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Abstract
Toll-like receptors (TLR) that belong to the group of protein recognition receptor (PPR) provide an innate immune response
following the sensing of conserved pathogen-associated microbial patterns (PAMPs) and changes in danger-associated molecular
patterns (DAMPs) that are generated as a consequence of cellular injury. Analysis of the TLR pathway has moreover offered new
insights into the pathogenesis of rheumatoid arthritis (RA). Indeed, a dysfunctional TLR-mediated response characterizes RA
patients and participates in establishment of a chronic inflammatory state. Such an inappropriate TLR response has been
attributed (i) to the report of important alterations in the microbiota and abnormal responses to infectious agents as part of
RA; (ii) to the abnormal presence of TLR-ligands in the serum and synovial fluid of RA patients; (iii) to the overexpression of
TLRmolecules; (iv) to the production of a large panel of pro-inflammatory cytokines downstream of the TLR pathway; and (v) to
genetic variants and epigenetic factors in susceptible RA patients promoting a hyper TLR response. As a consequence, the
development of promising therapeutic strategies targeting TLRs for the treatment and prevention of RA is emerging.
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Introduction

With a prevalence of 0.5 ± 0.2% in the general population and
a twofold female predominance, rheumatoid arthritis (RA)
represents the most common chronic systemic autoimmune
rheumatism [1]. RA clinical presentation typically retrieves
morning stiffness, fatigue, poly-articular pain, and joint and
bone inflammation and destruction. A more severe evolution

is encountered in RA patients presenting early bone erosion,
an age at diagnosis lower than 50 years, and an elevated level
of autoantibodies (Abs) targeting immunoglobulin G, referred
to as rheumatoid factor (RF), and/or anti-cyclic citrullinated
peptide autoantibodies (ACPA) [2, 3].

RA presents a strong environmental factor component in
addition to genetic, epigenetic, and female bias risk factors [4].
Environmental risk factors include smoking, silica exposure,
education level, vitamin D deficiency, obesity, change in mi-
crobiota, and infectious agents [5]. As reported in Fig. 1 and
although the primary events are suspected to occur outside the
joint at mucosal surfaces (mouth, pulmonary, gut), leading to a
primary immunization in secondary lymphoid organs, there
are consistent information from human and animal models
supporting a critical role of the TLR (Toll-like receptor)/IL-
1R (interleukin-1 receptor) pathway, at least as a second hit
signal in the synovium. Indeed, the TLR pathway amplifies
the abnormal crosstalk existing between antigen-presenting
cells (APCs), T cells, and B cells, leading to production of
high amounts of pro-inflammatory cytokines, the expansion
of autoreactive lymphocytes, and local detection of Abs in-
cluding ACPA and RF. After several months or years, persis-
tent immune activation can lead to FLS (fibroblast-like
synoviocyte) hyperplasia, neutrophil recruitment, comple-
ment activation resulting in cartilage destruction, bone ero-
sion, and joint damage.
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The TLR and IL-1 Receptor Signaling Pathway

The TLR family is evolutionarily conserved and, in humans, it
is composed of 10 members, TLR1 to TLR10 [6]. TLR can be
dichotomized into two groups based on their localization ei-
ther on the cell membrane for TLR1/2/4/5/6/10, or on the
membranes of intracellular compartments such as endosomes
and endolysosomes for TLR3/7/8/9 (Fig. 2). TLRs are pre-
dominantly expressed by immune cells, as well as cells ex-
posed to the external environment such as in the mouth, lungs,
and gut (e.g., mast cells, epithelial cells) [7]. Their expression
profiles vary among tissues and cell types (Table 1).

By sensing highly conserved structural motifs known as
PAMPs (pathogen-associated microbial patterns), which are
expressed exclusively by microbial pathogens, or DAMPs
(danger-associated molecular patterns) that are endogenous
molecules released from necrotic or dying cells, TLRs play a
critical role in the early innate immune response [8]. TLRs are
type I transmembrane proteins characterized by an extracellu-
lar domain-containing LRR (leucine-rich repeats) and a cyto-
plasmic tail that contains a conserved region named TIR
(Toll/IL-1 receptor) and able to recruit the adapter molecule

MYD88 (myeloid differentiation primary response protein
88) after homodimerization or heterodimerization of the
TLRs (e.g., TLR1/2 and TLR2/6) [9] (Fig. 3). The TIR do-
main is present on both IL-1R (interleukin-1 receptor) and all
TLRs with the exception of TLR3. MYD88 carries a death
domain which helps in interacting with IRAK1/4 (interleukin-
1/4-receptor-activating kinase) [10]. Subsequently, IRAK4 ac-
tivates IRAK2 by phosphorylation. After dimerization, both
IRAK2 and IRAK4 leave the TLR-MYD88 complex to asso-
ciate with TRAF6 (tumor necrosis factor-receptor-associated
protein 6). As a consequence, the recruitment and phosphor-
ylation of TAK1 (TGF-b activated kinase 1) and TRAF6 are
ubiquitinated by interacting with Bcl10 and MALT1 [11]. In
addition to MYD88, there are four other TLR adapters that
can further orchestrate the inflammatory response: TRIF/
TICAM1 (TIR domain-containing adapter molecule 1),
TRAM/TICAM2 (TIR domain-containing adapter molecule
2), TIRAP (TIR domain-containing adapter protein), and
Mal (MYD88 adapter-like protein); each of them interact with
a specific set of TLR [12]. The TLR intracellular signaling is
also controlled by endogenous inhibitors such as IL-1R8, a
transmembrane molecule acting on TLRs, and the short-
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Fig. 1 A Btwo hits^ model for the development of RA: critical role of
TLRs. The first events for the occurrence of RA are supposed to take
place outside the joint on the mucosal surfaces, leading to a primary
immunization in secondary lymphoid organs. Nonetheless, a critical
role of TLR/IL-1R as a second hit signal for the induction of an immune
response directly inside the joint has to be taken into account, as a TLR-
dependant second hit. Activation of TLRs induces a perpetual cycle of
inflammation with the increased production of pro-inflammatory

molecules like IL6, TNF alpha, or VEGF. Amicro-environment is created
within the joint, thanks to local (MLS, FLS) and immune-activated cells
(monocytes, macrophages, B and T cells, PMN), inflammatory cytokines
and death cell components, triggering a positive feedback for further
TLR-mediated inflammation. PADI, peptidyl arginin deiminase; RF,
rheumatoid factor; ACPA, anti-cyclic citrullinated peptide autoanti-
bodies; FLS, fibroblast-like synoviocytes; MLS, macrophage-like
synoviocytes; PMN, polymorphonuclear neutrophils
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MYD88, acting onMYD88 [13]. TLR4 presents several char-
acteristics and, in particular, the necessity to recruit the adapter
MD2 (myeloid differentiation protein-2) and the accessory
molecule CD14 in order to form a complex with LPS leading
to a MYD88-dependent pro-inflammatory signal. The second
particularity is related to the capacity of the TLR4/MD2/CD14
complex to translocate from the plasma membrane to the
endosomes, which is associated with recruitment of TRIF, as
observed with TLR3, which triggers production of IFN-β in
an MYD88-independent manner [14].

Stimulation of TLRs by the corresponding PAMPs or
DAMPs initiates MYD88 dependent signaling cascades leading
to the activation of TAK1 which in turn phosphorylates the IKK

complex (IκB kinase, IKK-α, IKK-β, and IKK-γ) that leads to
activation of the NF-κB (nuclear factor kappa B) pathway and
the MAPK (mitogen-activated protein kinases) pathway includ-
ing ERK1/2 (extracellular signal-regulated kinase), JNK (C-Jun
N-terminal kinase), and P38 necessary to induce pro-
inflammatory cytokines (TNF-α, IL-1, and IL-12) [12].
Following viral nucleic acid binding to the endosomal TLR3/7/
8/9, the activated IRF (interferon regulatory factor) induces the
production of type I interferon [15]. Type I IFN production stim-
ulated by TLR3 and TLR4 involves IRF3 and IRF7, while
TLR7, TLR8, and TLR9 involve IRF5 and IRF7. Last but not
least, TLR expression is tightly regulated by several means in-
cluding pro-inflammatory cytokines such as IFN-γ.
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Fig. 2 The TLR family and signaling pathway. TLRs are activated
through the binding of exogenous or endogenous ligands. Each of the
ten members of the TLR family is classified into extracellular or
intracellular subtypes. MyD88 (myeloid differentiation primary-
response protein 88) and TRIF (Tir-domain-containing adapter protein
inducing IFN-beta) are the two main adapter pathways for the transduc-
tion of TLR signaling. Predominantly, receptor activation leads to the
association of MyD88. Therefore, two major downstream signaling

pathways are induced: the NF-KB and IRF (interferon regulator factor)
pathways. Regarding the NFKB pathway, the MyD88 fixation causes the
phosphorylation of IRAK (interleukin-1-receptor-associated kinase),
which results in the recruitment of TRAF (TNF receptor-associated fac-
tor). Some TLRs, like TLR3 and TLR4, can produce a MyD88-
independent signal. Upon activation, TRIF protein is associated, enabling
IRF3 and IRF7. All of these activating pathways promote the production
of inflammatory proteins like interferons or inflammatory cytokines
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TLR and Rheumatoid Arthritis

Lessons from Clinical Studies

In healthy individuals, the synovium is important for providing
nutrients to the cartilage and lubricants to allow cartilage mo-
bility. With RA initiation, important changes in the synovium
are observed including expansion of the synovial intimal lining
composed of FLS and MLS (macrophage-like synoviocytes).
Such expansion is associated with FLS with overexpression of
TLR2/3/4/7 and production of a high amount of IL-6 and
MMP3 (metalloproteinase 3). Regarding MLS, they produce
a large panel of pro-inflammatory cytokines in response to
TLR overexpression and hyper response. In addition to being
overexpressed at the FLS and MLS cell surface, an abnormal
presence of bacterial DNA and bacterial peptidoglycans has
been reported in joints of patients with RA [16, 17] as well as
demonstration that active TLR-4 ligands are increased in the
serum and synovial fluid of RA patients [18].

Analysis of T and B cells present in the synovial sublining
with APC (DC, macrophages, mastocytes) reveals CD4+
memory Tcells that can be diffusively organized or associated
with mature B cells and antibody-producing plasmablasts to
form ectopic germinal centers. Peripheral memory T cells
have been proposed as an interesting biomarker associated
with the biological response to disease-modifying antirheu-
matic drugs (DMARDs) [19, 20]. Present in the synovial fluid

space, neutrophils express TLR and contribute to joint damage
by the release of pro-inflammatory cytokines and MMPs.

Lessons from Mouse Models

In RA animal models, activation of the TLR pathway is used to
induce the disease in susceptible strains (Table 2). The disease
can be reproduced in IL-1 receptor antagonist (Ra)-deficient
mice that spontaneously develop autoimmune arthritis due to
excessive IL-1R/TLR signaling [21]. Autoimmune arthritis in
this model is dependent on the microbial flora since germ-free
mice do not develop arthritis. Coupling IL-1Ra and TLR2
knockdown revealed a more severe arthritis with Treg reduc-
tion, while the IL-1Ra and TLR4 knockdown had a markedly
lower capacity to produce IL-17 [22, 23]. Analysis of the mi-
crobiota in the IL-1Ra-deficient mice revealed an aberrant in-
testinal flora and, when the fecal microbiota was transferred
into wild-type mice, they reproduce IL-17 production by the
lamina propria and T helper (TH)17 expansion [23].

Mice expressing both the T cell receptor (TCR) transgene
KRN and the MHC class II molecule A(g7) (K/BxN mice)
develop a severe arthritis, and sera from these mice cause a
similar arthritis in a wide range of mouse strains, due to Abs
recognizing glucose-6-phosphate isomerase. This mechanism
is dependent on the IL-1R/TLR pathway since neither IL-1R
nor MYD88 knockdown mice develop synovitis after the
transfer of the arthritogenic sera [24]. The functional

Table 1 Microbial and endogenous host ligands reported to activate immune cell Toll-like receptors (TLR)

TLR Immune cells Microbial ligand (PAMPs) Endogenous ligand
(DAMPs)

Signal adapter Cytokine
production

TLR1
(+TLR2)

Cell surface Mo, MΦ,
DC1, B cell

Triacylated lipoproteins (Pam3CSK4),
LPS, PGN

HSP, HMGB1,
proteoglycans

MyD88, Mal Pro-INF

TLR2 Cell surface Mo, MΦ,
MC, B cell

Zymosan, LPS, PGN HSP, HMGB1,
proteoglycans

MyD88, Mal Pro-INF

TLR3 Endosomes B cell,
T cell, NK, DC1

dsRNA viruses (poly (I:C)) mRNA, tRNA TRIF Pro-INF, type1 IFN

TLR4 Cell surface/endosomes
Mo, MΦ, DC, MC, IE

LPS HSP, HMGB1,
proteoglycans,
fibronectin

MyD88, TRAM,
TRIF, Mal

Pro-INF, type1 IFN

TLR5 Cell surface Mo, MΦ,
DC, IE

Flagellin MyD88 Pro-INF

TLR6
(+TLR2)

Cell surface Mo, MΦ,
MC, B cell

Diacylated lipoproteins(FSL-1),
zymosan

TLR7 Endosomes Mo, MΦ,
DC2. B

ssRNA viruses ssRNA/IgG complexes MyD88 Pro-INF, type1 IFN

TLR8 Endosomes Mo, MΦ,
DC, MC

ssRNA viruses, imidazoquinolines
(R848), guanosine analogs
(loxoribine)

ssRNA/IgG complexes MyD88 Pro-INF, type1 IFN

TLR9 Endosomes Mo, MΦ,
DC2, B,T

Unmethylated CpG
(CpG ODNs)

Chromatin, IgG complexes MyD88 Pro-INF, type1 IFN

TLR10 Endosomes Mo, MΦ, DC Profilin-like proteins MyD88 Pro-INF

Mo monocytes, MΦ macrophages, DC1 dendritic cells type 2, DC1 dendritic cells type 2, MC mast cells, IE intestinal epithelium, Pro-INF pro-
inflammatory cytokines, HSP heat shock proteins, HMGB1 high mobility group protein 1, LPS lipopolysaccharides, PAMPs pathogen-associated
microbial patterns, DAMPs danger-associated molecular patterns, PGN peptidoglycans
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significance of TLR2 and TLR4 was tested after serum trans-
fer revealing the protective role of TLR2 on joint inflamma-
tion and bone erosion by controlling the FcγR (Fc gamma
receptor) response in macrophages [25], while TLR4 mediat-
ed pro-inflammatory cytokine production by joint macro-
phages and mast cells [26]. The mechanisms by which the
gut microbiota affects arthritis development were further ex-
plored revealing the importance of follicular helper T cell dif-
ferentiation, instead of a TH17-dependent mechanism [27].

Lessons from Genetic and Epigenetic Studies

More than 100 genetic variants have been characterized for
RA, and among them, several involve the TLR pathway
(Table 3). Regarding TLR2, a dinucleotide polymorphism
present in intron 2 is suspected to confer susceptibility to
RA in a Korean population [28], while it is the TLR3

rs3775291 A allele that is significantly associated with RA
in sero-negative Danish patients [29]. Several groups have
further evaluated TLR4 polymorphisms supporting roles for
a TLR4 Asp299Gly mutation (rs4986790) in RA pathogene-
sis, in preventing chronic periodontal disease mediated by
Porphyromonas gingivalis, and in providing a more effective
response following anti-TNF biotherapy [30–32]. TLR4
rs1927911 is associated with disease activity [33]. For TLR8
rs5741883, a moderate association with RF positivity has
been reported by a Danish group [34]. TLR9 rs187084 pre-
sents regional variations with a susceptibility to RA, and an
anti-TNF therapy response is reported in RA patients from
Turkey and Poland [30, 35]. With regard to downstream
TLRs, TRAF1 rs7021206 is associated with RA susceptibility
in those patients positive for RF and ACPA, and TRAF5
rs7514863 represents another RA susceptibility risk factor
[36, 37].
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Fig. 3 Effects of microorganisms on IL1/TLR pathway and RA develop-
ment. Several infectious agents have been related to the development of
RA. The most famous is Porphyromonas gingivalis, responsible for peri-
odontitis infection. The bacterium is well-known for producing an en-
zyme, the PPAD (prokaryotic peptidylarginine deiminase), able to con-
vert the arginine of various peptides to citrulline. The citrullinated pro-
teins are then recognized by the immune system and especially when
presented by the HLA-DR4. This germ also activates the TLR2 on a
chronic basis, leading to the expression of many inflammation markers
and stimulating osteoclasts for bone destruction in the RA. Some

particular intestinal microbiota profiles have also been described in RA
patients, characterized by the presence of Prevotella copri among others,
and leading to auto-immune diseases like inflammatory bowel disease
and colitis, but also RA, through the activation of IL-1R/TLR pathway.
Some protective bacteria have also been identified, such as lactobacilli,
reducing inflammation and restoring healthy intestinal microbiota. RA
patients are concerned as well by a higher frequency of HSV infections
or reactivations, causing a TLR2 and a TLR9 activation which results in
the production of inflammatory molecules
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Among the epigenetic factors associated with RA, increas-
ing evidence supports a role for miRNAs in the regulation of
the TLR pathway [38]. MiRNAs are defined as short non-
coding RNAs capable of gene expression modulation via di-
rect binding to the 3′-UTR (untranslated region) of target
mRNAs [39]. One way in which miRNAs can affect the IL-
1R/TLR pathway is by controlling TLRs and IL-1R, and this
includes miR19a and miR140-5p/miR6089 which regulate
TLR2 and TLR4, respectively [40–42]. A second way is to
act as an endogenous ligand for TLR as demonstrated with
Let-7b which possesses a GU-rich domain able to stimulate
TLR7 in myeloid cells leading to pro-inflammatory M1 mac-
rophage differentiation [43]. A third way is to target TLR/IL-
1R adapter molecules, and the best example is miR146a, dem-
onstrated to be overexpressed in RA, which controls IRAK1
and TRAF6 except when the C allele is present since it is
considered to be protective for RA development [44].
Another example is miR10a which is downregulated in RA
FLS with IRAK4 and TAK1 as targets and which is upregu-
lated in those patients responding to methotrexate [45, 46].

Infections, TLR, and Rheumatoid Arthritis

Among potential infectious sources of PAMPs, oral microbi-
ota and commensal intestinal microbiota are suspected. In this
regard, epidemiologic data have been reported pointing to a

positive association between RA and upper respiratory tract
infection on one hand [47], while, on the other hand, it is a
negative association that was observed relative to gastrointes-
tinal and urogenital tract infections [48].

Microbiota

Recent studies suggest that alteration of intestinal microbi-
ota, known as gut dysbiosis, contributes to the occurrence
or development of RA through an impaired balance be-
tween pro- and anti-inflammatory immune responses [49].
In particular, Prevotella copri, a Gram-negative anaerobic
bacterial member of the Bacteriodetes phylum, defined the
microbiome of RA patients and is implicated in other au-
toimmune diseases including inflammatory bowel disease
and colitis [50]. The consequential effects of these shifts
include alterations in the metabolic composition of the
gut, hyperactivation of the IL-1R/TLR pathway, upregula-
tion of pro-inflammatory cytokines, increased intestinal per-
meability, and increased inflammation [51]. Differential
microbiome compositions exist between males and females
[52]. Moreover, intervention at the level of the microbiota
appears to attenuate symptoms as reported with lactobacilli,
playing a positive role in restoring intestinal health, and
decreasing inflammation [53].

Table 2 TLR-associated genetic risk factors in rheumatoid arthritis (RA)

Polymorphisms Gene location Clinical associations Reference

TLR2 (dinucleotide repeat) Intron RA susceptibility [28]

TLR3 (rs3775291) Coding region (Leu412Phe) Seronegative RA [29]

TLR4 (rs4986790, rs4986791) Coding region Asp 299 Gly of TLR 399 Ile RA activity, periodontal disease,
and anti-TNF response

[30–32]

TLR4 (rs1927911) Intron RA susceptibility [33]

TLR8 (rs5741883) Intron RF positivity [34]

TLR9 (rs187084, rs5743836) Intron and TF binding site RA susceptibility and anti-TNF response [30, 35]

IRAK1 (rs3027898) Coding region (Ser532Leu) RA susceptibility [81]

TRAF1 (rs7021206) Intron and TF binding site Association with RF and ACPA [36]

TRAF5 (rs7514863) Intron RA susceptibility in UK [37]

Table 3 miRNA controlling the TLR pathway dysregulated in rheumatoid arthritis (RA)

miRNA Target Clinical association Reference

↗miR-146a (rs2910164) TRAF6, IRAK1 RA susceptibility [81]

↘miR10a ↗IRAK4, TAK-1 MTX therapy response, FLS proliferation and migration [45, 46]

Let-7b TLR7 (ligand) Joint inflammation (monocytes ➔ M1) [43]

↘miR19a/b ↗TLR2 ↗IL-6 and MMP3 (FLS) [40]

↘miR140-5p ↗TLR4 ↗IL-6, IL-8, proliferation (FLS) [41]

↘miR6089 ↗TLR4 ↗IL-6, IL-29, TNF-α [42]
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Porphyromonas gingivalis

Several arguments support P. gingivalis as an important etio-
logical factor in RA. First, P. gingivalis is associated with
periodontitis, an inflammatory disorder of the mouth, and it
is a well-known environmental risk factor associated with RA
[54]. Second, P. gingivalis has the particularity to express a
prokaryotic peptidylarginine deiminase (PPAD) able to con-
vert arginine to citrulline, thereby becoming a target for ACPA
[55]. Such capacity appears to be unique and not shared with
other common oral prokaryotic organisms. Further evidential
support that LPS (lipopolysaccharide) from P. gingivalis acti-
vates TLR2 leading to the upregulation of the extracellular
matrix protein TSP1 (thrombospondin-1) and IL-33 in mono-
cytes. IL-33 is an IL-1 family cytokine that is important in
regulating T helper type 2 anti-inflammatory cytokines and
mast cell development to the production of calprotectin by
neutrophils and to the bone mineral release and matrix degra-
dation by increasing osteoclast differentiation in response to
RANKL (receptor activator of NF-KB ligand) overexpression
[56–59]. Furthermore, the TLR2 response to P. gingivalis is
reduced in the presence of cigarette smoke extract, another
important RA risk factor. This supports the assumption that
periodontitis is increased in tobacco smokers and also that
smokers have fewer signs of inflammation [60, 61]. Third,
elevated levels of P. gingivalis DNA have been isolated in
the synovial fluids of inflamed joints from patients with RA
and, in particular, in those harboring the RA susceptibility,
HLA-DR shared epitope DR4 [62]. Fourth, treating RA pa-
tients with anti-TNF mAb reduces P. gingivalis oral coloniza-
tion and periodontal disease but a persistent periodontal dis-
ease hampers the treatment response [63, 64]. In the SKG RA
mouse model,P. gingivalis extra-articular injection in the peri-
toneum enhances the severity of the disease, and this is de-
pendent on the TH17/IL-7 signaling pathway [65].

Herpes Simplex and TLR

For a long time, HSV (herpes simplex virus) is suspected of
being involved in RA although the debate is still open as to
whether or not the increasing reports of HSV reactivation dur-
ing RA results, in fact, from an alteration in the immune

system which then increases the susceptibility to infection or
if the infectious events predispose one to RA [66].
Furthermore, innate resistance to HSV relies on the activation
of TLR2 and TLR9, two TLRs overexpressed in monocytes
from active RA and which display higher production of pro-
inflammatory cytokines in response to TLR agonists [67]
(Table 4). This then supports a role for HSV and other HHV
(human herpes virus) family members in the exacerbation of
RA symptoms [47]. Indeed, HSV genomic DNA can engage
TLR9 and result in the secretion of IFN-α by pDCs [68],
while the HSV envelope glycoprotein gB and dUTPase are
both recognized by TLR2, which leads to the activation of
NF-κB and secretion of pro-inflammatory cytokines [69, 70].

Conclusions

The discovery of TLRs has opened up new perspectives in
autoimmune diseases and, in particular, in RA. As a conse-
quence, blocking TLR signals represents an attractive thera-
peutic approach as demonstrated with an anti-TLR2mAb able
to decrease spontaneous pro-inflammatory cytokine release
from RA synovial tissue explant cultures [71], or with
hydroxychloroquine—a DMARD that suppresses the TLR9-
mediated human B cell capacity to differentiate to
plasmablasts [72]. Hence, controlling TLR activation in RA,
as well as identifying RA patients who will respond to these
therapies, and a better knowledge of the innate immune mech-
anisms as reviewed in this special issue [49, 73–80] open new
therapeutic perspectives.
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Table 4 Toll-like receptor
overexpression and/or hyper-
response in rheumatoid arthritis
(RA)

Cells, area TLRs Function References

Synovial lining ↗TLR2/3/4/7 [18]

Macrophage-like synoviocytes (MLS) ↗TLR2/9 TNFα, IL-6, IL1β [67]

Fibroblast-like synoviocytes (FLS) ↗TLR2/3/4/9 IL6,VEGF, MMP3 [82]

DC1 from monocytes TLR2/4 hyper response TNF-α, IL6 [18]

PBMC TLR4 hyper response IL6, GCSF [83]

Neutrophils TLR4 hyper-response Calprotectin

MMP metalloprotease, VEGF vascular endothelial growth factor, TNF tumor necrosis factor
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