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Abstract Food allergy imposes a severe global health bur-
den, and thus, there is a dire need for safe and effective treat-
ments. Allergen-specific immunotherapy (AIT) is currently
the only approach to restore immune tolerance through admin-
istrating increasing doses of allergen extracts. Unfortunately,
the development of AIT for food allergies has been impeded
by the frequent anaphylactic side effects during the course of
treatment. The emergence of component-resolved diagnosis
has greatly improved our ability to identify causative allergens
and revolutionized the design of AIT. Molecular features such
as IgE-binding epitopes and T cell epitopes have been eluci-
dated in most major food allergens, inspiring the use of mul-
tiple strategies to manipulate the allergens and design safer
alternatives to AIT. Although these allergen-modifying ap-
proaches are currently restricted to preclinical characterization
and animal studies, the employment of these strategies has
certainly paved the way for improving the safety of existing
AIT. A safe and effective AIT for food allergy is not far be-
yond reach.
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Abbreviations
AIT Allergen-specific immunotherapy
APCs Antigen-presenting cells
BSA Bovine serum albumin
DCs Dendritic cells
EPIT Epicutaneous immunotherapy
FAST Food Allergy Specific Immunotherapy
iTreg Inducible Treg
LAP Latency-associated protein
MHC Major histocompatibility complex
nTreg Naturally occurring Treg
OBOC One-bead-one-compound
OIT Oral immunotherapy
OVA Ovalbumin
Ovm Ovumucoid
PLGA Poly(lactic-co-glycolic-acid)
rMet e 1 Recombinant Met e 1
SLIT Sublingual immunotherapy
SPT Skin prick test
TCLs T cell lines
Th2 Type II T helper
WAS Wiskott-Aldrich syndrome

The prevalence of adverse reactions to food was reported to
approach 8% in children and 5% in adults [1]. However, these
figures are likely to be inaccurate as they depend on self-reported
allergies and serological profiles. Accurate food prevalence is
difficult to determine and often non-reproducible due to varia-
tions in definition of allergy, study population, methodology, age,
and the food allergen studied. Nevertheless, it is certain that both
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food-related anaphylaxis and the rate of hospitalization for food-
induced anaphylaxis are increasing globally [2]. Affecting an
estimated 520 million people worldwide, food allergy is beyond
question a severe global health burden (WAO White Book
2013).

Food allergy is categorized into IgE-mediated, non-IgE-
mediated type, or an intermediate type showing features of both
[3]. IgE-mediated reactions are the immediate type of hypersen-
sitivity where allergic symptoms occur within 2 h of food inges-
tion. Clinical manifestations of IgE-mediated reactions include
acute urticarial, nausea, and systemic anaphylaxis. Non-IgE-
mediated type is delayed-type hypersensitivity and believed to
be cell-mediated. Common symptoms associated with cell-
mediated food allergic reactions include enterocolitis and
proctocolitis. The third form of allergy is the combined IgE and
cell-mediated hypersensitivity, whichmainly involves infiltration
of eosinophils and is considered as a type of delayed hypersen-
sitivity reaction mediated by the type II T helper (Th2) cells and
eosinophilic mediator IL-5 and eotaxins [4]. The chronic condi-
tion of eosinophilic infiltration of the gastrointestinal wall mainly
at the stomach and small intestine is collectively known as eo-
sinophilic gastroenteritis (EGE), which is one major form of
eosinophilic gastrointestinal disorders (EGIDs). Elevated levels
of total IgE and/or food-specific IgE could be detected in some
EGE patients that is accompanied by positive skin prick test to
certain food allergens without the development of immediate
anaphylactic symptoms [5]. These thus impose difficulties in
distinguishing patients from IgE-mediated food allergy and
EGID by food-specific IgE and skin prick tests.

In this review,wewill focus on the IgE-mediated food allergy,
which is primarily responsible for fatal anaphylactic reactions.
Currently, there are no preventive medications for IgE-mediated
food allergy. The primary treatment option is strict avoidance of
the causal food; however, accidental ingestion is often inevitable,
especially in children [6]. Therefore, the need for a safe and
effective treatment for food allergies is eminent. Allergen-
specific immunotherapy (AIT) is a disease-modifying approach
to restore immune tolerance to the allergens by administering
increasing doses of sensitizing allergens until a maintenance dose
is reached. Yet, despite advances in AIT for inhalant allergens,
the development of AIT for food allergies has been at a stalemate
due to frequently reported anaphylactic side effects during treat-
ment [7–12]. Unlike inhalant allergens, food allergens are subject
to digestion along the gastrointestinal tract and sometimes con-
tainmore than 20 IgE-binding epitopes [13]. This has undeniably
increased the risk of food allergies treated with AIT using natural
allergens.

Major Food Allergens

Themolecular characterizations of the allergens, such as Tcell
or B cell epitopes, are a key to designing safer AIT. Advances

in component-resolved diagnosis have greatly enhanced our
knowledge of the allergenicity of individual allergens and fa-
cilitated the design of hypoallergenic derivatives. Here, we
will briefly discuss the properties of the most common food
allergens (Table 1).

Peanut Allergens

Peanut allergy is the most common cause for severe food-
derived anaphylaxis [14]. The severity is likely due to the high
protein content in a single peanut (~ 200 mg). Thirteen peanut
allergens belonging to seven protein families have now been
identified. Ara h 1 is a glycoprotein belonging to the vicilin
seed storage protein family [15] and is believed to have mod-
est allergenicity due to burial of epitopes [16, 17]. Ara h 2
belongs to the 2S albumin protein family and is the dominant
allergen recognized by 90–100% of peanut-allergic patients
[18]. Ara h 3 and Ara h 4 were originally thought to be distinct
proteins but are now believed to be isoforms of the same
allergen belonging to the legumin seed storage protein family
[19, 20]. Ara h 5 belongs to the profiling family and is a minor
peanut allergen in low levels in peanut extracts and recognized
by a minority of peanut-allergic patients [19, 21]. Ara h 6 and
Ara h 7 belong to the same 2S albumin protein family and
share certain homology to Ara h 2 [21]. Ara h 8 is homologous
to the birch pollen allergen Bet v 1 and contributes to the
cross-reactivity between birch pollen and peanut allergy
[22]. Ara h 9 belongs to the lipid transfer protein family and
is the dominant peanut allergen in the Mediterranean popula-
tion [23, 24]. Ara h 10 and Ara h 11 are members of the
oleosin structural protein family and exist in purified peanut
oil bodies [25]. Ara h 12 and Ara h 13 are cysteine-rich
defensin peptides. IgE reactivity to these peptides is present
in only a small portion of peanut-allergic patients [26].

Tree Nut Allergens

Tree nut allergens can be classified into different groups based
on their structural and functional properties [27]. The first
group is the seed storage proteins, comprising 11S legumin-
like proteins, 7S vicilin-like proteins, and the 2S albumins.
Both the 11S legumin-like proteins and 7S vicilin-like pro-
teins belong to the cupin protein superfamily and exist as
hexamers and trimers, respectively [20]. On the contrary, the
2S albumins are small heterodimers belonging to the prolamin
superfamily [28]. These three allergens are the major tree nut
allergens identified from most edible tree nuts. The second
group is the pathogenesis-related (PR) proteins involved in
the plant defense system, including chitinases [29], PR-10
[30], and lipid transfer proteins [31–33]. The third group com-
prises structural proteins that are highly conserved among
plants, such as profilins [34, 35] and oleosins [36].
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Table 1 List of identified and characterized food allergens according to the International Union of Immunological Societies (IUIS) allergen
nomenclature

Food Allergen Identity/protein family Remarks References

Peanut Ara h 1 Vicilin [15]

Ara h 2 2S Albumin Dominant peanut allergen recognized
by 90–100% of patients

[18]

Ara h 3 and 4 Legumin [19, 20]

Ara h 5 Profilin [19, 20]

Ara h 6 and 7 2S Albumins Share sequence homology with Ara h 2 [21]

Ara h 8 Bet v 1-homolog Minor allergen, but contributed to the
cross-reactivity between peanut and birch
pollen

[22]

Ara h 9 Lipid transfer proteins [23, 24]

Ara h 10 and 11 Oleosin [25]

Ara h 12 and 13 Defensins [26]

Tree nuts Cas s 5 Chitinase [29]

Cas s 1 and Cor a 1 PR-10 [30, 31]

Cas s 8, Cor a 8, Jug r 3,
and Pru du 3

Lipid transfer proteins [31–33]

Cor a 2 and Pru du 4 Profilins [34, 35]

Cor a 12 and Cor a 13 Oleosins [36]

Cow’s milk Bos d 4 α-Lactalbumin [38, 39]

Bos d 5 β-Lactoglobulin [38, 39]

Bos d 6 Serum albumin [38, 39]

Bos d 7 Immunoglobulins [38, 39]

Bos d 8 Lactoferrin [38, 39]

Egg Gal d 1 Ovomucoid Dominant egg allergen [42]

Gal d 2 Ovalbumin Most abundant protein [42]

Gal d 3 Ovotransferrin [42]

Gal d 4 Lysozyme [42]

Gal d 5 Albumin First allergen identified in egg yolk [42]

Gal d 6 YGP42 [43]

Fish Group I allergens
(Gad c 1, Sal s 1, Sco j 1, etc.)

Parvalbumin [47, 48]

Group II allergens
(Gad m 2, Sal s 2)

Enolase [58]

Group III allergens
(Gad m 3, Sal s 3)

Aldolase [58]

Group V allergens (Onc k 5) Vitellogenin Found in caviar [52]

Ungrouped Collagen [53, 54]

Ungrouped Aldehyde phosphate dehydrogenase [55]

Ungrouped Triosephosphate isomerase [56]

Ungrouped Muscle creatine kinase [57]

Shellfish Group I allergens
(Met e 1, Pen a 1, etc.)

Tropomyosin Major cross-reactive allergen among invertebrates [59–61]

Group II allergens
(Pen m 2, Cra c 2, etc.)

Arginine kinase Cross-reactivity reported among invertebrates [65–67]

Group III/V allergens
(Lit v 3, Cra c 5)

Myosin light chain Groups III and V are different isoforms
of myosin light chain

[67, 70]

Group IVallergens
(Lit v 4, Cra c 4, etc.)

Sarcoplasmic calcium-binding
proteins

[67–69]

Group VI allergens
(Cra c 6, Pen m 6)

Troponin C [67]

Group VII allergens (Pon l 7) Troponin I Unpublished data WHO/IUIS

Group VIII allergens (Cra c 8) Triosephosphate isomerase [67]
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Cow’s Milk Allergens

About 20% of proteins in cow’s milk are whey and 80% are
coagulum [37]. Whey contains globular protein including α-
lactalbumin (Bos d 4), β-lactoglobulin (Bos d 5), bovine se-
rum albumin (Bos d 6), bovine immunoglobulins (Bos d 7),
and lactoferrin [38, 39]. The major allergens in the whey frac-
tion are α-lactalbumin and β-lactoglobulin, which are in-
volved in 80 and 76% of all allergic sensitization to cow’s
milk, respectively [40]. The coagulum fraction consists main-
ly of four individual casein proteins coded by different genes
on the same chromosome: αs1-casein, αs2-casein, β-casein,
and κ-casein [38]. Due to the complexity of milk proteins and
polysensitization, no single allergen or particular structure has
been identified in the allergenicity of milk [41].

Egg Allergens

Six major allergens were identified in hen’s egg: ovomucoid
(Gal d 1), ovalbumin (OVA; Gal d 2), ovotransferrin (Gal d 3),
lysozyme (Gal d 4), albumin (Gal d 5), and YGP42 (Gal d 6)
[42, 43]. The majority of egg allergens are found in the egg
white (Gal d 1–4) except Gal d 5 and Gal d 6 which are found
in the egg yolk. Two other egg proteins, lipocalin-type prosta-
glandin D synthase and egg white cystatin, were recently found
to have IgE reactivity in egg-allergic patients, but their signifi-
cance in egg allergies remains unclear [44]. While ovalbumin is
the most abundant protein present in egg white, the heat stable
protein ovomucoid is believed to be the dominant allergen [45].

Fish Allergens

Parvalbumin, a protein regulating calcium switching in skele-
tal muscle cells, was identified as the first fish allergen in the
Baltic cod during the early 1970s [46–48]. Parvalbumin is
recognized by 90% of fish-allergic patients [49–51] and be-
longs to the biggest group of food-derived allergens, the EF-
hand domain family. In addition to parvalbumin, other minor
allergens such as vitellogenin [52], collagen [53, 54], alde-
hyde phosphate dehydrogenase [55], triosephosphate isomer-
ase [56], muscle creatine kinase [57], enolase [57, 58], and
aldolase [58] have been identified in different fish species or
fish-derived products such as caviar.

Shellfish Allergens

The muscle protein tropomyosin was identified as the major
allergen in shrimp by three groups independently in the early
1990s [59–61] and later revealed as a pan-allergen among shell-
fish and other invertebrates [62, 63]. Tropomyosin is a coiled-coil
secondary structure protein that belongs to the highly conserved
actin filament-binding protein family. Tropomyosins are heat-
stable with limited digestibility so they persist even after

thorough cooking [64]. Apart from tropomyosins, other allergens
have been identified in several shrimp species, such as arginine
kinase [65–67], sarcoplasmic calcium-binding proteins [67–69],
and myosin light chain [67, 70]. The detailed molecular features
and cross-reactivity of these shellfish allergens have been
reviewed elsewhere [71, 72]

Pathogenesis of Food Allergy

While normal individuals develop oral tolerance towards food
proteins, food-allergic subjects mount an inappropriate IgE
response to the food antigens. In such cases, food allergens
are taken up by the antigen-presenting cells (APCs) and the T
cell epitopes are presented to naïve T cells through the major
histocompatibility complex (MHC) class II molecule. The ac-
tivated T cells differentiate into Th2 cells. Th2 cells then pro-
mote a class switch in the cognate allergen-bound B cells
through cell-cell interaction or cytokines (IL-4, IL-5, and IL-
13). Class-switched B cells produce IgE antibodies, which rest
on effector cells such as mast cells or basophils. Upon subse-
quent re-exposure to the same allergen, IgE cross-links the
allergen on effector cells (e.g., mast cells and basophils)
through the high affinity receptor FcεRI, causing degranula-
tion. The mediators released by these cells, such as histamine,
prostaglandins, and leukotrienes, are the major causes of al-
lergic responses and anaphylactic shock. These immediate
allergic symptoms can occur within minutes after allergen
contact, either directly at the site of allergen exposure (i.e.,
mouth and intestine) or extend to other organs (i.e., skin and
respiratory tract) when the allergen passes through the mucosa
to the circulatory system [64, 73, 74].

Additionally, a dysregulated Th2-skewed response can be
linked to functional defects in Foxp3, the key transcription
factor of regulatory T (Treg) cells [1], as well as alterations
in genes such as STAT3, DOCK8, or PGM3 and genes in-
volved in TCR signaling including LAT, ZAP70, or RAG
[75]. A recent study also suggests a link between mutations
in the Wiskott-Aldrich syndrome (WAS) gene and increased
frequency of sensitization to food allergens in patients [76].
Mutations in the WAS gene result in WAS protein (WASP)
deficiency. WASP-deficient Treg cells show increased levels
of Th2 transcriptional factor GATA3, therefore resulting in
hyper IgE phenotype and intestinal mast cell expansion in
mice. It is essential to continue investigating the activation
of Th2 effector responses to fully understand its mechanism
and its role in food allergy.

Allergen-Specific Immunotherapy

The aim of AIT is to initially achieve desensitization (i.e.,
temporary increase in the threshold of effector cell activation)
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and subsequently attain oral tolerance. Oral tolerance is the
permanent state of unresponsiveness to the sensitizing aller-
gen, indicating the absence of any allergen-specific response
due to deletion or inactivation of T cells, or the presence of
active IgG, IgA, Th1, and/or Treg responses (Fig. 1).

The initial immunological changes generated through AIT
may involve decreased activity and responsiveness of effector
cells, such as mast cells and basophils [77, 78]. An increase in
allergen-specific IgG4 can also be seen as early as within
1 week after the onset of AIT. This subclass of IgG antibody
is generally regarded as protective as it can effectively capture
the allergen before reaching the cell-bound IgE. Studies also
suggest that it can downregulate IgE receptor FcεRI signaling
and promote internalization of IgE in mast cells without trig-
gering mast cell degranulation [79, 80]. Yet, the level of spe-
cific IgE typically increases in the first few months of AITand
a late decrease could only be seen when AIT is continued for
extended periods of time.

Changes involving the modulation of T cell responses
occur at a later stage in the course of AIT, which include a
decrease in Th2 cells and release of their linked cytokines,

leading ultimately to oral tolerance. These can be a result
of the deletion of antigen-specific CD4+ T cells when a
high dosage of the antigen is administered [81].
Additionally, oral tolerance can also be achieved through
the development of suppressor T cells in the gastrointesti-
nal lymphoid tissues. This type of tolerance is independent
of the naturally occurring Treg (nTreg) cells derived from
the thymus. It is mediated by two different subsets of Treg
cells [82, 83]. Th3 cells suppress directly through a
TGF-β-dependent manner. This cytokine blocks differen-
tiation of Th1 and Th2 cells by modifying the expression
of their respective transcription factors T-bet and GATA-3
[84, 85]. It also promotes the synthesis of IgA, as well as
the expansion of suppressive CD4+CD25+Foxp3+ induc-
ible Treg (iTreg) cells [86, 87]. iTreg cells may suppress
using IL-10 which directly inhibits IgE synthesis, prolifer-
ation of Th2 cells, and cytokine production by blocking the
CD2/CD28/ICOS costimulatory signaling pathway [88].
The development of these iTreg cells also depends on
CD103+ dendritic cells (DCs) present in the lamina propria
of the intestinal tract through TGF-β, retinoic acid, and

Fig. 1 Possible immunological effects of AIT. Decrease in the activity of
effector cells such as mast cells, eosinophils, and basophils occur at the
early stage of AIT. Level of specific IgE usually shows an early increase
followed by a late decrease. Increases in frequency of Th1 cells, levels of
Th1 cytokines, the generation of allergen-specific Foxp3+ Treg cells,
TGF-β-producing Th3 cells, and Breg cells follow subsequently and

possibility antagonize the differentiation and activation of Th2 cells.
The induction of CD103+ tolerogenic DCs happens in parallel that
could also lead to the activation of Treg cells and IgA-secreting B cells.
Increase of IgA and IgG inhibitory antibody continues throughout the
treatment
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other factors [89]. CD103+ DCs also promote IgA-
secreting B cells, [90] which together with iTreg cells con-
tribute to oral tolerance in food allergy.

In the following sections, we will discuss different AIT
strategies in detail, including the use of unmodified allergens
delivered via different routes (Table 2); the identification and
construction of hypoallergens, T cell epitopes, mimotopes,
and conjugated molecules based on immunomolecular fea-
tures of the native allergen (Fig. 2); as well as their efficacies
in preventing and treating food allergies in animal models and
clinical trials (Table 3).

Unmodified Allergens

The first AIT was recorded in 1911 when Noon reported the
use of subcutaneous injection of grass pollen extracts to treat
hay fever [91]. Since then, allergen extracts have been widely
used in AIT, including those targeting food allergies. Recent
advances in recombinant DNA technology have prompted the
use of recombinant allergens in place of whole allergen ex-
tracts. Although AIT using unmodified allergens appears to be
effective for treating inhalant allergies, pioneer studies of sub-
cutaneous immunotherapy for food allergies were considered
unsafe as anaphylactic side effects were frequently observed
in clinical trials of peanut AIT [92, 8]. To improve the safety
of AIT for food allergies, novel methods to deliver the allergen
are under investigation. The oral, sublingual, and
epicutaneous routes are three major delivery routes that have
been extensively explored.

Oral immunotherapy (OIT) involves daily consumption of
the sensitizing allergen, typically using a start-off dose below
the threshold dose, which is then followed by a gradual in-
crease in dosage to a maintenance dose until achieving desen-
sitization and/or tolerance. Clinical trials of OIT targeting
cow’s milk [93, 12, 94, 95, 9], hen’s egg [96–98], and peanut
[99–101] allergies demonstrated positive immunological im-
provements. Reduced sensitivity in skin prick test (SPT), de-
creased level of specific IgE, and increased level of IgG4 and
Treg cell population were consistently reported in these inde-
pendent studies. Generally, OIT using native allergens has a
high success rate to achieve at least partial desensitization in >
80% of subjects [102]. However, OIT with these unmodified
allergens only leads to 25–40% specific oral tolerance and can
also lead to adverse allergenic reactions. In a peanut OIT clin-
ical trial, 92% of patients experienced respiratory or mild
itching symptoms during the initial day of escalation [100].
All subjects experienced minor respiratory or skin reactions
during home dosing, with two subjects requiring epinephrine
treatment. A safe and successful establishment of permanent
tolerance is yet to be accomplished in OIT.

Sublingual immunotherapy (SLIT) is considered an im-
provement of OIT, in that it uses allergen extracts that are
usually 1000-fold less concentrated than OIT and kept under
the tongue for a few minutes before spitting out or swallowing
[102]. Although the exact immunological mechanisms are un-
clear, SLIT is believed to target the Langerhans-like dendritic
cells in the sublingual mucosa that promote tolerance to aller-
gens [103–105]. SLIT has been tested for allergen extracts of
food items such as kiwi fruit [106, 107], hazelnut [108, 109],

Table 2 Different routes of allergen extract delivery in immunotherapy and their respective advantages, limitations, and possible adverse events
triggered

Route of
allergen
delivery

Allergen types tested Immunological effects Adverse reactions Limitations

Oral Cow’s milk, hen’s egg, peanut,
fruits, vegetables, tree nuts, etc.

Reduced sensitivity in skin prick
test; increased specific IgG4

Frequently occurring throughout
the treatment; occasional severe
systemic reactions requiring
epinephrine treatment

Safety concerns

Decreased specific IgE Mixed results for
long-term tolerance
induction

Signs of regulatory T cell
activation

Sublingual Kiwi, hazelnut, cow’s milk, peach,
peanut, etc.

Reduced sensitivity in skin prick
test; increased specific IgG4

Less frequent and mostly
occurring
during initial dosing while
fewer in
maintenance; mostly local
reactions

Unclear mechanism

Evidence of reduced basophil
activation

Lower efficacy compared
to OIT

Shifted production of TH2-type
cytokine to TH1 type

Lack of evidence for
long-term tolerance in-
duction

Epicutaneous Cow’s milk, peanut (pilot studies) Evidence of regulatory T cell
induction

Less likely and mostly local
cutaneous reactions

Unclear mechanism

Shifted production of TH2-type
cytokine to TH1 type

Lack of comprehensive
clinical trials
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cow’s milk [110, 111], peach [112, 113], and peanut [114,
115]. The clinical improvements reported from the above
studies indicate that SLIT could reduce sensitivity in SPT
and increase specific IgG4 level as in OIT. However, Keet
et al. suggested that OIT ismore efficacious for desensitization
than SLIT [111]. Only 1 of 10 subjects from the SLIT group
passed the 8-g cow’s milk challenge, compared to 8 of 10
subjects from the OIT group passing the same challenge.
However, the symptoms triggered in SLIT are confined to
local reactions, with the frequency of reaction varying greatly
between studies, from 0.2% in hazelnut to 89% in peach. In
spite of the seemingly positive clinical improvements in both
OIT and SLIT, there are uncertainties concerning their safety
and long-term effects. In addition, the use of OIT and SLIT is
restricted in patients with more severe food-induced anaphy-
laxis. Strategies for improving the current protocol are needed,
which might include the use of modified allergens and other
relevant immunomodulatory agents, or even alternative deliv-
ery schemes.

Epicutaneous immunotherapy (EPIT) has recently emerged
as an alternative allergen delivery method. Allergens enclosed
in a container are delivered onto intact [116] or tape-stripped
skin [117]. As the epidermis is not vascularized, EPIT pre-
vents systemic reactions caused by circulation of allergens.
Similar to SLIT, the preventive effects of EPIT are thought
to be mediated through the tolerogenic Langerhans cells in
the epidermis [118–120]. Preliminary studies in mouse model
suggest the induction of Treg cells and a shift to Th1 milieu by
EPIT [121, 122]. A recent study reported the recruitment of
gastrointestinal-homing latency-associated protein (LAP) +

Foxp3-Treg cells by epicutaneous application of OVA-
Viaskin patches in mice sensitized and challenged
intragastrically by OVA. This subset of Treg cells protects
against food allergy by suppressing mast cell activation via a
TGF-β-dependent manner but not IgE antibodies [123].
However, in a pilot study of EPIT in children with cow’s milk
allergy, only 50% of patients demonstrated an increase in cu-
mulative tolerated dose in the oral food challenge. There was
no significant increase in serum-specific IgG and IgE levels,
but 25% of the recipients experienced local adverse reactions
[124]. Further clinical studies are needed to monitor the safety
and therapeutic efficacy of EPIT.

One main challenge towards the use of unmodified aller-
gens in AIT lies within the optimum dosage being
employed. We have recently investigated the dose-
dependent safety and efficacy of AIT in a mouse model of
shrimp allergy [125]. BALB/c mice were first sensitized
and challenged with recombinant Met e 1 (rMet e 1) through
the intragastric route. Subsequently, they were treated with
low (0.01 mg), medium (0.05 mg), or high (0.1 mg) intra-
peritoneal injections of rMet e 1 for three times at a weekly
interval. We found that despite all mice being successfully
desensitized regardless of the dosage, Treg-associated reg-
ulatory mechanisms were only observed in the low or me-
dium dosage groups. This is evident through the upregula-
tion of Treg-associated genes and the infiltration of Foxp3+

cells in the gut lymphoid tissues exclusively in these two
groups of mice. These findings suggest that low-dosage
immunotherapy favors the induction of local Foxp3+ Treg
cells and more likely to sustain long-term efficacy of AIT.

Fig. 2 Strategies for AIT modulator preparation. IgE reactivity and
allergenicity of the native allergens can be abolished by manipulating or
deleting the epitopes, altering the conformation by denaturation or
chemical modification to construct hypoallergens. T cell epitopes that
trigger CD4+ T cell responses and possess T cell modulatory functions
can be synthesized and delivered as a single peptide or peptide cocktail to

enhance Th1 and Treg cell activities. Mimotopes that mimic the structure
and/or sequence of the IgE-binding epitopes are shown to induce
allergen-recognizing antibodies that might serve inhibitory functions.
Conjugation of allergens with molecules with immunomodulatory
functions can promote the induction of tolerogenic DCs, Treg cells,
and/or Th1 cells

61Clinic Rev Allerg Immunol (2019) 57:55–73



The frequent occurrence of adverse events during AITwith
unmodified allergens, especially OIT, represents another ma-
jor challenge. This thus leads to the investigations of adjunc-
tive therapies, such as using the anti-IgE recombinant human-
ized monoclonal antibody omalizumab that can prevent the
interaction between circulating IgE and FcεRI, to improve
safety. The early off-label use of omalizumab was shown to

reduce adverse reactions and enable more patients to achieve
the maintenance dose in SCITand SLITand, more recently, in
OIT [126]. In a double-blinded, placebo-controlled trial of
cow’s milk-specific OIT, a comparable percentage of patients
passed the 10-g oral cow’s milk challenge and achieved
sustained unresponsiveness at 8-week after discontinuation
of OIT for both omalizumab-treated and placebo-treated

Table 3 Different experimental strategies and immunological benefits of AIT for food allergy

Strategy Example Immunological changes Reference

Hypoallergen Chemical modification Pre-clinical stage: with marked reduction in IgE
reactivity and allergenicity; able to induce blocking
antibody

Pru p 3 (peach), Ara h 2 and Ara h 6 (peanut) [143]

[144]

Site-directed mutagenesis

mAra h 2 (peanut), MEM49 (shrimp
tropomyosin),
parvalbumin (fish)

[134, 149,
158]

Epitope deletion [149]
MED171 (shrimp tropomyosin)

Sequence restructuring [132]
Fag t 1 (buckwheat)

Conformation destruction

Dau c 1 (carrot), Ara h 2 (peanut) [133, 135]

Polyphenol sorption [156]
Peanut extract

T cell epitopes β-Lactoglobulin (cow’s milk)

Peptide 6 AA31–48 Prevented acute allergic skin response; lower levels of IgE,
IgG1, and IgG2a; increased Treg cell %

[163]

P1 and P2 Reduced hypersensitivity responses; no change in the
levels of IgE, IgG1, IgG2a, IgA, IL-4, IL-12, IL-10,
or Treg cell %

[164]
AA67–88, AA139–153

OVA (egg white)

Single peptide Reduced level of histamine and IgE [167]
AI-15, AA39–53 Increased level of IgA

Peptide mixture: AA39–53, AA147–161,
AA323–343

(Cocktail) increased IFN-γ, TGF-β,
and Foxp3 expression

Ovm (egg white)

SP: AA157–171 Reduced IgE and IL-4 [168]
MP: 3 repeated unites of SP linked by alanine Increased IgA and IFN-γ

(SP) reduced histamine; increased IgG2a,
IL-10, IL-12, and Treg cells

Mimotopes Met e 1 (shrimp tropomyosin)

T1–T6: AA26–45, AA46–75, AA86–105,
AA146–165, AA221–240, AA251–270

Reduced IgE and Th2 cytokine expression [169]
Increased Th1 and Treg gene expression

and blocking IgG2a antibody

Met e 1 (shrimp tropomyosin)

Mimotope cocktail Reduced IL-4, IL-5, and IL-13 expression;
upregulated IL-10 and TGF-β expression

[196]

Conjugated
molecule

Mannoside-BSA Increased IL-10 and Treg cells [197]

Flagellin-ovalbumin Reduced IL-4 and IFN-γ, increased IL-10 [198]

Ara h 2-Fc fusion protein Reduced allergic responses [199]

CpG-coated PLGA nanoparticles
containing peanut extracts

Reduced IgE and Th2 cytokines, increased
IgG2a and IFN-γ, offered extended protection after
therapy

[201]
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groups [127]. Yet, the overall percentage of symptom-free
doses during the escalation phase of OIT was 91.5% in the
omalizumab-treated group, comparing to 73.9% in the
placebo-treated group. In a similar study adopting a rapid oral
desensitization protocol for peanut allergy, omalizumab great-
ly increased the median tolerated dose on the first day of rush
desensitization (250 mg peanut protein for the omalizumab
group versus 22.5 mg for the placebo group) [128].
Significantly more omalizumab-treated subjects could tolerate
a 2000-mg maintenance dose and passed a 4000-mg cumula-
tive dose in an open peanut oral challenge compared to the
placebo-treated group. Similarly, the immunological changes
were similar between the two groups. These suggest that ad-
junctive treatment with omalizumab has no significant effects
on the outcomes of efficacy, but improvements in safety and
facilitation of rapid desensitization are remarkable. It is yet
noteworthy that a subset of patients could display stronger
responsiveness to IgE receptor cross-linking with omalizumab
treatment [129]. The identification of baseline biomarkers,
such as their pretreatment basophil reactivity and/or
allergen-specific to total IgE ratio, is thus essential for selec-
tion of suitable patients who will benefit from such adjunctive
treatment [130].

Hypoallergens

The major obstacles in AIT, especially OIT, for food allergies
are the frequent adverse side effects and prolonged treatment
duration due to the low dosage restricted by the use of unmod-
ified allergens. Alternative approaches to reduce the allerge-
nicity while retaining the immunogenicity of allergens, such
as the use of hypoallergens, are therefore promising. General
strategies deployed to construct hypoallergenic food allergens
involve site-directed mutagenesis within the IgE-binding epi-
topes, sequence restructuring, chemical modifications, disrup-
tion of allergen conformation, allergen unfolding, and more
[131–135].

Since previous studies have shown that subjects allergic to
raw foods can tolerate cooked foods, the use of heated aller-
gens in AIT can promote desensitization to the native allergen
in patients [136]. Heating allergens causes aggregation, which
reduces their absorption and transport through the mucosal
layer. It also leads to conformational changes and/or changes
to a significant proportion of the IgE-binding epitopes, reduc-
ing their allergenicity sufficiently for safe use in AIT [137,
138]. It was shown that mice sensitized with heated ovalbu-
min (h-OVA, heated to 70 °C for 10 min) have significantly
lower levels of OVA-specific IgE and mouse mast cell
protease-1 (mMCP-1) upon OVA challenges compared to
control mice sensitized with OVA [139]. They also displayed
higher levels of specific IgG2a and a prominent Th1-type im-
mune response. The gain of desired antigenic properties of h-

OVAwas probably due to not only the irreversible structural
changes but also the formation of a different panel of peptide
fragments upon digestion compared to raw OVA. Although
results from animal studies seem promising [140, 138], an
open food challenge to baked egg in 236 egg-allergic children
resulted in 36% reaction to the challenge, with 14% of them
experiencing anaphylaxis [141]. In another baked-milk OIT
therapy, only 3/14 OIT subjects reached their tolerance goal at
a maintenance dose of 1.3 g per day [142]. Eight patients
could not complete the therapy due to IgE-mediated side ef-
fects including anaphylaxis. It is apparent from these reports
that treatments with heated molecules usually only generate
desensitization but not tolerance, and heating allergens does
not necessarily produce hypoallergenic proteins in all allergic
patients.

While Bnatural^ manipulation might not be sufficient in
yielding hypoallergenic proteins, variants with reduced aller-
genicity can be generated by means of chemical modification
or genetic engineering. Native allergens can be reduced and
alkylated to disrupt the disulfide bonds, such as in the major
peach allergen Pru p 3 [143], as well as in the peanut allergens
Ara h 2 and Ara h 6, or additionally linked to glutaraldehyde
to achieve structural changes in Ara h 2 and Ara h 6 [144].
These strategies could effectively produce hypoallergenic var-
iants that have diminished IgE reactivity and allergenicity in
immuno-blotting, rat basophilic leukemia (RBL) release as-
says, and immunization experiments. However, further stud-
ies are needed to confirm their antigenic characteristics as such
modifications may cause drastic conformational changes
resulting in the loss of T cell epitopes and increased risk of
sensitization [145].

By inhibiting IgE/allergen cross-linking, anaphylactic side
effects in AIT could be greatly reduced. In this context, the
IgE-binding epitopes contain important information for con-
structing the relevant hypoallergens. IgE-binding epitopes of
the majority of food allergens have beenmapped, includingα-
lactalbumin (cow’s milk) [146], ovalbumin (egg white) [147],
Ara h 2 (peanut) [148], Pen a 1 and Met e 1 (shrimp) [149,
150], as well as Pru p 3 (peach) [151]. Modifications of the
amino acid sequences within these IgE-binding epitopes to
abolish IgE reactivity can therefore be achieved simply by
site-directed mutagenesis. The introduction of mutations into
the 10 linear epitopes of Ara h 2 at positions 20, 33, 39, 51, 58,
64, 117, 127, and 144 resulted in a hypoallergen (mAra h 2)
that displayed only 29.6% IgE binding reactivity relative to
wild-type Ara h 2 (wAra h 2) [152]. mAra h 2 still maintained
intact T cell epitopes as it had the same peripheral blood
mononuclear cell (PBMC)-stimulating ability compared to
wAra h 2. On the other hand, our laboratory identified nine
major IgE-binding epitopes of the major shrimp allergen Met
e 1 [149]. By comparing these epitope sequences to the ho-
mologous tropomyosin sequences of four edible fish species,
49 point mutations were introduced into the nine epitopes to
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construct the tropomyosin mutant MEM49. Another mutant,
MED171, was constructed by deleting all the nine IgE-
binding epitopes, resulting in a smaller truncated molecule
of 171 amino acid residues. Both MEM49 and MED171
displayed > 70% reduction in their in vitro reactivity towards
IgE of shrimp-allergic subjects compared to Met e 1. These
two hypoallergens also had markedly reduced in vivo allerge-
nicity in passive cutaneous anaphylaxis assay and immuniza-
tion experiment. More importantly, mice immunized with ei-
ther of the hypoallergens produced Met e 1-specific IgG2a

antibody that inhibited IgE of shrimp-allergic subjects and
sensitized mice from binding to Met e 1. Such phenomenon
is considered beneficial as these antibodies can rapidly mod-
ulate allergic reactions. The prophylactic and therapeutic effi-
cacies of the hypoallergens in the form of DNA vaccines are
now under investigation using a mouse model of shrimp hy-
persensitivity [153, 154].

Instead of manipulating the IgE-binding epitopes through
Btailored^ modifications for each food allergen, a general ap-
proach to construct hypoallergens adaptable to multiple food
allergens is highly desirable. Reports have shown that poly-
phenols from fruits and vegetables might modulate the im-
mune cells and pathways involved in allergic responses, thus
alleviating inflammatory symptoms [155]. A recent study de-
scribed a polyphenol-containing cranberry juice mixed with
peanut flour that allowed sorption of polyphenols to peanut
proteins to form a cranberry polyphenol-fortified peanut ma-
trix [156]. Using basophil degranulation assay, it was found
that this matrix triggered significantly less degranulation (me-
dian = 37.2%) compared to unmodified peanut flour (medi-
an = 66.1%). Peanut-allergic mice challenged with the matrix
also showed significantly reduced levels of mMCP-1. These
data suggest that the matrix is hypoallergenic and potentially
useful for AIT targeting peanut allergy. Similar technology of
food-grade quality that is economical, simple in the prepara-
tion of hypoallergens, and readily adaptable to multiple food
allergens should be explored to further advance food allergy
management.

Currently, most hypoallergenic food allergens are largely
restricted to the early stages of construction and preclinical
characterization. One major step forward in the management
of food allergy is an EU-funded collaborative project initiated
in 2008 Food Allergy Specific Immunotherapy (FAST) [157].
This project aims to develop safe and effective subcutaneous
AIT towards fish and peach allergies using hypoallergenic
proteins. Two hypoallergens of fish parvalbumin Cyp c 1 have
been developed in this project. The first one is a chemically
modified mutant constructed by glutaraldehyde treatment, and
the second one is a calcium binding site double mutant de-
scribed by Swoboda et al. in 2007 [158]. The double mutant
has a ~ 100-fold reduced allergenicity. Immunization with this
mutant induced IgG antibody, leading to 67–76% inhibition
towards IgE of fish-allergic patients. On the other hand, five

hypoallergenic variants of peach Pru p 3 are constructed in the
FAST project. These include a Bnatural hypoallergen^ rFra a
3, rPru p 3 sur (surface mutant with three amino acids mutated
to alanine), rPru p 3 cys (four cysteines mutated to serine),
rPru p 3 RA (reduced and alkylated Pru p 3), and
glutaraldehyde-treated rPru p 3.

The first stage of the FAST project involves production of
the hypoallergens under good manufacturing practice for clin-
ical trials. The preclinical development of the double mutant
of fish parvalbumin Cyp c 1 and wild-type Cyp c 1 was re-
cently reported [159]. This fish parvalbumin mutant was
found to be a stable molecule upon expression and exhibited
no toxic effects when adsorbed to aluminum hydroxide. This
mutant also displayed ~ 1000-fold reduction in its allergenic
activity in the ImmunoCAP inhibition experiment and RBL
release assay while its immunogenicity in inducing PBMC
proliferation was retained. The subsequent stage of the project
will involve animal studies on the efficacies of subcutaneous
treatment with the selected hypoallergens through a panel of
in vitro and in vivo experiments. The group recently reported
that the antisera generated by immunizing mice with hypoal-
lergenic Cyp c 1 contained IgG antibodies that block fish-
allergic patients’ IgE from binding to wild-type Cyp c 1
[160]. The antisera were also capable of reducing allergic
responses in a murine model of Cyp c 1-induced hypersensi-
tivity, probably by inhibiting IgE from binding to Cyp c 1 and
basophil degranulation. The final stages of the project will
include phase I/IIa and phase IIb clinical trials to determine
safe dosages, as well as the tolerability and clinical outcome of
the therapy in allergic patients through double-blind, placebo-
controlled food challenge after treatment. Future reports from
the FAST project are expected to provide novel strategies to
replace avoidance, the standard Btherapy^ to food allergies,
and bring our understanding of food allergy management to
the next level.

T Cell Epitopes

T cell epitopes are short peptide fragments of the allergen that
activate naïve T cells through the MHC class II molecules
expressed on APCs [73]. These fragments lack secondary or
tertiary structures and do not cross-link IgE or activate effector
cells. However, they possess modulatory potential in re-
shaping the T cell environment from a Th2-type to a Th1-
and/or Treg-dominating response. These properties make
them a safe and effective therapeutic modulator ideal for
AIT use as shown in successful clinical trials for cat and bee
venom allergies [161, 162].

Nonetheless, there have only been a limited number of
animal studies involving the investigation of T cell epitopes
as immunotherapy for food allergies. Using T cell lines
(TCLs) generated from cow’s milk allergy patients and with
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reference to previous reports, three regions ofβ-lactoglobulin,
(regions 13–48, 91–120, and 139–162) were found to contain
T cell-reactive sequences [163]. However, oral pretreatment
with the peptide mixtures covering any one of the three reac-
tive regions did not protect against the development of cow’s
milk allergy in mice subsequently sensitized to whey. Yet,
pretreatment with a single peptide (peptide 6, AA31–48) sig-
nificantly reduced acute allergic skin response, as well as
levels of whey-specific IgE, IgG1, and IgG2a. Percentage of
CD4+CD25+Foxp3+ Treg cells was also significantly in-
creased in mice pretreated with peptide 6. On the other hand,
data reported by Thang and Zhao are less promising [164].
Oral delivery of any of the T cell-reactive peptides of β-
lactoglobulin (P1: 22-mer, AA67–88; P2: 15-mer, AA139–
153) could only reduce the severity of hypersensitivity re-
sponses. There were no changes in the levels of specific IgE,
IgG1, IgG2a, and IgA; in the levels of splenic IL-4, IL-12, and
IL-10; or in the percentage of Treg cells, even though the
peptides were delivered frequently and for a long duration
(three consecutive days per week for 4 weeks at 1 mg/pep-
tide). The discrepancy in the degree of clinical improvement
reported in the two studies might be due to the use of peptides
spanning different Bimmunogenic^ regions of β-lactoglobu-
lin. It is also noteworthy that peptide 6 used by Meulenbroek
et al. [163, 178] actually could not elicit proliferation in any of
the TCLs, leaving the question of whether the observed effects
are contributed by a Btrue^ T cell determinant of β-
lactoglobulin.

The T cell epitopes of two major egg allergens, OVA and
ovumucoid (Ovm), were previously identified [165, 166] and
applied in AIT studies in murine models. Subcutaneous injec-
tion with a single T cell peptide of OVA (15-mer, AI-15:
AA39–53) or a mixture Tcell epitopes (three 15-mer peptides,
covering AA39–53, AA147–161, and AA329–343) effective-
ly reduced the levels of histamine and OVA-specific IgE while
increasing the level of fecal IgA [167]. A peptide cocktail
could generate more pronounced effects by upregulating the
expressions of Th1-linked cytokine IFN-γ and Treg-
associated genes TGF-β and Foxp3 in the small intestine of
treated mice. Similar effects could be observed when the Tcell
epitope of Ovm was delivered as treatment [168]. Two syn-
thetic peptides containing five residues as single peptide (SP)
(AA157–171) and 51 residues as a multiple peptide (MP)
(three repeated units of SP linked by alanine residues) were
used to treat Ovm-sensitized mice orally. Both SP and MP
markedly reduced the levels of specific IgE and IL-4 while
increasing the levels of fecal IgA and IFN-γ. However, only
treatment with SP significantly reduced the histamine level
and boosted levels of IgG2a, splenic IL-10 and IL-12, as well
as CD4+Foxp3+ cells.

Our laboratory identified six major T cell epitopes (20-mer
long; T1–T6, AA26–45, AA56–75, AA86–105, AA146–165,
AA221–240, and AA251–270) of shrimp tropomyosin Met e

1 and evaluated their therapeutic efficacy in a murinemodel of
tropomyosin hypersensitivity [169]. These epitopes were
mapped based on the proliferation and cytokine responses of
spleen cells from BALB/c mice orally sensitized to Met e 1.
Their epitope sequences are also similar to the reactive regions
mapped on Pen a 1 using TCLs generated from shrimp-
allergic subjects [170]. Similar to mice treated with the T cell
epitopes of OVA and Ovm, the oral delivery of a mixture of
these six Met e 1 T cell peptides also significantly reduced
severity of systemic allergic symptoms, level of specific IgE,
and expression of Th2 cytokines (IL-5 and IL-13) in the ileum.
The effects of the treatment are limited not only to the resto-
ration of Th1/Th2 balance and induction of Treg-like re-
sponses but also to the synthesis of IgG2a antibodies that have
both in vitro and in vivo inhibitory functions.

OIT using unmodified allergens represents a promising
regimen in the treatment of food allergies via the induction
of oral tolerance [171, 7, 102, 172, 173]. Yet, the use of
intact allergens is not completely without risk [174]. From
the abovementioned studies, it is clearly demonstrated that
oral delivery of dominant T cell peptides, as both prophy-
lactic and therapeutic agents, could effectively confer oral
tolerance in murine models of various food allergies, mak-
ing oral peptide immunotherapy (PIT) a promising strategy
for treatment. While the major T cell determinants of most
major food allergens, such as Ara h 1 and Ara h 2 (peanut)
[175–177], αs1-casein and α-lactoglobulin (cow’s milk)
[178, 179], and Pru p 3 (peach) [180, 181], have been
mapped, the efficacy of using these epitopes in PIT
targeting these allergies has not been explored. The major
obstacles in translating these identified epitopes into PIT
might involve a large portion of sequences that can elicit a
T cell response. For example, among the 69 20-mer over-
lapping peptides that span the full length Ara h 1, only four
did not trigger proliferation in any of the TCLs generated
from peanut-allergic patients [177]. The recognition was
only 22–33% among the major respondents. A similar pat-
tern was also found in the mapping of T cell epitopes of Pru
p 3 [182]. Among the four T cell-activating regions, only
Pru p 361–75 was recognized by 50% of patients while Pru p
313–27, Pru p 334–48, and Pru p 343–57 were only recognized
by ~ 30% of patients. We suspect that a highly diverse set
of HLA alleles and APCs along the digestive tract and
diversity in the degree of allergen digestion in the allergic
population might be the major confounding factors leading
to the high diversity of T cell-activating sequences found
among most food allergens [183, 64]. This therefore poses
difficulties in pinpointing specific set of peptides as major
immunodominant T cell epitopes for clinical use.

The use of peptide fragments of the allergens may be an
alternative to the use of specific T cell epitopes for AIT. These
fragments can be simply prepared by digesting the allergen
extract using food-grade enzymes or pepsin. Yang et al.
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demonstrated that over 85% of the egg white fragments
yielded by enzymatic hydrolysis only have molecular masses
of < 1.3 kDa [184]. Oral treatment with the hydrolyzed extract
could effectively reduce the levels of histamine, specific IgE,
and the expression of both Th2 (IL-4 and IL-13) and Th1
(IFN-γ and IL-12) cytokines in the ileum. TGF-β and
Foxp3, a cytokine and transcription factor of Treg cells, re-
spectively, were significantly upregulated. In another similar
study, Kulis et al. digested the cashew proteins by pepsin,
which yielded peptide fragments of 3–6 kDa in size [185].
Intraperitoneal treatment with these pepsinized extracts also
helped to reduce allergic responses and Th2 cytokines, as well
as induce IgG production in a mouse model with established
hypersensitivity to cashew. These studies demonstrate that the
use of digested allergen extract might provide enough T cell-
stimulating peptides to a heterogeneous pool of patients with
food allergies, therefore generating positive immunological
changes in AIT.

Mimotopes

Mimotopes are peptides mimicking the IgE-binding epi-
topes of an antigen. They have been proposed for use in
the treatment of allergic diseases as they can induce
blocking ant ibodies against the nat ive al lergen
[186–189]. Since then, mimotopes specific to several al-
lergens have been identified through biopanning of phage-
displayed libraries, but their applications were mostly lim-
ited to epitope mapping [190–194]. Wallmann et al. re-
ported the use of a single mimotope specific to the timo-
thy grass pollen allergen Phl p 5 for treating allergic asth-
ma in a mouse model [195]. Mimotope-treated mice
showed a decrease in eosinophil infiltration and Th2-
associated cytokines IL-4 and IL-5 in the bronchoalveolar
fluid. No adverse effects or changes in Phl p 5-specific T
cell reactivity were observed in the treated mice. The lack
of T cell epitope could be a major advantage of mimotope
treatment as this can avoid T cell-mediated side effects in
conventional AIT.

Nevertheless, the therapeutic effects of mimotopes in food
allergies remain unclear. This is partly because a mimotope
identified by the biopanning method is restricted to a single
consensus epitope while most food allergens possess multiple
linear epitopes [13]. Our laboratory recently reported the use
of a one-bead-one-compound (OBOC) combinatorial peptide
library in identifying 25 mimotopes corresponding to six
immunodominant regions of the major shrimp allergen tropo-
myosin [196]. The therapeutic efficacy of a mimotope cocktail
consisting of a mixture of these mimotopes is currently under
investigation using a mouse model of shrimp hypersensitivity
[153, 154].

Conjugated Molecules

One therapeutic approach in food allergy is to design fusion
allergens that are directed to specific regulatory signaling
pathways. For example, a mannoside-bearing bovine serum
albumin (BSA) fusion protein substantially reduces anaphy-
lactic response in a food-induced anaphylaxis mouse model
[197]. The mannoside-BSA selectively targeted the C-type
lectin receptor on lamina propria DCs and helped to induce
oral tolerance through the expression of IL-10 and promotion
of CD4+ type I regulatory T cells. Another similar approach is
to target toll-like receptor 5 (TLR5) on myeloid DCs with
flagellin, which is a major constituent protein of bacteria fla-
gella [198]. The flagellin-ovalbumin fusion protein could in-
duce the expression of IL-10 by myeloid DCs and suppress
IL-4 and IFN-γ secretion by ovalbumin-specific T cells.

Besides pattern recognition receptors like C-type lectin re-
ceptors or TLRs, it is also possible to target the low-affinity
FcγRIIB receptor on mast cells or basophils. A peanut aller-
gen (Ara h 2) fused to the Fc portion of human IgG1 could
ameliorate anaphylactic response in a mouse model of peanut
allergy induced by whole peanut extract [199]. The aggrega-
tion and cross-linking of FcγRIIB and FcεRI by the allergen
prevented degranulation and resulted in a tolerogenic signal-
ing pathway.

Another strategy is to coat the food allergens or extract in
CpG oligonucleotides and/or poly(lactic-co-glycolic acid)
(PLGA) nanoparticles. CpG provides an adjuvant effect to
favor Th1 responses that antagonize the Th2 allergic re-
sponses. PLGA nanoparticles are biodegradable particles for
oral drug delivery and stable in the gastrointestinal environ-
ment [200]. OIT with CpG-coated PLGA nanoparticles con-
taining peanut extract was proven safe and effective in a mu-
rine model of peanut allergy [201]. Treated mice had their
peanut-specific IgE and Th2 cytokine levels significantly re-
duced, and were protected from anaphylaxis. The treatment
also boosted IgG2a antibody and IFN-γ levels. Most impor-
tantly, 16 of 22 treated mice remained protected for over
4 months after therapy even peanut extracts were given
periodically.

Themajor advantage of using the fusion allergen strategy is
that the molecular characteristics such as T cell or B cell epi-
topes of the allergens are not required to create the fusion
protein. However, it also means that the allergen would be
expressed in its native form. The safety of such fusion proteins
must be thoroughly investigated before clinical application.

Concluding Remarks

The fact that patients can outgrow certain food allergies sug-
gests that oral tolerance can be acquired through effective AIT.
Despite some mild anaphylactic side effects during
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unmodified allergen-based OITand SLIT, these forms of treat-
ment do show promising results and a major step forward in
the management of food allergies. Further understanding of
their long-term efficacies and mechanisms will help to polish
these regimens. Although the hypoallergens, T cell epitopes,
mimotopes, and conjugated molecules discussed in this re-
view are still currently at the level of preclinical characteriza-
tion and animal studies, the use of these modulators in OIT
and/or SLITwould further advance the safety of existing strat-
egies. Large-scale clinical trials are much anticipated in the
coming years, and effective AIT for food allergies will also
soon be within reach.
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