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Abstract Systemic autoimmune diseases (SADs) encompass
a wide spectrum of clinical signs as a reflection of their com-
plex physiopathology. A variety of mechanisms related with
the innate immune system are in the origin of the loss of self-
tolerance in these diseases, and for most of them, the myeloid
leukocytes are key actors. Monocytes, macrophages, dendritic
cells, and neutrophils are first-line immune effectors located in
the interface between innate and adaptive immunity. They are
crucial in the organization of the local and systemic responses
to damage-associated molecular patterns (DAMPs) and deter-
mine the intensity, orientation, and duration of the local im-
mune response through the expression of chemokines,
costimulatory or protolerogenic factors. In this review, we
summarize the current knowledge about the role of the main
myeloid populations in the induction and maintenance of sys-
temic lupus erythematosus (SLE), rheumatoid arthritis (RA),
primary antiphospholipid antibody syndrome (PAPS), sys-
temic sclerosis (SSc), and Sjögren’s syndrome (SjS), based
on the data from both mouse preclinical models and patients.
According to these data, our challenge in the next few years is
to better dissect the fine mechanisms underlying the patholog-
ical role of myeloid cells in these diseases in order to define
specific cell subsets or proteins that can be potential targets for
drug development.
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Features of Systemic Autoimmune Diseases

The mammalian immune system is made of an intricate set of
cellular, chemical, and soluble protein mechanisms special-
ized in the protection of the organism from infections and
tumors through the recognition and neutralization of patho-
gens or aberrant cells, without attacking the body’s own struc-
tures. In steady state, the immune system is tolerized to the
antigens and the structures expressed by the body’s own cells
and thus does not respond to elements that are expressed in
endogenous tissues. All those peacefully coexist in a state
known as self-tolerance. If the self-tolerance equilibrium is
persistently unbalanced, this can ultimately result in develop-
ment of autoimmune diseases, which can be described as the
result of a sustained and persistent immune response against
self-constituents. A variety of mechanisms have been de-
scribed for the breakdown of tolerance supported by experi-
mental models: failure in the deletion of autoreactive lympho-
cytes, central and peripheral tolerance malfunction, abnormal
presentation of autoantigens, molecular mimicry, epitope
spreading, or polyclonal lymphocyte activation (reviewed in
[1]). A common feature of all autoimmune diseases is the
presence of autoantibodies and/or self-reactive lymphocytes,
chronic inflammation, and tissue destruction [2].

Nowadays, it is accepted that autoimmune reactions are
part of the physiological functioning of the healthy immune
system. In serum of normal individuals, the natural self-
reactive antibodies are found at low concentrations and anti-
gen avidity [3]. It is likely that natural autoantibodies are used
by the organism to facilitate the clearance of senescent cells
and cell-free autoantigens, and consequently, prevent the acti-
vation of cognate autoimmune responses. However, in the
serum of patients with autoimmune diseases, high concentra-
tions of IgG-switched autoantibodies are detected, which
show high avidity for the antigen and somatic hypermutations
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of the variable region. These autoimmune response-associated
autoantibodies are the product of a T-helper cell-dependent
activation of B cells, which, in conditions of prolonged con-
tact with the antigen, leads to clonal selection [4].

Regarding the target organs, autoimmune diseases can be
classified into two groups: organ-specific and systemic auto-
immune diseases (SADs). In SADs, the pathogenic antigens
are widely expressed in the body, and therefore, many organs
and tissues are targeted by the activated immune system [5].
The ubiquity of the autoantigens and the systemic nature of
the resulting disorders may be the cause of many common
signs and symptoms that accompany various SADs [6]. This
group includes systemic lupus erythematosus (SLE), rheuma-
toid arthritis (RA), primary antiphospholipid antibody syn-
drome (PAPS), mixed connective tissue disease (MCTD), sys-
temic sclerosis (SSc), and Sjögren’s syndrome (SjS).
Numerous mouse models have been employed to determine
the genetic, molecular, and cellular mechanisms involved in
the pathogeny of SADs. These models can be useful not only
to elucidate disease mechanisms, but also to identify new
genes associated to disease, to test new therapies, or to vali-
date therapeutic targets [7–10].

Initial studies focused on the role of the adaptive immune
system since primary abnormalities of B and T lymphocyte
functions in SLE and other SADs were considered for a long
time the likely basis of the autoimmune condition [11]. Recent
advances in the understanding of the innate immune system
have changed this first paradigm. Thus, it has been increas-
ingly recognized that several components of the innate

immune system, which detect pathogen patterns, play a key
role in self-antigen recognition in autoimmune diseases [12,
13]. Both components of the immune system, innate and
adaptive, are then involved in the physiopathology of organ-
specific and SADs [14]. The cellular components of the innate
immune system include monocytes, macrophages, dendritic
cells (DC), and neutrophils, all being myeloid phagocytes.
Although their differentiation pathways are not fully under-
stood, they all originate from a common myeloid progenitor
(see Fig. 1). These cells are involved directly in the pathogen-
esis of SADs, as antigen-presenting cells as well as acting as
accessory cells through the secretion of soluble mediators like
cytokines or chemokines (see Fig. 2). They play key roles in
immune surveillance, host defense, and tissue repair, and their
activity and differentiation fate can be differentially modulat-
ed by the tissue microenvironment and the characteristics of
the hematopoietic niche in steady state or pathogenic condi-
tions [15]. Most of the main relevant roles of myeloid cells in
the pathogenesis of autoimmune diseases have been revealed
inmice. In this review, we discuss the role of themainmyeloid
populations in the pathogenesis of SADs in patients, as well as
the knowledge obtained using preclinical models.

Dendritic Cells

Human DC are a heterogeneous population composed by dif-
ferent subsets with differing phenotypic and functional fea-
tures [16]: (i) plasmacytoid DC (pDC) can be differentiated

Fig. 1 Main steps and players in
myelopoiesis. Graph depicting
the still evolving view of the
myelopoiesis pathways in mice
and humans
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from both lymphoid and myeloid precursors [17], producing
huge amounts of type I interferon (IFN) after activation [18],
and (ii) conventional DC (cDC) of myeloid origin. In steady
state, human myeloid DC progenitors in the bone marrow
(Fig. 1) originate two main specialized subpopulations char-
acterized by the expression of BDCA-3 (CD141+) or, alterna-
tively, BDCA-1 (CD1c+) [19]. During inflammation, an addi-
tional DC population of inflammatory DC (infDC) is generat-
ed in the tissues after differentiation of newly recruited mono-
cytes [20].Mouse DC present high homology with human DC
[21]. Murine steady-state DC subsets can also be divided into
pDC and cDC. cDC derive from a common precommitted
precursor, the pre-cDC, that is dependent on FLT3L (Fig. 1)
[22]. Murine cDC can be classified in CD8− and CD8+.
Human cDC share key functional properties with their mouse
counterpart, such as constitutive expression of MHC class II
molecules, ability to process antigens and stimulate naïve T
cells, as well as molecular signatures [23, 24]. cDC can be

further divided into lymphoid organ-resident DC and migra-
tory tissue DC. In this review, only classical myeloid DC
(cDC or infDC) will be considered since pDC are beyond
the scope of this review.

In healthy conditions, immature DC take up cell-derived
self-antigens (autoantigens) in the tissues [25, 26]. DC present
autoantigens to autoreactive T cells, but local immune sup-
pressive factors induce tolerance through different mecha-
nisms [27–29]. In the presence of danger signals, DC become
mature and activated and initiate a maturation program opti-
mizing their antigen presentation capabilities and their
costimulatory activity [30, 31]. Mature DCs express high
levels of MHC class I and II molecules, T lymphocyte
costimulatory molecules and chemokine receptors, as well as
an array of cytokines regulating adaptive immunity [32].
Depending on the nature of the environment, cDC can induce
differentiation of Treg, Th1, Th2 or Th17 cells from naïve
CD4+ T cells [20, 33]. cDC are also important for the

Fig. 2 Myeloid cell involvement in SADs. Defective apoptotic cell
clearance by myeloid phagocytes induces the accumulation of self-
antigens in the tissues. DC take up these self-antigens and present them
to autoreactive T and B lymphocytes in the presence of proinflammatory
cytokines, inducing the active secretion of autoantibodies and the accu-
mulation of pathogenic IC. Neutrophils recognize IC and, first, induce the
release of ROS, cytokines, and proteases, and, second, die by NETosis.

NET content activates pDC to secrete type I IFN, which in turn activates
cDC and B lymphocytes, inducing antibody switching. Circulating
monocytes migrate to the tissues and differentiate into tissue macro-
phages, which release ROS and mediate the differentiation of pathogenic
resident cell types such as osteoclasts. Arrows, activated mechanism;
whiskers, impaired mechanism
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promotion of the humoral responses [34] via the activation of
specialized T follicular helper (TFH) cells or through the di-
rect interaction with B cells [35, 36]. In addition, activated
cDC produce high levels of B lymphocyte activation and sur-
vival factors, such as BAFF and APRIL, which have a key
role in B lymphocyte differentiation and antibody production
[37, 38]. The role of DC in inflammation and autoimmunity
has been recently reviewed [39, 40].

DC in Mouse Models of SADs

Several animal models have shown that defects in different
molecules acting as Beat me^ or Bfind me^ signals are in-
volved in the SLE, RA, SSc, and SjS phenotypes, suggesting
that a defect in apoptotic cell clearance by DC and other
phagocytes can be driving the autoimmune condition
(reviewed in [41]).

One of the main functions of DC is antigen presentation to
T cells and the control of T cell differentiation. In general, DC
ablation in mice leads to increased autoreactivity [42]. In the
MRL-Fas/lpr mouse, the removal of DC drives a decrease in T
cell expansion and in IgG and IgM autoantibody formation
[43], but in inbred strains, DC depletion results in a normal
development and number of total T and Treg cells [44]. These
contradictory results can be explained by the background dif-
ferences or by environmental factors, pointing out the rele-
vance of the context on DC responses.

More specifically, gene ablation of different negative reg-
ulators of the immune activation in DC results in spontaneous
autoimmune and/or inflammatory manifestations. For exam-
ple, ablation of B lymphocyte-induced maturation protein-1
(blimp1) in DC induces an increased production of IL-6 and a
preferential differentiation of follicular T helper cells (TFH)
in vitro [45]. In a similar manner, at the same line, the deletion
of the myeloid a20/tnfaip3 gene results in a polyclonal im-
mune activation, spontaneous maturation of cDC, and an in-
crease of cytokine production, accompanied by the develop-
ment of an SLE-like disease [46]. A similar phenotype was
observed after the depletion of the Src homology region 2
domain-containing phosphatase-1 (SHP1). The shp1-KO ani-
mals develop splenomegaly associated with more CD11c+

DC, increased numbers of Th1 cells, and an increased expres-
sion of CD86 and CCR7 in splenic cDC [47].

In RA, the main role proposed for cDC is the control of
Treg differentiation. In mouse models of RA, injection of fully
mature DC loaded with collagen prevents collagen-induced
arthritis (CIA) after the induction of a Th2 shift [48].
Recently, it has been shown that the injection of immature
cDC before collagen immunization suppresses the develop-
ment of CIA by inducing a new subset of Tregs [49]. The
maturation state of cDC has also been proposed to be impor-
tant in RA development. Jaen et al. evaluated in the mouse
CIA model the effect of cDC administration at different

maturation states. LPS-stimulated DC are more effective than
plasmid-stimulated DC in preventing the development of the
disease and express indoleamine-pyrrole 2,3-dioxygenase
(IDO), which may explain their better therapeutic effect. In
both cases, the authors report an in vivo induction of Treg cells
that appear first in lymph nodes and later in the spleen [50].
Immature DC (iDC) can expand and activate a novel regula-
tory population of CD49b+ Tcells, with high immunosuppres-
sive potential able to mediate protection against a systemic
autoimmune disease [49]. The route of injection is also crucial
in these experiments because the local injection of collagen-
loaded mature cDC induces a local increase in the severity of
arthritis [51]; however, cDC injected intravenously are able to
prevent CIA [48].

Another key role of cDC is the production of B cell surviv-
al factors (see Fig. 2). Type I IFN increases the production of
BAFF and APRIL by cDC, which are involved in the survival
of autoreactive B cells, and this contributes to B cell differen-
tiation and Ig class switching, which are important for gener-
ating pathogenic autoantibodies in SLE [52–54]. Deletion of
the type I IFN receptor (ifnar) results in an ameliorated disease
in different lupus-prone strains such as NZB [55], C57BL/lpr
[56], (B6.Nba2 3 NZW)F1 [57], NZM2328 [58], and MRL/
lrp [59]. More specifically, irak1 depletion in B6.Sle1 results
in lower numbers of B cell blasts and activated CD4+ T cells
[60]. In B6.Sle3, deletion of irak1 results in significantly re-
duced levels of anti-ssDNA and anti-double-stranded DNA
(dsDNA) antibodies and a milder kidney pathology [60]. A
similar approach was used by others and the deletion of stat4
in NZW derived mice (NZW2328) results in reduced levels of
IFNγ but decreased survival rates and accelerated nephritis,
even though levels of antibodies were low [61].

DC in SAD Patients

Flow cytometry and histologic analyses of DC subsets have
shown a trend toward a reduced number of circulating DC in
SAD patients, associated with an increase in the inflamed
tissues [62–66]. Mature infDC have also been shown to be
infiltrated in the synovial fluid of RA patients [20]. Mature
cDC accumulate in the perivascular region of RA patients’
synovium, in association with T and B lymphocyte aggre-
gates. These infiltrating cDC express the CCL20 receptor
CCR6, which mediates the attraction of DC and Th17 cells
to the tissues [67]. This finding suggests that a local matura-
tion process is mediating the sequestration of DC in the leu-
kocyte aggregates in the inflamed tissue in RA patients. In a
similar manner, immune cell infiltrates of minor salivary
glands of SjS patients contain typically macrophages and
cDC [68].

Mature DC polarize naïve T lymphocytes into Th1, Th2,
Treg, or Th17 through the secretion of different sets of cyto-
kines. The accumulation of danger signals in the inflamed
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tissue stimulates and drives the DC to immunogenic or
tolerogenic profiles. The release of cytokines that prime an
improper autoantigen presentation leads to dysregulated
autoreactive T and B lymphocytes that contribute to the phys-
iopathology of autoimmune disorders. Mature cDC producing
high amounts of Il-12 and IL-23 have been reported in the
infiltrates of synovial tissues of RA patients, suggesting that
these cells have a role in the polarization of pathogenic T
lymphocytes [62, 66, 67]. infDC from synovial fluids of RA
patients induce the secretion of IL-17 in naïve CD4+ T lym-
phocytes through the secretion of TGFβ, IL-1β, IL-6, and IL-
23 [20]. In RA, IL-17 induces chondrocytes to secrete
cartilage-degrading factors, and interferes with the synthesis
of the cartilage matrix through the production of nitric oxide
[69], or deregulating the RANK-RANKL (receptor activator
of nuclear factor kappa-B ligand) pathway of osteoclast sur-
vival and differentiation [70].

As discussed before, suboptimal clearance of dying cells
results in the accumulation of cell debris in the tissues and the
ensuing local release of inflammatory signals [71].
Accordingly, a gene polymorphism in the mfge8 (milk fat
globule-EGF factor 8 protein) gene, involved in phagocytosis
mediating the interaction between phagocytes and dying cells
[72], has been associated with SLE risk [73]. After antigen
uptake in the tissues, mature DCmigrate to the lymph nodes to
activate antigen-specific T and B lymphocytes, in a process
mediated by the CCR7 receptor and the chemokines CCL19
and CCL21 [74, 75]. Memory T cell activation by cDC can
also occur within the inflamed tissues [76] in structured de
novo formations with a follicular organization called ectopic
lymphoid structures, where B cell activation leading to local
production of pathogenic autoantibodies can be induced [77,
78]. The accumulation of cDC in autoimmune sites can be a
consequence of the increased expression of chemokine recep-
tors or their specific ligands in the tissue, or alternatively due
to their defective migration to the draining lymph nodes from
the inflamed tissue. Both mechanisms have been described in
different SADs such as RA, SLE, and SjS [67, 79–82].

Monocytes and Macrophages

Monocytes have a critical role in innate immunity, not only as
precursors of tissue macrophages and infDC but also through
their function as phagocytes, antigen-presenting cells, and cy-
tokine producers. Monocytes are produced in the bone mar-
row from hematopoietic stem cell precursors (see Fig. 1) and
circulate in the periphery before migrating into the tissues,
where they differentiate into different types of macrophages
and DC [83]. Three major subsets of human circulating mono-
cytes can be recognized by their surface phenotype: the clas-
sical CD14++CD16− monocytes, the nonclassical
CD14+CD16++ monocytes , and an in te rmedia te

CD14+CD16+ population, considered as a transitional state
between conventional and nonclassical monocytes [84].
After microbial stimulation, nonclassical monocytes are high-
ly activated, become strong antigen-presenting cells, and pro-
duce high amounts of proinflammatory cytokines.

Macrophages are the main resident leukocytes in most tis-
sues, differentiated in specialized phenotypes, e. g., Kupffer
cells in the liver and microglial cells in the brain. Their num-
bers increase massively in inflammation and autoimmune dis-
eases where they influence the normal cell turnover and tissue
remodeling, facilitating the repair of injured sites [85].
Macrophages are known for their phenotypic heterogeneity,
polarization, and plasticity. When the macrophages are re-
cruited into the tissues, they become polarized, and generally,
they can be classified as M1 macrophages, which are proin-
flammatory, and M2 macrophages, which are regulatory [86].

Monocytes and Macrophages in Mouse Models of SADs

In the autoimmune condition, the pathogenic roles of mono-
cytes and macrophages are mainly due to alterations of im-
mune complex (IC) recognition and clearance, nucleic acid
recognition via toll-like receptors (TLR) signaling, and IFN
signaling. Monocytes and macrophages, as well as other ef-
fector cells in the immune system, express cell-surface recep-
tors specific for the Fc region of IgG (FcγR). They show
differences in affinity according to the IgG subclass [87] and
have a relevant role in autoimmune diseases [88]. The depo-
sition in the kidney of autoantibodies in the form of IC and
their interaction with FcγR is thought to trigger the local in-
flammatory response typical of SLE, leading to glomerulone-
phritis. Lostor-reduced expression of FcγRIIB results in de-
velopment of lupus-like symptoms in the nonautoimmune
C57BL/6 strain, with presence of autoantibodies and autoim-
mune glomerulonephritis, but this effect seems to be strain
dependent [89]. In the NZB/NZW F1 mouse strain, direct
activation of FcR in monocytes/macrophages is sufficient to
initiate the response to glomerular IC deposit [90]. Mice defi-
cient in FcγR do not develop proteinuria and inflammatory
responses; however, the deposits of IgG and C3 are still pres-
ent in the glomerulae [91–94]. In an interesting paper, Marino
et al. identified a peptide able to bind to immunoglobulins and
to interfere with FcγR recognition. Administration of this
peptide to MRL/lpr mice results in a remarkable increase in
the survival rate. Treated mice show lower IC deposition ac-
companied by a significant reduction in proteinuria [95].
These data demonstrate the relevance of FcR in controlling
the kidney failure present in SLE, and blocking this receptor
could be an attractive alternative to treat renal failure in the
disease.

Another mechanism involved in lupus nephritis is the re-
cruitment of monocytes and neutrophils mediated by type I
IFN. In an experimental model of autoantibody-induced
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nephritis, the production of type I IFN by resident populations
in the kidney seems to be responsible for tissue damage
caused by deposition of autoantibodies. Increased levels of
type I IFN aggravated the renal disease, whereas inhibiting
IFN-I activity results in milder symptoms [96]. In the
pristane-induced lupus model, a novel population of
Ly6Chigh macrophages has been described as the main pro-
ducer of type I IFN independently of DC activation [97].
Ly6Chigh monocytes from the bone marrow go into the circu-
lation and then to the peritoneal cavity where they accumulate.
A striking correlation between the numbers of Ly6Chigh

monocytes and the production of autoantibodies is also ob-
served. Monocyte depletion results in a decrease in type I IFN
and IFN-induced gene expression, though the systemic deple-
tion of DC has little effect. The expression of TNFα also
diminished upon CD11b+Ly6Chigh monocyte depletion,
whereas the expression of IL-12 does not change significantly.
These results support the possibility of production of type I
IFN by immature monocytes independently of DC in lupus
[97].

To elucidate the role of complement in this model, the same
authors designed new experiments in two different knockouts:
C1qa (BALB/C and C57BL/6 strains) and C3 (BALB/c).
Surprisingly, C1qa−/− mice develop lower titers of circulating
autoantibodies and milder arthritis compared with the con-
trols. Two months after pristane injection, a decrease in the
number of CD11b+Ly6Chigh monocytes in peritoneal exudates
was detected in C1qa−/− mice; conversely, the number of the
circulating population was higher. In vitro, peritoneal macro-
phages from C1qa−/− BALB/c mice injected with pristane
produce less CCL3, CCL2, CXCL1, and IL-6 after TLR7
stimulation in vitro, but after stimulation of TLR3, TLR4,
and TLR9, the levels of cytokines/chemokines are similar to
WTanimals. Deletion of other complement components, such
as C3, does not affect the chemokine/cytokine production in
the same conditions [98]. Based on these data, we can con-
clude that C1qa has an important role in the recruitment of
circulating monocytes to the peritoneum in the pristine-
induced lupus model.

Elevated levels of cytokines and chemokines in tissues also
contribute to SLE development and can lead to renal leuko-
cyte infiltration and tissue damage. The presence of leuko-
cytes in renal infiltration is usually associated with poor prog-
nosis in SLE. During experimental lupus nephritis, F4/80hi

cells expressing high levels of CD11b, CD80, CD86,
MMP2, MMP14, Ikkε, CXCL13, and IL-10 are a major renal
source of proinflammatory cytokines and chemokines [99]. In
NZB/W mice, nephritis onset is associated with a specific
renal macrophage/DC signature. Renal F4/80hi/CD11cint mac-
rophages are located throughout the interstitium, whereas F4/
80lo/CD11chi DC accumulate in perivascular lymphoid aggre-
gates. CD11b+/CD11chi/F4/80lo cells appear in large numbers
in lymphoid aggregates during nephritis [99] and disappear

upon remission. A new type of renal F4/80hi/CD11cint macro-
phage has been described in the kidney with a Gr1lo/Ly6Clo/
VLA4lo/MHCIIhi/CD43lo/CD62Llo phenotype different from
that described for inflammatory macrophages [100].

High levels of expression of two ligands for CCR1, CCL3,
and CCL5, in association with mononuclear phagocytes and T
cell infiltration, have been reported in NZB/Wmice, as well as
in other models of SLE and in human lupus nephritis
[101–103]. In mouse models of lupus nephropathy, the ex-
pression of CCR1 on myeloid and some subsets of T cells
seems to guide them to inflamed target organs such as the
kidney. In NZB/W mice, CCR1 inhibition ameliorates the
progression of lupus nephritis [104]. MRL(lpr/lpr) mice treat-
ed with the CCR1 antagonist BX471 show a reduced renal
expression of CCL2, CCL3, CCL4, and CCL5 and the che-
mokine receptors CCR1, CCR2, and CCR5, together with
reduced kidney fibrosis. However, this treatment has no effect
on the levels of serum anti-dsDNA autoantibodies, protein-
uria, or glomerular injury [105]. Short-term treatment with
the orally available CCR1 antagonist BL5923 resulted in low-
er numbers of Tcells andmacrophages in the kidney infiltrates
[104]. At longer times, CCR1 antagonist administration re-
sults in a minor kidney accumulation of effector/memory
CD4+ T cells, Ly6C+ monocytes, and both M1 and M2 mac-
rophages in MRL-lpr mice. The tissue damage is reduced
resulting in a delayed proteinuria and increased survival
[105]. In transference experiments done in the NZB/WF1
model, it has been reported that splenic T, B, and myeloid
cells from nephritic mice migrated into noninflamed syngenic
kidneys [102]. When the transfer was done to chronically
inflamed kidneys, the process was improved, suggesting that
this process could be autoregulated with a loop between kid-
ney signaling and circulating leukocytes.

The deficiency on interferon regulatory factor 4 (IRF4), a
transcription factor required for M2 macrophage polarization
[106], also inhibits TLR signaling through its binding to
MyD88 [107]. As a consequence, irf4 deficiency enhances
the activation of antigen-presenting cells and the production
of NF-κB-dependent proinflammatory cytokines in the lupus-
prone B6lrp mice but protects the animal against IC deposition
in the kidney and the resulting glomerulonephritis [108].

Macrophages are also a relevant population in the control
of other SADs as RA in human and mouse models. In this
disease, the most relevant role of the macrophages is the pro-
duction of cytokines that control osteoclast activity (Fig. 2).
Th1 cytokines, such as IL-12 and IFNγ, and Th2 cytokines,
such as IL-4 and IL-10, are inhibitory for osteoclastogenesis
[109–112]. It is also relevant in the production of NO by
synoviocytes and macrophages that induces degeneration of
chondrocytes. Other cytokines such as colony-stimulating fac-
tor 1 (CSF-1) and its receptor, CSF-1R, play an important role
in regulating tissue-resident macrophages and osteoclasts. The
expression of CSF1-R increases during CMP differentiation to
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macrophages (Fig. 1) and CSF-1R downstream signaling reg-
ulates macrophage survival, proliferation, differentiation, and
chemotaxis [113]. In two different RA models, such as the
CIA model and the passive serum transfer, the blockade of
CSF-1R abrogated cartilage damage, bone erosion, and sys-
temic bone loss. In both cases, this effect was associated with
depletion of osteoclasts. A significant reduction in inflamma-
tion was also observed that was accompanied by the absence
of synovial macrophages and a reduction of the number of
splenic monocytes, pointing out the relevant role of CSF-1R
in controlling these populations in RA [114].

SjS animal models show a predominance of CD4+ T lym-
phocytes infiltrated into lachrymal and salivary glands. The
presence of macrophages in the infiltrates has been detected
but their pathogenic role is not well defined yet, even though it
is known that they are important players [10, 115]. In NOD
mice, macrophages and DC initiate the infiltration into the
salivary glands that will develop into a lymphocytic focus.
Therein, M1 and M2 macrophages are detected together with
B and T cells [116]. The role of macrophages in SjS patho-
genesis has been investigated by Zhou et al. using a knockout
mouse model for the autoimmune regulator (AIRE). These
knockout mice present a multiorgan autoimmune disease, in-
cluding an exocrinopathy affecting the salivary and lacrimal
glands [117, 118]. In the absence of AIRE, F4/80+ macro-
phages accumulate in the cornea. Subconjunctival injection
of clodronate liposomes depletes macrophages locally with
no effect on CD11c+ DC and improves corneal epitheliopathy,
hyperplasia, and stromal fibrosis. In AIRE KO mice, macro-
phages appear to function locally, downstream of CD4+ T cell
activation and infiltration. Clodronate systemic administration
does not improve the ocular epitheliopathy but results in an
improvement in tear secretion and decreased damage to lach-
rymal glands [119]. Thus, even if CD4+ T cells are the main
population in the infiltrates and primary effectors in the devel-
opment of the pathogenesis, macrophages seem to have a
relevant role in the development of the complete SjS pheno-
type. In the NOD/B10-H2b strain after prophylactic treatment
with cobra venom factor (the complement-activating protein
from cobra venom that functionally resembles C3b), animals
failed to develop salivary dysfunction and showed reduced
levels of leukocyte infiltration, reduction of antinuclear auto-
antibodies, and major alterations in the B lymphocyte profiles
[120]. The role of complement has also been studied in the
C57BL/6.NOD-Aec1Aec2 SjS mouse model. In this case, the
deletion of C3 resulted in a decrease in clinical signs. C3 KO
animals presented reduced acinar cell apoptosis, reduced
levels of caspase-3, lack of leukocyte infiltration of subman-
dibular glands, and reduced synthesis of pathogenic autoanti-
bodies. The glandular architecture and retention/secretion of
saliva were normal [121]. RNA expression microarray studies
have been carried out in lachrymal glands of NOD mice com-
paring them with age-matched BALB/c mice. The results

showed an upregulation of cathepsins and proinflammatory
factors including TNFα, IL-6 and IL-1β [122]. In C57BL/
6.NOD-Aec1Aec2 mice, caspase-11, expressed primarily in
macrophages and DCs, was significantly upregulated at
8 weeks of age, but not caspase-9 [123]. The upregulation of
caspase-11 in the submandibular gland before disease onset is
apparently associated with the enhanced transcriptional activ-
ity of the signal transducer and activator of transcription 1
(STAT1) gene [124]. In general, the presence of elevated
levels of proinflammatory cytokines in the submandibular
gland enhances IFNγ production by epithelial cells, resulting
in further activation of macrophages [124].

It is also worthy tomention the role of macrophages in SSc.
Macrophages are a potent source of reactive oxygen species
(ROS). ROS have multiple effects including DNA oxidative
damage and unbalanced oxidative stress, which has been im-
plicated in the pathogenesis of scleroderma. There are in-
creased numbers of macrophages at the early stages of fibro-
sis, and they release proinflammatory and fibrogenic media-
tors, such as TGFβ and PDGF [125]. A high number of mac-
rophages have been detected in the skin of Scl-GVHD [126]
and bleomycin-induced mouse models [127]. In the
bleomycin model, TGFβ is produced by fibroblasts and infil-
trating cells that are predominantly comprised of macrophages
at the sclerotic stage [128]. CCL2 and its receptor CCR2 are
upregulated in dermal fibroblasts and inflammatory cells from
both SSc bleomycin-treated mice as it happens in patients
[129]. In the CCL2-deficient mice, skin fibrosis was dimin-
ished even after the bleomycin treatment [130]. In the Scl-
GVHD model, populations of monocytes/macrophages
(CD11b+/2F8+) and CD3+ Tcells of donor origin are the main
components of the skin lesion. There are also high levels of
CCL2, IFN-inducible chemokines, VEGF, and adhesion mol-
ecules in the skin [131].

Monocytes and Macrophages in SAD Patients

One of the major functions of blood monocytes is the elimi-
nation of opsonized microorganisms and apoptotic debris by
phagocytosis or receptor-specific endocytosis through pattern-
recognition receptors (PRR) [132]. Among them, C1q medi-
ates the recognition of a wide variety of plasma proteins and
pathogen molecules [133, 134], ensuring uneventful removal.
It has been shown that the deficiency in the C1q protein is
associated with a risk of developing SLE and RA [135, 136],
suggesting that the role of C1q in the clearance of microbial
elements and self debris could be crucial for preventing the
induction of pathogenic autoantibodies [137]. Circulating
monocytes from SjS patients release spontaneously higher
amounts of the two B lymphocyte-stimulating cytokines IL-
6 and BAFF [138] and show high levels of phosphorylation of
STAT5, correlating with serum IgG levels and anti-SSB/La
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autoantibody titers [139]. However, they show an impaired
capacity of phagocytosis of apoptotic cells [140].

A significant role for monocyte activation in PAPS-
mediated thrombogenesis has been suggested. From a prote-
omics analysis of monocytes from PAPS patients with throm-
bosis, a differential expression of annexin I and annexin II, as
well as RhoA, Nedd8, and Hsp60 proteins, has been observed
[141]. Circulating antibodies and autoantibodies from PAPS
patients activate monocytes through TLR2 and CD14, induc-
ing the expression of ROS and the secretion of tissue factors
[142, 143]. They also induce the overexpression of TLR8 and
its translocation from the endoplasmic reticulum to the
endosomal compartment, sensitizing monocytes to TLR8
ligands [144].

SSc patients have a higher proportion of CD14+ monocytes
in the blood, showing an activated phenotype [145]. These
activated monocytes overexpress both CD169, a macrophage
marker induced by type I IFN, and CD204, a marker for
activated profibrotic M2 macrophages [146]. Moreover,
LPS stimulation of SSc circulating monocytes increases
CD163 expression compared to monocytes from control
individuals [147].

SLE macrophages are unable to clear efficiently apoptotic
cells and show an altered proinflammatory status character-
ized by an overproduction of inflammatory cytokines, such as
type I IFN, TNFα, and IL-6 [148, 149]. They show enhanced
antigen presentation capacity and are primed for activation,
leading to a skew toward autoimmunity [150]. In this inflam-
matory context, SLE monocytes and macrophages present
self-antigens to autoreactive T lymphocytes instead of induc-
ing peripheral tolerance after phagocytosis of apoptotic cells
[148]. Interestingly, CD68+ mononuclear phagocyte infiltra-
tion in the kidneys of lupus nephritis patients is associated
with poor prognosis [151–153].

Macrophages produce many proinflammatory cytokines
and chemokines in the synovial tissue of RA patients, contrib-
uting to cartilage and bone destruction [154]. Indeed, infiltrat-
ing macrophage numbers constitute a biomarker for disease
severity, as well as a predictor of the response to therapy [155].
It has been reported that there is a positive correlation between
the number of infiltrated macrophages and the degree of joint
erosion [156]. The polarization of RA synovial tissue macro-
phages depends on the stage of the rheumatic inflammation.
Actually, patients with highly active RA show a prevalence of
the M1 phenotype. On the contrary, macrophages of RA pa-
tients with low disease score or in clinical remission show an
M2 phenotype [157], and furthermore, glucocorticoid treat-
ment induces an M2 state [158]. The infiltration of macro-
phages into the labial salivary glands of SjS patients correlates
with the biopsy focus score [159]. Additionally, patients
with SjS show higher expression of IL-18 in the infiltrated
macrophages, with a positive correlation with salivary
gland enlargement [68].

Skin infiltrates of SSc patients are composed mainly of T
lymphocytes and macrophages. Among them, infiltrated
CD163+ macrophages seem to be the main source of
CCL19, a chemokine strongly correlated with vascular
markers, suggesting a role of CCL19 in the recruitment of
macrophages to the inflamed SSc skin [160]. In terms of phe-
notype, it has been reported that there is overexpression of
TLR4, CD14, and MD2 in the skin of diffuse SSc patients.
The expression of these genes correlates with progressive skin
disease [161], suggesting that these markers can be used for
the monitoring of skin disease progression. CD14 is mainly
expressed by macrophages, although it can also be expressed
at lower levels by cDC and neutrophils. In addition, dermal
macrophages of SSc patients acquire a profibrotic phenotype
after stimulation with IL-13 [162, 163].Microarray analysis of
lung samples of patients of SSc-associated interstitial lung
disease shows a unique gene signature compared with other
similar lung diseases. Many genes of this specific signature
correspond to alveolar macrophage activation and fibrosis
[164, 165]. Studies of expression profiles of bronchoalveolar
lavages of SSc patients with lung inflammation describe the
induction of markers of alveolar macrophage activation [166],
together with a consistent increase in the expression of CCL18
transcripts [167]. This result is in agreement with the high
levels of serum CCL18 in SSc patients, related with lung
involvement [168–170]. In addition, it has been shown that
circulating monocytes and alveolar macrophages of SSc pa-
tients of interstitial lung disease responded more intensely to
LPS stimulation [147, 166].

Neutrophils

Neutrophils have key roles in the control of infectious agents
through their capability to quickly migrate from the circula-
tion to the infected tissues in response to regulatory or chemo-
tactic signals [171]. Once they arrive at these sites, they turn
into Bprimed^ neutrophils, recognizing and destroying the in-
vading pathogens using a wide variety of degrading enzymes
contained in their granules, in addition to their ability to gen-
erate ROS [172]. Using these arms, neutrophils have the
highest killing activity among the immune cells. Primed neu-
trophils extend their lifespan and promote inflammation using
chemokines and cytokines that attract other actors of the im-
mune system, and regulating almost every element of the in-
flammatory response [173]. When the infection is resolved,
they die by apoptosis [174] or NETosis, through the release
toward the extracellular milieu of granule-derived protein-
decorated chromatin forming neutrophil extracellular traps
(NETs) [175, 176]. High titers of autoantibodies against
dsDNA, histones, or anti-citrullinated protein antibodies
(ACPA) are hallmarks of SAD patients. Since the proteins
associated with the DNA in the NETs include citrullinated
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histones and proteins with altered immunogenicity after post-
translational modifications such as oxidations, neutrophils can
also be a source of autoantigens through degranulation or
NETosis [177–179].

In some conditions, neutrophils can also infiltrate tissues
and become improperly activated in sterile tissues via deposed
IC [180], and secrete the content of their granules, attacking
host tissues if local detoxification pathways become
overburdened. As a consequence, the connective tissues are
dissolved and normal cells destroyed [181]. Besides their di-
rect tissue damage induction, neutrophil-derived regulatory
factors also organize a sterile inflammatory response [182].
Neutrophil-secreted cytokines have been shown to contribute
to the deregulation of the immune responses in several SADs
[173]. Other neutrophil functions have been shown to be
deregulated in several SADs as shown in Table 1 and detailed
below.

Neutrophils in Mouse Models of SADs

Strong evidence about the important role of neutrophils in
SLE pathogenesis comes from in vivo depletion experiments
[184]. The depletion of the neutrophil population in lupus-
prone autoimmune B6.Faslpr/JTnfrsf17−/− mice, deficient in
a BAFF receptor, results in a reduction in autoantibody titers,
serum IFNα and BAFF, T cell activation, as well as high
numbers of splenic germinal center B cells and plasma cells.
In this strain, high production of BAFF by neutrophils may
help to drive the selection and survival of autoimmune B cell
clones that produce self-reactive antibodies, such as anti-
dsDNA antibodies [184]. Interaction between BAFF, T cells,
and IFNγ has also been proposed in the Lyn-deficient auto-
immune mouse model. Lyn−/− mice present a ∼30–50% re-
duction in mature B cell numbers, and lyn−/−myeloid cells are
hyperresponsive to engagement of surface integrins, showing
increased secondary granule release [205]. Scapini et al. have
described a population of hyperactivated myeloid cells in
these animals that produces high levels of BAFF, that activates
T cells to release high levels of IFNγ. Administration of anti-
BAFF monoclonal antibody reduced disease development in
Lyn−/−mice and a similar effect was observed with the genetic
deletion of IFNγ [185].

Other important mechanism by which neutrophils drive
autoimmune responses is through the release of ROS, prote-
ases, and proinflammatory cytokines (Fig. 2). In the MRL/lpr
mouse, blockade of mitochondrial ROS production has re-
cently been reported to be sufficient to block NETosis
in vitro, reducing disease severity and type I IFN responses
[186]. The KO of the NADPH oxidase nox results in increased
lupus disease symptoms in this particular strain [206].
However, the role of NOX in immune responses is not all
clear since in patients with chronic granulomatous disease

and lack of functional NOX, a proinflammatory phenotype
has been observed [207].

The relevance of NET formation in lupus disease has been
tested recently in animal models. Injection of netting neutro-
phil cell lines to wild-type mice does not result in the devel-
opment of lupus disease. Although it is unclear if those injec-
tions could mimic the in vivo NET formation and prime the
activation of TLR signaling, IgG and IgM antibody levels
were increased [187]. Another key process in NET formation
in vivo is the citrullination of histones by peptidyl arginine
deiminase 4 (PAD4). Neutrophils fromMRL/lpr and NZ2328
mice demonstrate accelerated NET formation compared with
controls and an accelerated NET formation [188, 189]. In
MRL/lpr inhibition of PAD1, PAD2, and PAD4 using the
Cl-amidine inhibitor markedly improves endothelial function
and reduces proteinuria and IC deposition in the kidney while
protecting against skin disease [188]. In NZM, the same treat-
ment inhibits NET formation in vivo and significantly alters
circulating autoantibody profiles and complement levels while
reducing glomerular IgG deposition [189].

In RA, neutrophils also have a critical role in the initiation
and maintenance of the disease. Neutrophils are abundant in
murine autoimmune arthritis and contribute to the pathogene-
sis through the release of cytotoxic products and immunoreg-
ulatory mediators. In addition, neutrophils may promote auto-
immunity by formation of NETs and the associated promotion
of anticitrullinated protein/peptide antibodies [182, 208].
Interestingly, neutrophil-depleted mice are completely resis-
tant to the disease-inducing effects of K/BxN serum transfer
[209]. In CIA models, it has also been proven that they have a
critical role in initiating and maintaining the inflammatory
responses. In a similar way to what happens in patients, there
is also a prominence of neutrophil recruitment in RA models
[209–211]. It has been demonstrated that neutrophils partici-
pate in their own recruitment in murine arthritis through C5aR
and FcγR signaling [212]. Once in the joints, neutrophil acti-
vation by IC promotes IL-1β production, which stimulates
synovial cells to produce chemokines, amplifying the neutro-
phil recruitment into the joints [212]. Neutrophils infiltrating
the synovial membranes and joints in rats with arthritis upreg-
ulate cathelicidins [213], antibacterial peptides with potent
proinflammatory and immunomodulatory activities [214].

Recent evidence indicates that the inflammatory loops ini-
tiated by the molecules externalized in NETs may be key in
arthritis development [215]. As it was mentioned before,
citrullination of histones by PAD4 is a key step in NET for-
mation. PAD4 mRNA, absent from healthy synovium, is tran-
scribed and translated by neutrophils infiltrating synovial tis-
sue during inflammation. As a consequence, several synovial
proteins are citrullinated in this compartment [216]. Of inter-
est, the PAD inhibitor CI-amidine mitigates collagen-induced
arthritis and decreases the clinical disease score [190].
However, no abrogation of disease severity was observed in
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the PAD4 knockout mice using the K/BxN serum transfer
model of arthritis [217].

Granulocyte-colony stimulating factor (G-CSF) has al-
so been found to be a key player in arthritis models, par-
ticipating in the interactions between hematopoietic cells
through the control of myeloid cell numbers and activa-
tion [218]. Neutrophil depletion or reduction of their G-
CSF production also inhibits disease development in the
CIA arthritis model [191]. This cytokine is also required
for neutrophil recruitment in the K/BxN serum transfer
arthritis model [192]. In this line of research, antibody
blockade or knockout of key neutrophil signaling recep-
tors, such as CXCR1 and CXCR2, ameliorates disease
signs in an antigen-induced model [193, 194]. A similar
effect of reduction in disease progression was observed in
the CIA model with ablation of C5aR [195], involved in
neutrophil recruitment [212]. In the K/BxN serum
transfer-induced arthritis model, an important role of
FcγR has also been demonstrated. Expression of human
FcγRIIa on neutrophils in mice that lacked their own re-
sults in the restoration of susceptibility to K/BxN serum
induced RA, neutrophil recruitment, synovitis, and bone
destruction [219]. Other molecules involved in the recruit-
ment of pathogenic neutrophils are L-selectin [196],
IFNγ, [197, 198], and IL-17 [199]. Neutrophil production
of IL-17 has also been pointed to as an amplifier of ar-
thritis in the K/BxN model [200]. Neutrophil activation
following recognition of early IC in the joint may also
lead to changes in vascular permeability, which further
promotes IgG deposition [220]. The production of other
effectors, such as ROS, is also important for the induction
of the disease. In summary, we can conclude that de-
creased disease activity and joint destruction directly cor-
relates with lower influx of neutrophils to joints and less
neutrophil activity.

Production of ROS by neutrophils seems to also be a
concern in SSc pathogenesis [203]. Repeated injections of
hypochlorous acid, a product of neutrophil burst, induced
skin and lung fibrosis as well as anti-DNA topoisomerase
1 (Scl70) antibody production, mimicking the diffuse
form of SSc in patients and proving the relevant role of
ROS in SSc [203, 204].

Neutrophils in SAD Patients

Neutropenia is found in a significant proportion of SLE pa-
tients as reported in [221, 222]. Circulating neutrophils of SLE
patients display abnormal features, such as impaired phago-
cytic activity [223] and lower recognition by the C1q-
mediated apoptotic cell clearance [224]. The lower production
of ROS by circulating neutrophils from SLE patients with
more severe symptoms indicates that these cells are not
primed but show a skewed phenotype [225]. On the other

hand, enriched numbers of low density granulocytes (LDG),
with an activated phenotype but morphologically similar to
immature cells, are characteristic in the blood of these
patients [226, 227]. The number of circulating LDG cor-
relates with dsDNA-specific autoantibody titers and dis-
ease severity [228]. The enhancement of NETosis activity
in LDG and neutrophils from SLE patients is well
established. It has been hypothesized that neutrophil
death induces the type I IFN production by pDC charac-
teristic of SLE [229], facilitating the uptake of extracel-
lular DNA by pDC and their activation [178]. IFN and IC
trigger the activation of neutrophils, inducing again their
NETosis in a self-amplifying process [230]. Several stud-
ies have reported the finding of neutrophils in the kidney
biopsies of lupus nephritis patients [230–233], and tissue
NETosis has been correlated with higher titers of anti-
dsDNA autoantibodies [230]. Altogether, these data sup-
port the notion of neutrophils having a key role in the patho-
genesis of SLE [234].

In healthy individuals, blood neutrophils need to be primed
in order to migrate to the tissues and become active. In RA
patients, circulating and infiltrated neutrophils have a longer
lifespan [235] and show an activated phenotype [236], togeth-
er with activation of the NF-κB pathway [237], increase of
their chemotactic capacity [238–240], high phagocytic activ-
ity [241], and enhanced ROS production [242] in response to
IC [243]. This phenotype participates actively in the damage
of the synovial joints [182]. The process consisting in the
adherence of activated neutrophils to IC in the synovial fluid,
causing degranulation and liberation of ROS and collagenases
[244], has been called Bfrustrated phagocytosis^ [245]. The
phenotype of synovial neutrophils of RA patients is quite sim-
ilar to tissue macrophages, in terms of secretion of a wide
variety of proinflammatory cytokines and chemokines [174],
thus facilitating the delay in the neutrophil apoptosis induc-
tion. Recent reports suggest a role of neutrophil NETosis in
the joint damage in RA [182], since anti-citrullinated protein
antibodies (ACPA) are characteristic of erosive RA, and NETs
contain citrullinated histones [179]. Spontaneous NETosis of
neutrophils in culture is higher in RA compared with controls,
and they have more nuclear citrullinated histone H3 [246].
Interestingly, antibodies specific for citrullinated vimentin
are associated with the severity of RA [247]. Moreover, neu-
trophils from healthy donors bearing the T allele of the RA
risk-associated gene ptpn22(C1858T) have a high migration
capacity, superior ROS production, and enhancedNET release
[248], indicating that the neutrophils could be acting in the
very first steps of the pathogenic processes of the disease.

The information about the role of neutrophils in the phys-
iopathology of other SADs is less complete compared to SLE
and RA. For instance, there are some pieces of evidence
pointing to a role of NETosis in the pathogenesis of PAPS.
Similar to SLE, the sera of PAPS patients show a decrease in
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the NET-degrading activity [249]. In line with this finding, the
sera of these patients also have high levels of cell-free DNA
and NET components, and the circulating neutrophils have
high spontaneous NETosis activity [250]. A LDG population
has been also described in the blood of PAPS patients [251].
Other neutrophil functions, such as ROS generation, are
skewed in neutrophils of SSc patients [252, 253].

Concluding Remarks

As summarized in Table 1, scientific evidence pointing to
a key role of the myeloid cells in the pathogenesis of
SADs is abundant and strong. Dendritic cell alterations
in immune diseases include presentation of self-antigens
to autoreactive T cells, increased secretion of proinflam-
matory cytokines, and promotion of autoantibody produc-
tion in B cells. DC also act through the control of T cell
differentiation and activation. Monocytes and macro-
phages are important cytokine producers able to control
migration of other populations to the inflamed tissues and
remodeling processes such as condrogenesis and osteo-
clast activity. They respond to the IC deposit and produce
proinflammatory cytokines and chemokines participating
in tissue damage in SADs. Finally, neutrophils release
ROS, proteases, and proinflammatory cytokines that act
as danger signals. Netting neutrophils release intracellular
modified antigens promoting the induction of pathogenic
autoantibodies.

According to these data, our challenge in the next few years
is to better dissect the immunopathological mechanisms un-
derlying these disturbances in order to define specific cell
subsets or proteins that can be potential targets for drug
development.

cDC conventional dendritic cells, CIA collagen-induced
arthritis, DC dendritic cells, IC immune complex, infDC in-
flammatory dendritic cells, IFN interferon, pDC plasmacytoid
dendritic cells, RA rheumatoid arthritis, ROS reactive oxygen
species, SADs systemic autoimmune diseases, SjS Sjögren’s
syndrome, SLE systemic lupus erythematosus, SSc systemic
sclerosis
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