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Abstract There are possibly millions of mold species on earth.
The vast majority of these mold spores live in harmony with
humans, rarely causing disease. The rare species that does cause
disease does so by triggering allergies or asthma, or may be
involved in hypersensitivity diseases such as allergic
bronchopulmonary aspergillosis or allergic fungal sinusitis.
Other hypersensitivity diseases include those related to occupa-
tional or domiciliary exposures to certain mold species, as in the
case of Pigeon Breeder’s disease, Farmer’s lung, or humidifier
fever. The final proven category of fungal diseases is through
infection, as in the case of onchomycosis or coccidiomycosis.
These diseases can be treated using anti-fungal agents. Molds
and fungi can also be particularly important in infections that
occur in immunocompromised patients. Systemic candidiasis
does not occur unless the individual is immunodeficient.
Previous reports of Btoxic mold syndrome^ or Btoxic black
mold^ have been shown to be no more than media hype and
mass hysteria, partly stemming from the misinterpreted concept
of the Bsick building syndrome.^ There is no scientific evidence
that exposure to visible black mold in apartments and buildings
can lead to the vague and subjective symptoms of memory loss,
inability to focus, fatigue, and headaches that were reported by
people who erroneously believed that they were suffering from
Bmycotoxicosis.^ Similarly, a causal relationship between cases
of infant pulmonary hemorrhage and exposure to Bblack mold^
has never been proven. Finally, there is no evidence of a link
between autoimmune disease and mold exposure.
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Introduction

Mold is a common name for a visible group of fungi that grow
as multicellular filaments or hyphae, which then aggregate
into web-like structures or mycelia. To date, approximately
100,000 fungi have been described, but true fungal diversity
is likely to be at least 7- to 10-fold greater. According to other
estimates, as many as 5 million fungal species may await
study, description, and classification [1], but the true figure
is likely to be somewhere in between [2]. Fungi living in the
soil and on plants have vital roles in decomposing organic
matter thereby making essential nutrients such as nitrogen
and phosphorus available to other organisms. Indeed, the ma-
jority of plants would not survive without mycorrhiza, i.e., the
symbiotic relationship between the mycelium of a fungus with
the roots of the plant, which helps in supplying the plant with
water and other necessary nutrients. For humans, yeasts (uni-
cellular fungi) and molds are invaluable in the production of
various foods (breads, certain cheeses) and beverages (e.g.,
beer and wine) and as sources of medications (e.g., antibiotics,
immunosuppressants, and statins). Both outdoor and indoor
environments contain highly diverse and somewhat different
mycobiomes, even if the distribution of species and their
levels indoor are greatly influenced by their outdoor counter-
parts. This means that molds and other fungi are ubiquitous.
Indeed, they even live in and on every human being; the hu-
man mouth alone may harbor >20 of the >100 species of fungi
that have been detected in the oral cavity. In those patients
who do have problems attributable to mold, there are well-
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established biophysiological mechanisms through which dis-
ease can occur, namely by inducing hypersensitivity reactions
and infection in susceptible individuals. Some examples of
this would be the uncommon diseases such as farmer’s lung
and pigeon breeder’s disease, patients characterized by fever,
dramatic swelling of lymph nodes, and infiltrates in the lung.
If untreated, they will likely die. There is also the possibility of
a systemic infection and this would be found in individuals
who are immunocompromised, e.g., patients with HIVor pa-
tients born with a deficient immune system. There is also the
potential for allergy to mold, and in those individuals with
asthma (who are allergic to mold), there is the potential for
asthma exacerbation during exposure. These exacerbations
are, however, completely reversible and do not cause any last-
ing problems. It should be noted that there is a long list of
poorly defined health effects that some have complained are
secondary to mold exposure, but these observations are
flawed, they lack controls, and are non-specific and lack cred-
ible medical plausibility. In this review, we will discuss in
detail the concept and the relationship between mold and hu-
man health.

Methods for Assessing Fungal Concentrations

There are a great number of methods that measure the con-
centrations of total molds or individual mold species in indoor
and outdoor environments. One method for assessing the
levels of airborne fungi is to collect a sample over several
hours (at least 8 h are recommended) and count spores micro-
scopically to estimate total fungal spores. Another approach is
to use fungal cell wall constituents such as ergosterol or (1-3,
1-6)-β-D-glucans as markers of total fungal biomass, but this
does not even allow the determination of spore counts and
none of these methods provide information on the genera
and species present. To identify fungal species, the classical
method is based on culturing spores collected from the air or
dust. Fungi are ubiquitous and airborne-viable fungal spores
are detectable in nearly all indoor environments, though with
considerable variation both over short- and long-term obser-
vation periods and between geographic areas [3]. Outdoor
levels of total culturable fungi range from nearly undetectable
to 105 colony-forming units (CFU)/m3. In unselected homes,
indoor air concentrations generally vary from below the de-
tection limit to >2 × 103 CFU/m3 [4–7] and similar ranges
have been reported for non-residential environments [3, 8].

The culture-based quantification of airborne fungi has
some major drawbacks. The duration of sampling has to be
very short (generally <5 min) in order to prevent sampler
overload. Fungal spores differ in their cultivability and culture
requirements; hence, only a few species grow on the common-
ly used culture media. In addition, non-viable spores and other
fungal materials (fragments) can contribute to allergen [9],
mycotoxin [10], and polysaccharide exposure [11], but are

not captured by culture-based methods. Not surprisingly, the
number of CFU per square meter of air obtained by culture
methods is at least 10-fold lower than the corresponding fun-
gal spore counts [3].

More recently, quantitative polymerase chain reaction
(qPCR) has been used to measure indoor fungal concentra-
tions. This is a very sensitive method that is much faster than
culture, does not require great expertise in identifying fungal
genera or species, and assesses both viable and non-viable
fungal material. In direct comparisons with culture-based re-
sults, the levels of cell equivalents obtained with qPCR for
individual species or assay groups are generally two to three
orders of magnitude higher compared to the CFU values
both in air [12] and in dust [13]. If sufficient numbers of
fungal species are targeted, qPCR can reveal a much greater
diversity of the indoor fungal biome in terms of the number
of detected species compared to fungal culture. However, the
requirement of pre-selecting the targeted fungi means that the
results of qPCR-based studies can rarely be compared direct-
ly because they frequently target different numbers of species
or assay groups. This requirement also makes qPCR unsuit-
able for appreciating the true diversity of the fungal biome in
a given environment. For this purpose, other culture-
independent methods relying on internal transcribed spacer
region sequencing are more appropriate. Though less sensi-
tive than qPCR, they have nonetheless revealed the indoor
mycobiome to be much more diverse than previously appre-
ciated in terms of the number of detected species [14, 15].

Health Effects of Fungi

Allergy

Sensitization

According to the WHO/International Union of Immunological
Societies (IUIS) Allergen Nomenclature subcommittee, there
are 111 officially approved fungal allergens from 22 species of
Ascomycota (86 allergens), 6 species of Basidiomycota (23
allergens), and 1 species of Zygomycota (2 allergens) (see
www.allergen.org). However, the actual list of fungal
allergens is far longer, particularly when only partially
characterized ones are included [16, 17] and is likely to grow
further once the true diversity of the indoor and outdoor fungal
populations and the allergenicity of the newly recognized
species becomes more fully appreciated [1, 18] (see Table 1
for sensitization rates to some infrequently tested fungal
antigens). Currently, the most widely acknowledged allergenic
mold species are members of the genera Alternaria and
Cladosporium among those considered to be outdoor molds,
and Aspergillus and Penicillium among those considered to be
indoor molds.
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In the general population, the frequency of sensitization to
Alternaria ranges from 0.2–14.4%; the corresponding figures
for Cladosporium are 0–11.9% [20, 21]. The overall sensiti-
zation rate to fungal allergens was estimated to be 8.3% in a
population-based study of German children, but is consider-
ably higher in atopic subjects, particularly in patients with
severe asthma [16]. The true sensitization rate remains un-
known not only because many indoor fungal species remain
to be identified [14, 15] but also because few fungal extracts
are commercially available and these are not standardized and
vary widely in their antigen contents and IgE-binding capacity
[22]. This in turn is attributable to the complex growth habits
of fungi, the variability in allergen expression between differ-
ent strains of the same species, the shifts in the protein expres-
sion profile between different growth stages and in response to
different substrates and nutrient availability, and the extensive
cross-reactivity of fungal antigens, all of which make the de-
velopment of standardized reference extracts difficult if not
impossible. It is important to note that allergens differ in their
potency. For example, at the same dose, exposure to peanut
alone is much more likely to induce anaphylaxis than expo-
sure to multiple pollens in individuals with allergies to both
peanut and olive tree pollens. The most potent allergens are
those found in food, followed by cat, then house dust, and the

very end of the list is mold. In other words, exposure to mold
is much less likely at the equivalent dose to induce a clinically
significant allergic reaction than other allergens.

Asthma and Rhinitis

In numerous epidemiological studies, sensitization to fun-
gi and subsequent exposure to outdoor airborne fungal
al lergens, in part icular Alternaria alternata and
Cladosporium herbarum, is associated with the develop
ment of asthma, its persistence from childhood into early
adulthood, and the severity of its symptoms. Interestingly,
there is no evidence that this extends to indoor mold ex-
posure. Sensitization to fungal allergens has also been
demonstrated in patients with allergic rhinitis and atopic
dermatitis, but it has not been conclusively proven that
exposure to airborne mold, whether indoors or outdoors,
is responsible for their clinical manifestations. The rela-
tive lack of influence of indoor mold on the induction and
sensitization is very likely due to the overwhelming out-
door exposure that all individuals will have throughout
their life spans. This is illustrated by the observations that
there are no significant differences in allergies and asthma
in patients who live in humid environments versus those

Table 1 Sensitization to molds
commonly found indoors BUA/Germany [19] West Virginia [18]

Method Serum-specific IgE with ImmunoCAP SPT

Number 1538–1575 112

Subjects Children Atopic children and adults

Age 3–14 8–78

Acremonium strictum 6.0

Alternaria alternata 4.8 11.8

Aspergilllus fumigatus 2.6 6.9

Aspergillus versicolor 2.3

Cladosporium herbarum 2.1

C. sphaerospermum 6.9

Chaetomium globosum 4.0/7.0a

Epicoccum nigrum 4.9

Eurotium spp. 1.6

Paecilomyces variotii 7.0

Penicillium chrysogenum 5.0 4.0

P. notatum 6.9

Pullaria spp. 3.9

Rhizopus spp. 3.9

Stachybotrys chartarum 3.0

Trichoderma viride 4.0/8.0a

Wallemia sebi 0.2

Total indoor molds
(excluding alternaria)

8.30%

aDepending on the manufacturer of the commercial extract
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that live in a dry environment; all, at some point or another,
have continual exposure to the ubiquitous fungal allergens
found in air.

Allergic Bronchopulmonary Aspergillosis and Allergic
Fungal Rhinosinusitis

One of the most severe, if rare, fungus-induced allergic
diseases is allergic bronchopulmonary aspergillosis
(ABPA). It is caused by hypersensitivity to Aspergillus
fumigatus and occurs in patients with asthma, cystic fi-
brosis, or chronic obstructive pulmonary disease (COPD).
Several other fungi, mainly Candida, Bipolaris spp.,
Schizophyllum commune, and Curvularia spp. are capable
of causing a clinical entity similar to ABPA, which is then
called allergic bronchopulmonary mycosis (ABPM) [23].
It appears to be associated with asthma much less fre-
quently than ABPA.

Since germination of conidia into mycelium is associ-
ated with greater production and release of allergens [24],
colonization with Aspergillus is thought to be required for
sensitization and the generation of Aspergillus-specific
IgE as well as IgG antibodies [25]. In keeping with the
presence of both classes of antibodies, type I as well as
type III hypersensitivity reactions contributes to the path-
ogenesis of ABPA. It is the tissue dysfunction induced by
pre-existing airway damage, mucus hypersecretion, and
defective clearance that allows the germination of fungal
spores within the lung and, thus, colonization and chronic
exposure to fungal allergens. This makes ABPA an aller-
gic rather than an infectious disease, even if it is occa-
sionally listed with the infectious fungal diseases [26].

Allergic fungal sinusitis or rhinosinusitis (AFRS) is a
localized hypersensitivity reaction similar to that seen in
ABPA and first described in patients with ABPA [27]. It
can occur when fungi colonize the sinuses of subjects
with underlying allergic disease and impaired tissue drain-
age. While A. fumigatus continues to be the most fre-
quently isolated mold species, it has since been recog-
nized that other Aspergillus species, dematiaceous fungi
(dark pigmented fungi, such as members of the genera
Bipolaris, Exserohilum, Curvularia, and Alternaria), and
various other fungal species can cause AFRS [28].

Of particular note, fungal colonization of the lungs is com-
mon in patients with asthma, cystic fibrosis, or COPD, and
fungal colonization in the sinuses is seen even in the vast
majority of healthy subjects; yet only some of them develop
ABPA or AFRS. The reasons for this are currently unclear, but
genetic as well as other predisposing factors are likely to play
a major role [25]. Also note that A. fumigatus is a common
outdoor mold, even if it has been associated with building
moisture in some studies. Likewise, most of the molds and
yeasts implicated in ABPM and AFRS are found primarily

outdoors or detected with near equal frequency in outdoor
and indoor environments. There is nothing to conclusively
link indoor mold exposure to the development of ABPA,
ABPM, or AFRS.

Hypersensitivity Pneumonitis

Hypersensitivity pneumonitis (HP), also called extrinsic aller-
gic alveolitis, is an interstitial granulomatous lung disease that
occurs in susceptible individuals who have become sensitized
to a triggering antigen as a result of repeated inhalation expo-
sure to organic dust [29]. Prolonged and/or high-dose expo-
sure is required for sensitization to occur and symptoms to
develop. The presentation of HP is traditionally subdivided
into acute, subacute, and chronic, but considerable overlap
between these forms of presentation is increasingly recog-
nized. A CT scan can be utilized to identify these forms, as
acute HP may show pulmonary edema, while subacute HP
may show a ground glass appearance. Chronic HP usually
demonstrates bronchiectasis or signs of pulmonary fibrosis
such as reticulation on CT scan [30].

It is very important to recognize this disease in its earliest
stages, when antigen removal is often sufficient for recovery.
If antigen exposure continues, chronic HP with irreversible
pulmonary fibrosis can develop. Hypersensitivity pneumoni-
tis is most frequently caused by bird proteins (pigeon
breeders’ disease or bird fancier’s HP) and bacteria. For ex-
ample, one of the most frequent causes of farmer’s lung, an-
other designation of HP, are thermophilic actinomycetes.
However, a variety of fungal antigens also have been impli-
cated in various forms of occupational HP, including
A. alternata, Aspergillus spp., and Penicillium spp. along with
other molds and mushrooms [29, 31].

Patients with HP usually have high levels of antigen-
specific IgG antibodies, preferably detected as precipitins in
double diffusion tests. Whether these IgG antibodies merely
represent a marker of exposure or actively participate in the
pathogenesis of the disease remains uncertain, but it is gener-
ally believed that HP involves a combination of types III and
IV hypersensitivity reactions. In the settings where HP occurs,
many people may be exposed to the same levels of the caus-
ative antigens and some of those may actually become sensi-
tized, as indicated by the presence of specific IgG antibodies
in their serum. Yet, only a few of these individuals actually
develop HP. This strongly suggests that genetic susceptibility
or gene-environment interactions play a major role.

It had long been felt that exposure levels commonly en-
countered in the home or white-collar work environment
would be unlikely to cause HP. One well-known exception
has been a seasonal form of HP that occurs mainly in Japan
and is caused by members of the genus Trichosporon. Each
summer after the rainy season, this summer-type HP affects
some residents of homes south of latitude of 40° north.
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However, there is an increasing number of reports linking
other types of household or office mold exposure to the de-
velopment of HP [32, 33]. These include cases of humidifier
lung, which may involve fungi, ameba, thermophilic bacteria,
or mixtures of all three, as are found on humidifiers, dehumid-
ifiers, or contaminated air conditioners. Fungal species impli-
cated in HP due to home or office exposures include
Cladosporium cladosporioides, C. herbarum [34],
A. fumigatus [35], Bjerkandera adusta [36], and Fusarium
vasinfectum [37]. A fatal outcome of HP after Bhome
exposure^ to mold has been reported [38], but the exposure
level was unusually high because the patient did the renova-
tion of his severely mold-damaged mobile home.
F. vasinfectum was isolated from wall scrapings in his home,
suggesting that the patient had been chronically exposed to
this mold, followed by very high levels of exposure during the
renovation, which led to an acute exacerbation of his symp-
toms. Death is believed to have resulted from a complication
of an open lung biopsy performed in the context of continu-
ously declining lung function.

Fungal Infections

Infections constitute another well-established way in which
fungi can affect human health. It has been estimated that ap-
proximately 300–600 fungal species can be pathogenic to
humans, but only about 30 of those are responsible for the
vast majority of fungal infections. In healthy, immunocompe-
tent individuals, fungal infections mostly remain superficial,
i.e., affect the skin (tinea), nails (onychomycosis), or mucosal
surfaces (thrush). A limited number of fungal pathogens can
cause more serious disease in healthy subjects. These include
several dimorphic fungi, meaning fungi that generally grow as
yeasts at body temperature, but as molds at room temperature.
Four types of these pathogenic dimorphic fungi are endemic
in the USA, namely Blastomyces dermatitides, Coccidioides
immitis, Histoplasma capsulatum, and Cryptococcus gattii
(see also Table 2 for the diseases they cause and their areas
of endemicity). It is noteworthy that infection with any one of
these endemic species does not invariably cause symptomatic
disease (see also Table 2), indicating that individual suscepti-
bility is a decisive factor. Chronic pulmonary aspergillosis
may not only occur in the context of an intact immune system
but also in patients who have pre-existing lung disease, such
as tuberculosis, non-tuberculous mycobacterial disease, asth-
ma, COPD, pneumothorax, or sarcoidosis.

Other invasive fungal infections are caused by opportunis-
tic fungal pathogens, i.e., fungi that are commensals or are
ubiquitous in the environment, do not cause disease in healthy
individuals, but have the ability to cause severe, frequently
fatal, disease in subjects who are in some way immunocom-
promised. For example, several species of the yeast Candida,
in particular Candida albicans, are ubiquitous commensal

organisms that live on human mucosal surfaces, but account
for about 80% of major systemic fungal infections in immu-
nocompromised patients. Unlike mucosal candida infections,
Bsystemic candidiasis^ is a condition that only occurs in peo-
ple with specific risk factors, such as HIV, immunosuppressed
individuals, hospitalized individuals, or the presence of a cen-
tral line or other invasive foreign body. Unfortunately, many
healthy individuals often claim to have systemic candidiasis
without any evidence of positive cultures, or identification of
the presence of candida by DNA analysis.

Cryptococcus neoformans is a yeast with a worldwide dis-
tribution found in the soil and trees, but also associated with
bird guano. It most commonly infects the central nervous sys-
tem, lung, or skin and affects patients with immune deficien-
cies, in particular those with HIV infection or AIDS. In addi-
tion to yeasts, molds can also cause serious infections.
Foremost among these is, once again, A. fumigatus, the pri-
mary cause of invasive aspergillosis, although other species of
Aspergillus have been implicated as well [39]. This invasive
fungal infection used to occur mainly in neutropenic hosts, but
is now increasingly diagnosed in non-neutropenic hosts—i.e.,
subjects who are immunocompromised because of corticoste-
roid use, chemotherapy, or immunosuppressive therapy after
hematopoetic stem cell transplants or solid organ transplants.
A variety of Fusarium species can also cause invasive and
disseminated disease in immunocompromised hosts, with
the greatest risk of dissemination in patients with acute leuke-
mia, severe neutropenia, and recipients of hematopoetic stem
cell transplants [40]. It must be underscored that fungi, includ-
ing the potentially pathogenic yeasts and molds are ubiqui-
tous, and this makes it virtually impossible to prevent immu-
nocompromised patients from being exposed to them.

Toxicity

Certain fungal genera can produce mycotoxins, defined as
secondary metabolites that can cause a toxic response in ver-
tebrates when ingested in sufficient doses [41, 42].When such
toxins harm bacteria, we choose to call them antibiotics. As
secondary metabolites, mycotoxins are not required for prima-
ry growth or reproduction, and their precise role remains to be
elucidated. Several hundred mycotoxins have been identified
to date. Only a limited number of mycotoxins impact global
agriculture by reducing crop yield and endangering food se-
curity. These are mainly produced by members of the genera
Aspergillus, Penicillium, and Fusarium and include the major
aflatoxins, namely aflatoxin (AF) B1, AFB2, AFG1, and
AFG2; ochratoxin A (OTA); certain trichothecenes such as
deoxynivalenol (DON), nivalenol, T-2 toxin and HT-2 toxin;
the fumonisins B1 (FB1) and FB2; and zearalenone (see also
Table 3 for a selected list of mycotoxins and some of their
major producers). Mycotoxicosis in humans and animals is
due to the ingestion of contaminated food and feed.
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Therefore, the maximum concentration of the major myco-
toxins in the most frequently affected foodstuffs is regulated
in the majority of countries, and acceptable dietary intake
levels have been established. As a result, acute toxicoses are
rare even in developing countries, but an example is the out-
break of aflatoxicosis in Kenya in 2004 during which 317
cases of acute liver failure occurred and at least 125 people
eventually died [43]. Even in industrialized countries, chronic
mycotoxicosis may not be completely preventable in certain
groups with high consumption of specific dietary items.
Humans exhibit substantial differences in susceptibility due
to genetic differences in the enzymatic pathways involved in
the bioactivation and metabolism of mycotoxins and differen-
tial influences of age, sex, weight, dietary factors, nutritional
status, presence of chronic infections, and possibly other life-
style and environmental aspects [41]. Such differences in sus-
ceptibility are also seen between and within animal species.
Overall, mycotoxins can affect essentially every organ and
tissue in the body [42]. Yet, individual mycotoxins show some
specificity in the mechanisms of toxicity and also in the tissues
they affect, even if these may differ between species. Many
mycotoxins are genotoxic and carcinogenic in animals, and
chronic mycotoxicosis in humans may also manifest as cancer
[41, 42]. The International Agency for Research on Cancer
(IARC) has classified the major aflatoxins (AFB1, AFB2,
AFG1, AFG2 and the metabolite AFM1) as human carcino-
gens. As Table 3 shows, several other mycotoxins are consid-
ered potential human carcinogens, and yet others cannot cur-
rently be classified as to their carcinogenicity.

The only plausible basis for mycotoxicosis would be from
ingestion. Although there have been inhalation cases reported,

they are very poorly documented and not plausible [44–46].
Organic dust toxic syndrome (ODTS) represents a toxicosis
resulting from massive exposure to highly diverse mixtures of
fungi, bacteria, and their toxins and other constituents [27, 47,
48]. Exposure levels exceeding 1 × 107 CFU/m3 or and likely
even ≥1 × 1010 spores/m3 seem to be required for the occur-
rence of ODTS [47, 48].

Does Dampness Mean Mold?

Associations between Dampness/Mold and Respiratory
Health

Respiratory symptoms are the most frequent symptoms re-
ported by occupants of certain buildings with poor indoor air
quality and subsumed under the designation of BSick building
syndrome^ (SBS), which also includes eye, nose, or throat
irritation, cough, dry or itchy skin, nausea, headaches, dizzi-
ness, difficulties concentrating, and fatigue. This term is a
misnomer since the building is not sick, but its occupants
report feeling sick while in the building. In addition, the symp-
toms it encompasses do not fulfill the definition of a syn-
drome; hence, a better term would be non-specific building-
related symptoms. Investigators generally are unable to find
any specific cause for the reported symptoms and a medical
diagnosis is equally difficult. However, a large variety of
physical causes and psychosocial factors have been linked to
such non-specific building-related symptoms; one should con-
sider insufficient ventilation, certain chemical emissions, and
dampness or evidence of moisture damage.

Table 2 Mycoses

Name of disease Causative agent Area of endemicity Incubation period Primary symptoms

Blastomycosis Blastomyces
dermatitides

In moist soil an
decomposing matter

Central and southeastern
USA

3 weeks–3 months,
but only ~half of all infected

people ever develop
symptoms

Cough, hemoptysis, fever,
dyspnea, muscle aches or
joint pain, weight loss, chest
pain, fatigue

Coccidiomycosis Coccidioides
immitis

In soil Southwestern USA 1–3 weeks, but many
infected people never
develop symptoms

Cough, hemoptysis, fever,
dyspnea, muscle ache or
joint pain, and weight loss

Histoplasmosis Histoplasma
capsulatum

In soil and bird and
bat droppings

Midwestern and
southeastern USA,
notably Ohio, and
Mississippi River
valleys

3–17 days, but most people
who are infected will not
develop symptoms

Fever, chills, headache,
muscle aches,
dry cough, chest discomfort

Cryptococcosis Cryptococcus
gattii

In soil and in
association with
certain trees

Northwestern USA 2–13 months Lung: cough, dyspnea, chest
pain, fever

Brain: (meningitis) headache,
fever, neck pain, nausea,
vomiting, sensitivity to light,
behavioral changes
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As reviewed by several scientific bodies, including the
Institute of Medicine (IOM) and the WHO [24, 49–53], a long
list of studies from a variety of geographic areas quite consis-
tently show signs of building dampness or mold to be associated
with a variety of adverse health effects. These associations are
seen both in domestic and public building environments and
they are present whether the signs of dampness/mold are report-
ed by the occupants or assessed by an inspector. They are par-
ticularly detected in allergic individuals, but also in non-atopic
subjects. There have been far fewer attempts to link exposure to

dampness or mold to symptoms typically associated with the so-
called sick building syndrome, i.e., irritation of eyes, skin, mu-
cous membranes, fatigue, nausea, headache, insomnia, and dif-
ficulty concentrating. The results have been quite inconsistent
and in the majority of cases, no significant associations could be
detected [49].

It needs to be underscored that the agents responsible for
the statistical associations between indicators of building
dampness and respiratory symptoms have not been identified.
The assessment of Bdampness or mold^most commonly relies

Table 3 Selected Mycotoxins and some of the Fungal Species Producing Them [42]

Mycotoxin Acronym Species IARC classa

Aflatoxins Aflatoxin B1 AFB1 Aspergillus section Flavi 1

Aflatoxin B2 AFB2

Aflatoxin G1 AFG1

Aflatoxin G2 AFG2

Ergot alkaloids EA Claviceps purpura

C. fusiformis

C. africana

Neotyphodium spp.

Fumonisins Fumonisin B1 FB1 Fusarium section Liseola 2B

Fumonisin B2 FB2 2B

Ochratoxin A Ochratoxin A OTA Aspergillus section Circumdati 2B

A. section Nigri

Penicullium verrucosum

P. nordicum

Sterigmatocystin Sterigmatocystin Various species of 2B

- Aspergillus

- Penicillium

- Chaetomium

Trichothecenes

Type A: T-2 toxin T-2 Fusarium acuminatum 3

HT-2 toxin HT-2 F. poae

F. sporotrichoides

F. langsethia

Type B: Deoxynivalenol DON Fusarium graminearum 3

F. culmorum

F. cerealis

Nivalenol Fusarium spp 3

Type D (macrocyclic trichothecenes) Satratoxin G Stachybotrys chartarum

Satratoxin H S. chartarum

Roridin

Zearalenone Zearelanone ZEN Fusarium graminearum 3

F. culmorum

F. equiseti

F. cerealis

F. verticillioides

F. incarnatum

a IARC classes:

1 carcinogenic to humans, 2A probably carcinogenic to humans, 2B possibly carcinogenic to humans, 3 not classifiable as to its carcinogenicity to humans
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on answers of the building occupants to questions that may
cover anything from condensation on the windowpanes to
visible mold or mold odor. The fact that these descriptors often
yield similar risk estimates for many types of respiratory symp-
toms has been taken as an indication that indoor molds could
be responsible. So far, this has proven impossible to conclu-
sively demonstrate. With a few exceptions [6, 54–57], indica-
tors of dampness or mold are not associated with total viable
fungi in air [4, 13, 15, 58–61] or dust [4, 13, 15, 61]. The
associations may even differ between two rooms within the
same household [5], suggesting that they are chance find-
ings—in part due to the lack of correction for multiple com-
parisons. Correlations between signs and dampness and other
potential measures of fungal exposure, such as total fungal cell
equivalents obtained by qPCR [15], ergosterol, or β-glucans
also are mostly weak or entirely absent [61–63]. When at-
tempts are made to link specific fungal genera, species or assay
groups identified via qPCR analyses to moisture damage the
results differ not only from those obtained by culture-based
methods in the same study [13], but also from those of other
investigations [15, 64–66]. Furthermore, the various measures
of fungal exposure rarely correlate with each other [4, 15],
including airborne and dustborne levels of total viable fungi
[4, 5]. Even using qPCR and a sampling time of 6–8 h for air
samples, no correlation could be detected between dustborne
and airborne concentrations of 36 mold species and the few
exceptions showed correlation estimates of ≤0.34 [64].

Most importantly, studies that attempted to correlate specific
measures of microbial exposures to health outcomes have
yielded inconsistent and, at times, contradictory results [53].
Among the most recent investigations, there is at least one report
of an association between airborne-viable mold levels
≥300 CFU/m3 in schools and an increased risk of dry cough at
night, persistent cough, and rhinitis [8]. Importantly, however,
studies failed to reveal any significant correlations between via-
ble airborne mold and asthma or allergy in children [58, 67],
BSBS^ symptoms in adults [54], or respiratory health in the
elderly [68]. A similar lack of association was noted between
dustborne concentrations of culturable mold, ergosterol, β-glu-
cans, or fungal DNA cell equivalents (by qPCR) in homes,
schools, or both and allergic disease, asthma, respiratory symp-
toms, or lung function in children [61, 69–72]. Finally, others
detected a protective effect of total viable airborne fungi on throat
and respiratory symptoms and a similar protective effect was
seen for the genusCladosporium, whilePenicilliumwas inverse-
ly associated with skin symptoms [73]. The presence of signifi-
cant correlations appears to depend quite strongly on the precise
nature of the sample. [7, 8, 73, 74]. This is illustrated by a series
of publications arising from the same dataset obtained by analyz-
ing different types of dust samples from Malaysian schools
[75–77]. Wheeze and daytime attacks of breathlessness were
found to correlate with Aspergillus versicolor DNA concentra-
tions in dust collected in Petri dishes kept on top of book shelves

over a period of 7 days, but not with A. versicolor DNA in dust
samples swabbed from the top of the classroom blackboard [75].
Similarly, Streptomyces DNA from Petri dishes, but not from
swab samples, was associated with doctor-diagnosed asthma.
Total as well as specific fungal DNA measured in settled dust
(vacuumed from the floor and other higher surfaces) was essen-
tially not related with self-reported weekly symptoms of rhinitis
or various types of SBS symptoms (i.e., ocular, throat, dermal
symptoms, headache, tiredness) [76]. Yet, when total fungal
DNA was measured in swab samples of dust from the top of
the blackboard associations with rhinitis, eye and throat symp-
toms were detected, but not in dust collected in Petri dishes [76].

Are Mold Spores the Relevant Exposure?

Such discrepancies raise the questions of whether (a) molds
constitute the relevant exposure and (b) this exposure is
assessed in a meaningful way. The first question cannot be
answered at this time, in part because the answer to the second
question is a resounding Bno.^ It has been largely ignored that
there can be enormous within-day and day-to-day variability
in the levels of total culturable fungi in indoor air [78], even if
the variation may not to be statistically significant in all re-
gions [79]. In addition, total viable spore counts in indoor air
show marked variation over longer periods of time [56], par-
ticularly during different seasons [80]. Season has also been
identified as an important determinant of airborne fungal
levels in cross-sectional studies [5–7, 60, 80]. It has been
calculated that 11 samples would have to be obtained on sep-
arate days and at different times of the day in order to charac-
terize the true (within the 95% confidence interval) mean
airborne-viable fungal concentration of a normal residence,
at least in a subarctic climate. Yet, the vast majority of studies
that attempted to correlate fungal measurement with reported
dampness or mold or with respiratory symptoms relied on one
single measurement of airborne fungal levels. Further tape
lifts for mold evaluation and quantitation are statistically
flawed and not clinically useful.

It is frequently claimed that dust—whether floor dust or
airborne settled dust—provides a time-integrated or cumula-
tive measure of fungal exposure [5, 12, 61, 81]. However,
there are data suggesting that dustborne fungi represent a
unique population and, therefore, are not representative of
fungal exposure in the breathing zone [4]. In addition, tape
lifts for mold evaluation and quantitation are flawed and do
not provide meaningful data. Furthermore, considerable vari-
ation over time is also seen in dustborne mold concentrations,
whether assessed as total viable fungi [82, 83], total fungal
biomass as represented by ergosterol concentrations [62], or as
the concentrations of individual fungal genera, species, or as-
say groups determined by PCR [81]. Most importantly, the
variation over time is greater within homes than between
homes for both airborne and dustborne mold concentrations
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[56, 82]. According to calculations based on the ratio of the
within-home to between-home variance, at least nine repeated
measurements of dustborne culturable fungal concentrations
would be necessary to keep the measurement bias below 20%
[56, 82]. Can it really be more than chance, then, if the com-
bined levels of three mold species (among a total of 36 species
tested) detected in a single dust sample supposedly predict the
development of asthma 6 years later [11]?

In view of the considerable short-term variation in fungal
levels, it seems far more likely that the use of a single dust or
air sample leads to massive exposure misclassification, partic-
ularly if one considers that sampling times as short as 1 min
are common for the assessment of airborne viable fungi. This
means that, when the concentrations of total indoor fungi or
individual fungal species are derived from a single sample,
their associations with health effects represent chance find-
ings. It should also be remembered that culturable fungi rep-
resent only a small fraction of the total fungal biome and
provide little insight into its true diversity and complexity. It
is recommended to obtain an outdoor air sample at the same
time as the indoor air sample so that the composition of the
diversity of the mycobiomes and the rank order and concen-
trations of individual species in the two compartments can be
compared in order to determine whether there is an indoor
source for the species under investigation. However, since
outdoor mold levels fluctuate to a similar or even greater ex-
tent compared to indoor concentrations, multiple measure-
ments, including morning and afternoon samples, will be nec-
essary in order to prevent misclassification [84].

Biomonitoring Is Not a Valid Measure of Mold Exposure

Serum IgG against mold is a much abused test. It is
helpful in HP, but otherwise, it is to be expected that
all individuals will have IgG antibodies against mold,
just as they have IgG antibodies against an enormous
number of other microbes. In fact, even in subjects with
the same high occupational exposure level to molds, the
specific IgG value is highly variable; conversely, even
healthy individuals can have high levels of specific IgG
[3]. Therefore, group mean concentrations in highly ex-
posed workers constitute a marker of exposure, but the
use of individual serum concentrations of specific IgG
antibodies is not a validated indicator of exposure. The
levels of mold-specific IgG detected in environmentally
exposed subjects are at least 10 times lower compared to
those found in patients with HP [85] and do not show
associations with various measures of indoor mold expo-
sure [86–88] or with symptoms attributed to this expo-
sure [85, 89]. The problems discussed in the context of
determining mold-specific IgE antibodies also hold for
IgG, i.e., the lack of standardized fungal extracts and
the extensive cross-reactivity between molds.

Other Potential Explanation for the Associations
between Dampness and Respiratory Health

The vast majority of studies that attempt to link respiratory
and other health outcomes to building-related factors, includ-
ing investigations that encompass other SBS symptoms, are
cross-sectional and rely on self-reported measures of both ex-
posures and symptoms or health outcomes. This makes them
particularly vulnerable to reporting bias. Indeed, both logistic
regression analysis and structural equation analysis of longi-
tudinal data strongly suggest that the direction of the causal
pathway between the perceived indoor environment and self-
reported symptoms is opposite to what is generally assumed.
In other words, perceived health problems may lead to com-
plaints about the indoor environment rather than the reverse
[90, 91].

Among the physical factors that could mediate an effect of
dampness on health, the exclusive focus on molds is difficult
to comprehend given the high complexity of the indoor envi-
ronment even when there is no excess moisture. In addition to
a large variety of molds, there is likely to be a similar variety
of bacteria; volatile organic compounds (VOC, which can be
of microbial origin or gassed off by building materials, furni-
ture, carpeting, etc.); semivolatile organic compounds
(sVOC); and other chemicals; along with allergens given off
by pets, house dust mites, and possibly even rodents. In damp
indoor environments, the concentrations of many of these
substances are likely to be elevated because not only certain
fungi require high moisture levels for optimal growth but cer-
tain bacteria and even dust mites also thrive and reproduce
more rapidly at a higher relative humidity [24]. Yet, the po-
tential effects of dampness on changes in the bacterial biome
and the impact of these changes on health outcomes have
rarely been investigated and the few existing studies have
yielded contradictory results [24, 63, 72]. Of note, the same
methodological issues that severely limit the validity of the
results from fungal studies also apply to bacterial investiga-
tions, including the great diversity and temporal as well as
spatial variability of bacterial populations both outdoor [92]
and indoor [93].

Even though moisture is expected to increase the number
of microbes, microbes do not appear to greatly contribute to
the indoor air concentrations of total VOC [94]. Nonetheless,
moisture accelerates the process of chemical or biological
degradation, thereby resulting in the release of chemicals
[24]. In addition, increases in the relative humidity are asso-
ciated with higher concentrations of VOC, possibly because
of competition between the water and the VOC for sites of
adsorption on certain materials [95]. The low concentrations at
which VOC and most other chemicals individually are present
in indoor environments are unlikely to represent a direct health
hazard [96, 97]. Yet, it should be kept in mind that even rela-
tively simple mixtures of substances may have more than
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additive, possibly synergistic, but also antagonistic, effects
[96, 98]. In slightly more complex mixtures, even when sub-
stances are used at concentrations below the carefully deter-
mined Bno observed effect^ level, their combinations may
have measurable effects [99]. Also note that even simple com-
binations of a mold, a bacterium, and a protozoon can have
pro-inflammatory and cytotoxic effects that go beyond mere
additivity [100–102], with the precise nature of the outcome
depending on the proportion in which the individual microor-
ganisms are present [103]. Most remarkably, a mixture of
fungal and bacterial spores derived from co-cultivation of their
respective microorganisms can have different effects com-
pared to co-exposure to the separately cultivated spores
[103–105]. This should make it clear that the focus of atten-
tion should be widened to include fungi, bacteria, chemicals,
and, above all, their interactions, even if that is likely to be a
daunting task with the currently available tools. But, instead,
the focus has all too often narrowed from molds in general to
Btoxic mold.^

Toxic Mold

Toxic Mold Syndrome

In the early 1990s, an unusual cluster of cases of pulmonary
hemorrhage in infants occurred in Cleveland, OH [106].
Although early reports seemed to suggest a link between these
cases and inhalation of mycotoxins produced by Stachybotrys
chartarum, in particular, satratoxins, later epidemiological
studies failed to confirm any causal relationship [107]. By that
time, however, the initial reports had triggered widespread
media coverage and the coining of the term Btoxic mold
syndrome.^ Patients who present with what they consider
mold-induced illness report a variety of non-specific symp-
toms (including upper and lower respiratory tract symptoms,
headache, and fatigue) greatly resembling those subsumed
under the term BSBS^ [108, 109]. Indeed, Btoxic mold
syndrome^ or simply Btoxic mold^ are terms that now are
frequently used as synonymous with Bsick building
syndrome.^ This implies that all of the non-specific symptoms
that some people report in association with exposure to a cer-
tain building environment are blamed on mycotoxins, and
many people think of mycotoxins as meaning satratoxins pro-
duced by S. chartarum. This is incorrect.

Toxigenic and Non-toxigenic Strains

In order to show conclusively that mycotoxins in general, or
satratoxins in particular, are responsible for any effects on
human health, it would have to be demonstrated that they
are present and can be absorbed in sufficient amounts within
a reasonably short time frame. Inhalation represents the most
likely route of exposure to mycotoxins in indoor

environments. The first thing to consider is that, in general,
not all strains of a particular mycotoxin-producing species are
toxigenic, i.e., have the ability to produce mycotoxins
[110–112]. S. chartarum is a prime example: only 30–40%
of its strains produce macrocyclic trichothecenes, including
the highly toxic satratoxins G and H, while the other strains
are characterized by atranone production [113, 114]. The two
types of strains are classified as chemotypes S and A, respec-
tively. Secondly, even if a strain is capable of producing a
particular mycotoxin in vitro, the indoor environment from
which the strain was isolated does not necessarily contain
detectable levels of this mycotoxin [115]. This reflects that
mycotoxin production depends on a large variety of factors,
including the growth medium or substrate, the growth stage of
the fungus, temperature, water activity, pH, and the presence
of other fungi and bacteria [104, 111, 116]. Moisture-damaged
buildings invariably contain complex mixtures of fungi and
bacteria and these may compete for the same substrates and
nutrients or may elaborate substances capable of inhibiting the
toxin production of other microbes. This means that the mere
presence of a toxigenic fungal species does not prove the
presence of mycotoxins.

Airborne Mycotoxins

Mycotoxins are not volatile, but can become airborne on co-
nidia [117, 118]. S. chartarum and other fungi are capable of
exuding mycotoxins in fluid droplets in a process called gut-
tation [119], but the clinical relevance of this ability remains
untested. The conidia of S. chartarum are formed inside a
sticky polysaccharide matrix and, therefore, not easily aero-
solized. As a consequence, the presence of S. chartarum in air
samples is difficult to demonstrate by culture-dependent or -
independent methods, and the reported CFU or cell equivalent
values are invariably low [8, 120, 121], even in homes with
very heavy mold contamination [122]. Detection frequencies
via qPCR in dust samples may be considerably higher, but
even then the reported levels are very low [8, 123, 124].

Conidia or spores are not the only means of rendering
fungal toxins airborne. Most fungal genera, including
S. chartarum, also release smaller fragments, and there
are data suggesting that these conidial and hyphal frag-
ments can carry mycotoxins [10]. Hardin et al. [125]
showed that the volume of 20,000 fragments with a
spherical shape and a diameter of 0.3 μm would be re-
quired to make up the volume of a single spore. Based
on the data available at the time, which showed that
fragments outnumbered spores by 320:1 to 500:1, it
was not plausible to claim that such fragments made a
significant contribution to mycotoxin levels in the air.
Since the surface area to volume ratio increases as the
size of a sphere decreases, only 100 fragments would
have the same surface area as one spore. In a recent field
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study, such fungal fragments were measured in moldy
houses and found to outnumber spores by a factor of
103 to 106 to 111.

Exposure Levels and Risk Assessment

Exposure Levels

As summarized in Table 4, a variety of mycotoxins have
been detected in indoor air in picogram per cubic meter
concentrations, but with wide variations between studies

and between buildings within studies [126–128], while
dust contains levels of <1–43 pg/mg. The only reliable
data on the detection of satratoxins in indoor air come
from LC-MS/MS analysis and show concentrations of
satratoxin G and satratoxin H of 0.25 and 0.43 ng/m3,
respectively [126]. Assuming this data is even correct,
breathing in such air at a respiratory minute volume of
6 L/min over a period of 8 h would result in the inhala-
tion of only 0.72 ng of satratoxin G and 1.2 ng of
satratoxin H; as per discussion above and below this is
far less than the quantities humans are exposed to in
normal activities, including ingestion of food.

Table 4 Mycotoxin concentrations in air samples

Mycotoxin Sample type Analytical method Concentration Reference

Satratoxin G Air from 1 water-damaged
dwelling

LC-MS/MS 0.25 ng/m3 [126]

Satratoxin H 0.43 ng/m3

Multi-mycotoxin Air from 20 homes
with visible dry rot
(Serpula lacrymans)

HPLC-MS/MS [127]

Altenariol 4/20 homes <LOQ to 0.30 ng/filter (= 8.3 ng/m3)

Ochratoxin A 1/20 homes 0.15–0.34 ng/filter
(= 0.0004–0.0009 ng/L = 0.4–0.9 ng/m3)

All others (aflatoxins B1, B2, G1, G2,
M1, diacetoxyscirpenol, gliotoxin,
mycophenolic acid, neosolaniol,
ochratoxin A, T-2 toxin and others)

ND

Multiple mycotoxins Air from 7 water-damaged
buildings

LC-MS/MS [128]

Ochratoxin A 3/7 buildings 0.0115–0.228 ng/m3

Aflatoxin B1 0.0024–0.1463 ng/m3

Aflatoxin B2 0.0003–0.0211

Roquefortine 0.009–4

Sterigmatocystin 0.0034–1.7674

Multiple mycotoxins Dust from 4 homes with a
history of water damage

[129]

Verrucarol GC-MS/MS 19 and 43 pg/mg dust

Trichodermol 2.4 and 3.4 pg/mg dust

Trichodermin ND

Satratoxin G HPLC-MS/MS ND [130]

Satratoxin H ND

Sterigmatocystin 17 pg/mg dust

Multiple mycotoxins Dust from 5 severely
mold-contaminated homes
in New Orleans after
Hurricane Katrina

[123]

Verrucarol GC-MS/MS 0.6, 0.6, 18 pg/mg dust

Trichodermol ND

Trichodermin ND

Satratoxin G HPLC-MS/MS ND

Satratoxin H ND

Sterigmatocystin 16, 28 pg/mg dust

ND = not determined
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Biomonitoring

Biomarkers of internal exposure were first developed for AB1
and more recently for OTA, while such markers are under
development or in the process of validation for DON, and
FB1 [42, 131]. Serum AFB1-albumin adducts are commonly
used as a measure of chronic dietary exposure [42]. Such
adduct formation has also been demonstrated after exposure
via inhalation (with a possible contribution from dermal ab-
sorption) in workers exposed to AFB1 in various highly con-
taminated occupational settings [44–46, 131–133]. Only the
highest exposure levels seem to results in detectable AFB1-
albumin adduct concentrations after inhalation. It has been
claimed that similar adducts between satratoxin G and albu-
min were present in serum of three adult subjects who were
reportedly exposed to S. chartarum in their homes [134].
However, others have already criticized the ELISA employed
for the detection of satratoxin as non-specific and unvalidated
[125], and the results have not been replicated or independent-
ly confirmed since then.

Toxicokinetics

Data on the toxicokinetics of mycotoxins are limited, particu-
larly after inhalation exposure, based on direct and high-dose
administration, suggest that airway exposure may result in
greater bioavailability and toxicity compared to oral or paren-
teral routes of administration [135–137], but this is not a con-
sistent finding [138]. The toxicokinetic patterns of essentially
all orally administered mycotoxins investigated to date show
considerable variation between animal species and between
strains within species. This raises the question of whether
and to what extent animal data can be extrapolated to humans.
In airway exposure studies, the issue is further complicated by
the widespread practice of giving experimental animals high
doses of pure mycotoxins as a bolus via intratracheal instilla-
tion. It seems unlikely that this, in any way, captures the pat-
tern of human exposure, which generally would be expected
to consist of chronic low doses of mycotoxins associated with
spores or fungal fragments mycotoxins.

Based on all available data on airborne concentrations of
mycotoxins in residential and agricultural environments,
spore counts in these environments, and levels of mycotoxins
per fungal spore, it is predicted that exposure levels to myco-
toxins in non-agricultural indoor environments will remain
below the Bconcentration of no toxicological concern,^ which
was calculated as 30 ng/m3 taking into account additional
routes of exposure and assuming complete bioavailability
[125]. The concentration of no toxicological concern is based
on the concept of Bthreshold of toxicological concern^ origi-
nally developed for dietary exposures and extends it to inhaled
substances. An earlier modeling study essentially yielded the
same conclusion [139].

The Toxicity of S. chartarum Spores of Chemotypes A
and S

There are some animal studies showing S. chartarum spores
to have detrimental health effects [3]. However, in all of these
studies, S. chartarum was administered via intratracheal or
intranasal instillation and mostly in very high doses. When
similar protocols are used, almost any fungal spore will induce
comparable responses. Compared to inhalation exposure,
intratracheal and intranasal instillation increases the number
of spores that reach the alveolar region. According to an over-
all comparison of the available animal data, this may give rise
to greater inflammatory responses and granuloma formation
in the lung and dissemination of the spores to other tissues [3].

Unlike fungal spores of other species, S. chartarum at very
high doses and given into the airways directly can cause pul-
monary hemorrhage, but this is seen with both chemotypes,
suggesting that this effect is not, or at least not exclusively,
attributable to the satratoxins or other macrocyclic trichothe-
cenes [3]. It also requires spore doses that are not likely to
occur in indoor environments [140]. However, because of
the problems associated with the use of intratracheal or intra-
nasal instillation, animal models based on these routes of ad-
ministration should not form the basis for extrapolating dose-
response relationships to humans [3]. In experimental ani-
mals, clear differences in satratoxin susceptibility exist be-
tween species and between strains within a species [141,
142]. At somewhat lower doses than were used in the early
experiments, differences between the two chemotypes of
S. chartarum may become apparent. However, they depend
on the duration of the experimental treatment, the spore dose
and the outcome measures, and they appear to be of a quanti-
tative or pharmacokinetic rather than of a qualitative nature
[141, 143, 144]. Most of the differences between treated and
control animals were associated with the instillation of any
fungal spores (S. chartarum of chemotype A or S or
C. cladosporioides), with minor contributions from the spe-
cies and toxigenicity of the spores.

There is no evidence that S. chartarum or its satratoxins
have inflammatory effects in humans. We note that (1) its
presence in the breathing zone is difficult to demonstrate and
its detection on building materials is not sufficient, (2) the
contribution of other fungi and bacteria in a contaminated
building is a major confounder, and (3) there are no validated
biomarkers for internal exposure assessment. As a conse-
quence, even when the home or work environment is proven
to be contaminated with S. chartarum, it is not possible to
causally link the presence of this mold to the symptoms expe-
rienced by the occupants [89]. It should be pointed out, how-
ever, that mold-specific allergy may be the cause of mold-
related symptoms in patients using an allergy panel of molds
[108]. In others, the symptoms attributed to mold exposure
may be due to allergic reactions to other aeroallergens,
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including some derived from the patients’ own pets [109].
Other pre-existing disorders or conditions may underlie the
symptomatology in the majority of the remaining cases
[109]. Importantly, a contribution from exposures that were
not even considered much less investigated cannot be ruled
out in any of these subjects.

Is there a Relationship betweenMold and Autoimmunity?

Autoimmunity is a broad category of diseases in which the
human body targets its own tissues. The presence of antibod-
ies may be pathogenic, but in many cases may simply be an
epiphenomenon [145]. The origin of autoimmune diseases is
probably a combination of genetic [146, 147], epigenetic
[148–150], and environmental factors [151–157], which inter-
act in some chaotic or stochastic manner to produce these
diseases in a way that we do not completely understand.

More recently, the microbiome has been targeted as a pos-
sible contributor to the development of autoimmunity [158,
159], but molds generally are not part of such investigations
[159]. Even the role of probiotics in autoimmune diseases has
been studied [161, 162], but again, there is no link between
molds and autoimmunity.

Although it has been suggested that there is a relationship
between mold exposure and autoimmunity, most of these re-
ports are unfounded and are not based on solid scientific ev-
idence. Unfortunately, many non-scientific and non-medical
websites have been spreading false information about mold
and autoimmune diseases such as chronic inflammatory de-
myelinating polyneuropathy (CIDP). CIDP is a disease that
resembles Guillain-Barre syndrome, but there is no evidence
that mold exposure is even remotely associated with this dis-
ease. In fact, a search of PubMed revealed that there are no
studies confirming an association between CIDP and mold.
There are numerous well-designed studies in recent years on
the pathogenesis of autoimmune diseases, ranging from ge-
netic predisposition [146, 147, 163, 164] to environmental
triggers [165, 166], and yet none of them remotely suggest
that molds can be a contributing factor to autoimmunity.
Specific cellular [167] and humoral [168, 169] factors of both
the innate [170] and adaptive [171–173] immune systems
have been demonstrated to play roles in the development of
the various autoimmune diseases. The cytokine milieu and the
balance of T cells such as Treg and Th17 cells [167, 174], as
well as various other cytokines [175–180] and cellular pro-
cesses such as autophagy [181, 182] have been attributed to
the development of autoimmune diseases, yet molds have
never been shown to impact these pathways in a clinical sig-
nificant manner.

In particular, one publication from 2003 describes a puta-
tive correlation between mold exposure and a myriad of in-
flammatory markers [183]. The study claims to establish a link
between mold exposure and immunological dysfunction and

coined the term Bmixed mold mycotoxicosis.^ However, the
study is plagued by poor study design, selection bias, and an
inability to establish a cause and effect relationship. Moreover,
the clinical symptoms reported are vague and subjective and
bear no relationship to autoimmunity with the exception of
fibromyalgia [184], illustrating the disconnection between
what is observed in the laboratory and what is clinically
significant.

The closest anyone has come to uncovering an association
between molds and autoimmunity is perhaps a paper describ-
ing anti-Saccharomyces cerevisiae antibodies in patients with
Crohn’s disease and other autoimmune diseases. The role, if
any, of these autoantibodies in Crohn’s disease is not clear. It is
postulated that there could be a pathogenic mechanism involv-
ing molecular mimicry between yeast mannan and autoanti-
bodies that may play a role in autoimmune diseases, such as
anti-U2snRNP B*, although much research has to be done to
confirm any cause and effect relationship between the pres-
ence of these autoantibodies directed against a molecule that is
predominately found in Baker’s yeast [185].

Conclusion

Molds and fungi are ubiquitous and generally live in harmony
with human beings. Only rare molds have been associated
with human disease. The diseases that molds can cause are
restricted to allergies, hypersensitivity pneumonitis and infec-
tion. There is no validity to the hype of Btoxic blackmold^ and
Bmycotoxicosis.^ Humans are not exposed to enough myco-
toxins to develop illness, unless they ingest toxic quantities of
mycotoxins or become exposed to intense organic dust
storms.

With regard to sick building syndrome, it is highly prob-
able that each building has its own unique microbiome with
ever-varying combinations of bacterial, fungal, and chemical
compounds that are likely to interact [15]. Sick building
syndrome has been proven to be more about mass hysteria
than any physiological illness. Fungi alone are almost cer-
tainly not responsible for the many health effects attributed
to them, much less a single fungal species like S. chartarum.
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