate associated with IL21-R and CCR9 suggesting a
strong relationship of MZ-like B cells with their microenviron-
ment. More recently, in-depth phenotypic profiling of human B
cells from different tissues coupled with mass cytometry and
imaging mass cytometry has revealed a phenotypic alignment
between the IgM+IgD+CD27+ B cell subset and a precursor
CD45RB+ subset distinct from memory B cells, suggesting a
separate developmental branch between MZ-like B cells and
memory B cells [115]. Interestingly TACI, CD80, and FcRL4
could be used to distinguish IgD+CD27+ MZ-like B cells
across the spleen, the gut, and the tonsils.

Human IBC Functions

Natural Protection

The molecular pathways that lead to immature B cells to dif-
ferentiate into either MZB or follicular B cells were extensive-
ly studied in mice but remain elusive in humans. In both spe-
cies, the transmembrane neurogenic locus notch homolog
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protein 2 (Notch2) receptor presents an essential role for MZB
development through the interaction with one of its ligands,
Delta-like 1 (Dll1), that is expressed by fibroblastic reticular
stream cell in the spleen [116]. Additionally, BCR engage-
ment on type 1 transitional (T1) B cells via the serine-
threonine kinase TAOK3 (TAO kinase 3) is effective to induc-
ing ADAM10 (ADAM metallopeptidase domain 10) expres-
sion that is necessary for promoting Notch2 intracellular do-
main translocation into the nucleus [117]. In addition to the
Notch2 pathway, the importance of the signal downstream
from the BCR in the choice of MZB and B1 cell fate seems
crucial since mutations in genes encoding regulators of the
BCR signaling such as CD19 or CD22 result in the profound
modification of the IBC compartment (Table 2) [15, 121].

In humans, it was suggested that IBCs are prone to recog-
nize microbial cell-wall fragments from the microbiota
protecting against microbial infection. Human splenic MZ-
like B cells have the particularity to possess a strong pre-
activation state characterized by high metabolic activity
coupled with a specific activation gene signature [45]. This
gene signature highlights the increase of the mTORC1 (mam-
malian target of rapamycin complex 1) signaling pathway
depending on the cooperative activation of TACI and TLR9.
Interestingly, mTORC1 signaling regulates class switch
recombination-inducing signaling pathways specifically.
This observation was further extended in an additional study
[118]. Those authors demonstrated that IgM-secreting cells
are present in humans, but in contrast to mouse, small intestine
MZB harbor a large repertoire against a high diversity of mi-
crobial communities. The study further suggests that IgM-
secreting cells reacting to commensal bacterial compounds
are clonally related to a specific IgM+ memory B cell subset
expressing a gut-specific gene signature that differs frommar-
ginal zone B cells. This tissue-specific memory signature is
characterized by an upregulation ofFCRL4, IL-10,CCR9, and
CD11c. This study documented the heterogeneity of human
IBCs and supports the possibility of mucosal tissue-resident
IgM+ memory B cells in human, but not in mice.

Conventional IBCs and IgM+ memory B cells share some
protective functions through the provision of rapid immuno-
globulin production that may or may not involve class switch
recombination. The dichotomization of the peripheral memo-
ry B cell compartment into different subsets based on IgM,
IgD, IgG, IgA, CD27, CD38, and CD24 expression has sug-
gested three distinct maturation pathways [122]. The first and
second memory B cell subsets were local and systemic and
independent of the GC reaction. These pathways encompass
IgD+ IgM+ CD27+ called the natural effector B cell subset and
corresponding to MZ-like B cells and the CD27− IgA cells.
Both populations showed limited proliferation and reduced
somatic hypermutation levels. IgM+ CD27+ IgD− memory B
cells present a complex ontogeny as they are suspected arising
from IBCs in the primary response but also from the Ta
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recirculation of germinal center-dependent tissue-resident
memory B cells. Although the high complexity of heteroge-
neity of the human protective response has still not been un-
covered, human IBCs may integrate local signals to undergo
higher functional activities including local antibody produc-
tion, commensal bacterial memory B cell generation, and
greater capacity to recirculate to provide adequate and broad
protection against pathogens.

The Control of the Immune Response

Beyond protection against pathogen, studies in humans have
now begun regarding the regulatory functions of IBCs on the
immune system begin. Transitional B cells were been first
ascribed to possess regulatory B cell functions in humans
[120] as the homologous of their T2-marginal zone precursor
mouse-counterpart. However, human transitional B cells pos-
sess different functional subsets [119] and consequently do
not represent an exclusive Breg subset. In addition, IBCs ex-
press natural features that may render those cells highly com-
patible for exerting some regulatory mechanisms. Examining
IL-10 secretion, we and others have underlined that, in the
human peripheral blood, IgM+ CD27+ (IgD+ and IgDlow)
and transitional type-2 B cells are the major source of IL-10
following innate TLR9 stimulation [119, 123, 124]. Both
hIBCs and human Bregs present shared properties including
CD5 expression, the rapid capacity to differentiate, and a ca-
pacity to produce IgM spontaneously or after activation [120,
125, 126]. Some pathological situations have emphasized the
ability of IBCs to exert regulatory functions as highlighted in a
longitudinal phenotypic analysis of HIV-1 infected patients
[127]. Additional studies demonstrated an increase of IL-10-
expressing MZ-like B cells in HIV patients, associated with a
high level of lymphotoxin-α [128] that was suggested to be
involved in suppression of anti-viral T effector functions.

Studies regarding graft-versus-host diseases (GVHD) have
underlined the fact that data in this area are often contradictory
and fail to provide a uniform concept of the human Breg. In an
initial study, IgM+ CD27+ CD38low human MZB and transi-
tional B cells were enriched in IL-10 producing B cells when
activated by CD40L and could control T cell proliferation as
well as IFN-γ production. This population was impaired in
patients with chronic GVHD. In another study, IL-10+ B cells
were assessed in controls and patients with active or remitting
GVHD. B cells were activated by CpG and CD40 demonstrat-
ing that IL-10 production was enriched in the CD24+ CD27+

and in the plasmablast compartment and that this pool was
defective in active GVHD patients [129]. Although the first
stimulation inducing IL-10 was different in both studies, they
underline one of the standard features while examining Breg
functions that B cells could undertake regulatory functions
depending on the microenvironment. However, some B cell
populations may have distinct properties to undertake

regulatory abilities. Among them, human and mouse IBCs
may represent the most potent B cell subsets able to display
regulatory functions in the immune system.

The existing and recurrent link between plasmablast differ-
entiation and acquired regulatory function may represent the
missing link between IBCs and Bregs [130]. IBCs are cells
poised to differentiate in response to many different signals.
IBCs integrate signals from cytokines, TLR, and BCR and
from interaction with other cells like DCs, ILCs, or neutrophils.
All those interactions have been demonstrated to trigger regu-
latory functions in B cell. One recent study shows that CpG-
stimulated human peripheral B cells gradually induce TNF-
receptor R2 (TNFR2) upregulation and develop into IL-10+

IgM+ plasmablast. Researchers have shown that IgM+ CD27+

cells were the primary source of IL-10 positive Ab-secreting
cells confirming the appropriate link between IBCs and regu-
latory functions [131]. What could be the purpose of triggering
regulatory mechanisms in B cells dedicated to the protective
response? Although more questions than answers remain, IL-
10 is a complex actor that may fulfill different roles that could
sustain Ab production while controlling exacerbated immune
response. Regulatorymechanisms of IBCsmay act as a homeo-
static counter-regulator of inflammation.

Conclusion

Overall, a great interest has emerged this past decade for better
understanding of the heterogeneity of innate mechanisms in
humans as reported in this special issue [132–140]. Of particu-
lar interest are questions about molecular mechanisms regulat-
ing the multiple layers of innate B cells with different functions.
Further studies that will focus on delineating cellular and mo-
lecular switch programming innate B cells from effector to
regulatory cells are bound to yield valuable new insights into
the biology of B cells promoting effective Ab protection as well
as B cells driving or preventing cancer and autoimmunity.
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