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Abstract The regenerating gene, Reg, was originally isolated
from a rat regenerating islet complementary DNA (cDNA)
library, and its human homologue was named REG Iα.
Recently, we reported that REG Iα messenger RNA
(mRNA), as well as its product, was overexpressed in ductal
epithelial cells in the salivary glands of Sjögren’s syndrome
patients. Furthermore, autoantibodies against REG Iα were
found in the sera of Sjögren’s syndrome patients, and the
patients who were positive for the anti-REG Iα antibody
showed significantly lower saliva secretion than antibody-
negative patients. We found the mechanism of REG Iα induc-
tion in salivary ductal epithelial cells. Reporter plasmid con-
taining REG Iα promoter (−1190/+26) upstream of a lucifer-
ase gene was introduced into human NS-SV-DC and rat A5
salivary ductal cells. The cells were treated with several cyto-
kines (interleukin (IL)-6, IL-8, etc.), upregulated in Sjögren’s
syndrome salivary ducts, and the transcriptional activity was
measured. IL-6 stimulation significantly enhanced the REG Iα
promoter activity in both cells. Deletion analysis revealed that

the −141∼−117 region of the REG Iα gene was responsible for
the promoter activation by IL-6, which contains a consensus
sequence for signal transducer and activator of transcription
(STAT) binding. The introduction of small interfering RNA
for human STAT3 abolished IL-6-induced REG Iα transcrip-
tion. These results indicated that IL-6 stimulation induced
REG Iα transcription through STAT3 activation and binding
to the REG Iα promoter in salivary ductal cells. This depen-
dence of REG Iα induction upon IL-6/STAT in salivary duct
epithelial cells may play an important role in the pathogenesis/
progression of Sjögren’s syndrome.
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Introduction

The salivary glands are exocrine glands that secrete saliva into
the oral cavity, where components of saliva aid in digestion
and prevent oral infection [1]. In humans, the majority of
saliva is secreted from the parotid, submandibular, and sublin-
gual glands, with minor contributions from numerous small
accessory glands. For saliva production, activation of musca-
rinic receptors on the basolateral membrane of acinar cells
results in fluid secretion into the ductal lumen, where the ion
content is modulated as saliva travels along a series of
collecting ducts into the main secretory duct, which empties
into the oral cavity [1]. Salivary dysfunction induces dry
mouse, oral infection, and poor nutrition and can significantly
reduce quality of life [2]. Two primary causes of salivary
dysfunction in humans are Sjögren’s syndrome, an
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autoimmune disease characterized by lymphocytic infiltration
of the salivary gland and production of autoantibodies, and γ-
radiation-induced dysfunction, an unintended consequence of
treatment for head and neck cancers [3, 4]. Current treatments
for salivary hypofunction (also known as Bxerostomia^) in-
clude administration of sialogogues and saliva substitutes;
however, these approaches are limited to only palliative ther-
apies and not aimed at restoration of the function of damaged
glands [5]. New strategies to treat xerostomia are being inves-
tigated to regenerate salivary glands and restore normal levels
of saliva secretion [6, 7]. Therefore, a better understanding of
the underlying mechanisms of both salivary gland inflamma-
tion in Sjögren’s syndrome and radiation therapy that results
in tissue damage could reveal novel targets to prevent salivary
gland degeneration and promote restoration of functional
tissue.

Sjögren’s syndrome is a chronic autoimmune disease char-
acterized by inflammation of exocrine glands, particularly the
salivary and lacrimal glands [8–12]. Although the pathogene-
sis of exocrinopathy is not yet fully understood, infiltration of
autoreactive lymphocytes and subsequent self-perpetuating
immune-mediated loss of acinar and ductal cells is considered
to be the cause of salivary and lacrimal gland dysfunction,
resulting in xerostomia and xerophthalmia [13]. In addition,
local or systemic overexpression of pro-inflammatory cyto-
kines is involved with the pathogenesis [8–12]. In exocrine
glands (such as salivary and lacrimal glands), pro-
inflammatory cytokines such as interferon (IFN)α, IFNγ, tu-
mor necrosis factor (TNF)α, interleukin (IL)-12, and IL-18,
along with other cytokines important in Tand B cell activation
and autoantibody production, such as IL-6 and B cell-
activating factor belonging to the tumor necrosis factor family
(BAFF), are reported to be overexpressed. Autoantibodies
may also play a role in the pathogenesis of Sjögren’s syn-
drome. Avariety of autoantibodies, such as antibodies against
SS-A/Ro, SS-B/La, α-fodrin, and acetylcholine muscarinic 3
receptor, have been detected in the sera of Sjögren’s syndrome
patients [14]. It is unknown, however, whether any of the
autoantibodies have a direct pathogenic role or are merely
involved as a secondary response to another process.

Tissue injury leads cells to proliferate and differentiate to
replace the dead cells, and inflammatory reactions are critical
to this process [15]. Pancreatic β cell regeneration is induced
by pancreatectomy [16], but such regeneration does not occur
in the absence of inflammation [17, 18]. In the case of pancre-
atic duct obstruction [19, 20], leukemia inhibitory factor
(LIF), a member of the IL-6-type cytokine family, is important
in the control of proliferation of pancreatic duct cells [21].

It has previously been reported that experimental ligation
of the main excretory duct of the salivary gland causes the
apoptosis of acinar cells and the proliferation of duct cells in
both rats and mice [22–24]. Moreover, reopening of the ligat-
ed main excretory duct induces the repopulation and

morphological recovery to the normal state in the submandib-
ular gland of rats [25, 26].

It is speculated that intercalated duct cells in the developing
gland serve as the stem cells for the striated duct, granular
convoluted tubule, and acinar cells, but this idea has not yet
been completely established. Some of the striated duct cells
are also considered to be the progenitor of granular convoluted
tubule cells, since these cells have the highest susceptibility to
thymidine labeling in the mouse submandibular gland [27].

The regenerating gene, Reg, was originally isolated from a
rat regenerating islet complementary DNA (cDNA) library
[28–30]. The Reg and Reg-related genes were isolated and
revealed to constitute a multigene family, the Reg family,
which consists of four subtypes (types I, II, III, and IV) based
on the primary structures of the encoded proteins of the genes
[29–31]. In humans, five functional REG family genes (REG
Iα, REG Iβ, REG III, HIP/PAP, and REG IV) were isolated
[29–31]. The Reg family gene products act as growth factors
and promote cell proliferation and regeneration; therefore,
they are considered to be important for various inflammatory
diseases [29–31]. It has also been reported that the REG fam-
ily gene expression was regulated by several cytokines or
chemokines, such as IL-6, IL-8, IL-11, IL-22, IFNβ, IFNγ,
and cytokine-induced neutrophil chemoattractant-2β (CINC-
2β) [18, 32–37].

Recently, we reported that REG Iα messenger RNA
(mRNA) as well as its product (REG Iα protein) was
overexpressed in ductal epithelial cells in the minor salivary
glands of Sjögren’s syndrome patients [38]. Furthermore, au-
toantibodies against REG Iα were found in the sera of
Sjögren’s syndrome patients, and the patients with the anti-
REG Iα autoantibody showed significant lower saliva secre-
tion than the patients without the anti-REG Iα autoantibody
[38]. We also showed that the mRNA levels of IL-6 and IL-8
were significantly higher in the Sjögren’s syndrome minor
salivary glands than in normal minor salivary glands [38],
suggesting that these cytokines may be involved in the over-
expression of REG Iα mRNA in the Sjögren’s syndrome mi-
nor salivary glands. However, the precise mechanism by
which REG Iα gene activation occurs in the Sjögren’s syn-
drome minor salivary gland cells has been elusive. This study
was undertaken to reveal the role of cytokines in the REG Iα
expression and subsequent intracellular mechanism for induc-
tion of REG Iα mRNA in salivary ductal cells of Sjögren’s
syndrome patients.

Regenerating Gene

Rats on which Foglia [39] had performed a 90 % pancreatec-
tomy exhibited glucosuria 1–3months after the operation. The
islets in the remaining pancreases of 90 % depancreatized rats
were relatively less numerous and small size, and frequently
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exhibited fibrotic degeneration and degranulation [40, 41].
However, Yonemura et al. demonstrated that 90 %
depancreatized rats administered daily with poly(ADP-ribose)
polymerase (PARP) inhibitors, such as nicotinamide and 3-
aminobenzamide, did not develop diabetes [16]. Three
months after the partial pancreatectomy, the islets in the re-
maining pancreases of rats which had received the nicotin-
amide or 3-aminobenzamide injections were very much larger
than the islets in the control. When the remaining pancreases
were immunohistochemically stained, almost the entire area
of the enlarged islets in nicotinamide- or 3-aminobenzamide-
treated rats stained densely for insulin. On the other hand, cells
staining for glucagon (α cells) and somatostatin (δ cells) were
localized on the peripheries of the enlarged islets in the re-
maining pancreases of rats treated with PARP inhibitors. The
immunohistochemical findings indicated that it was specifi-
cally the β cell population that increased in the islets of the
remaining pancreases of PARP inhibitor-treated rats.

We isolated regenerating islets from the remaining
pancreases of 90 % depancreatized rats, which had received
nicotinamide for 3 months and constructed a cDNA library.
By differential hybridization screening of the regenerating is-
let cDNA library, we identified a novel gene, encoding a 165-
amino acid protein that was expressed in regenerating islets,
and the novel gene was named regenerating gene (Reg) [28].
The human REG gene was isolated from a human pancreas
cDNA library [28, 29]. The Reg gene was expressed in
regenerating islets, but not detected in normal islets, suggest-
ing possible roles for the gene in replication, growth, and
maturation of pancreatic β cells.

We next prepared recombinant rat Reg protein and adminis-
tered it to 90 % depancreatized rats and found frequent mitosis
in the islets of the remaining pancreases by increased incorpo-
ration of [3H] thymidine and frequent mitosis in the islets of the
remaining pancreases [42]. We also observed that the islets in
the Reg protein-treated rats were enlarged and almost all the
islets stained positive for insulin. The administration of the hu-
man REG protein also ameliorated diabetes in nonobese diabet-
ic (NOD) mice and increased the β cell mass [43]. In addition,
human recombinant REG protein stimulated the 5-bromo-2′-
deoxyuridine (BrdU) incorporation of pancreatic β cell in vitro
in concentration-dependently, and anti-REG autoantibodies that
attenuated the REG protein-induced BrdU incorporation were
found in the sera of diabetic patients [44]. These results indicat-
ed that Reg protein stimulated the regeneration and/or growth of
pancreatic β cells, thereby ameliorating animal diabetes.

Reg Receptor

We next isolated a cDNA for the Reg protein receptor from a
rat islet cDNA library [45]. When the mammalian expression
vector for the cDNAwas constructed and introduced into rat

RINm5Fβ cells, the incorporation of BrdU, as well as the cell
numbers in response to the Reg protein, was significantly
increased in the transformants. A homology search revealed
that the cDNAwas a homologue of a human multiple exosto-
ses (EXT)-like gene, especially the human EXT-like gene 3
(EXTL3; over 97 % amino acid identity), indicating that the
receptor was encoded by the EXTL3 gene and that it mediated
growth signals of the Reg protein forβ cell regeneration. After
the report that the Extl3 gene encodes the Reg receptor [45],
Acquatella-Tran Van Ba et al. confirmed that Extl3 is a Reg
receptor [46], and several groups also reported Extl3 as a Reg
protein receptor [47–51]. In a later study, further advances in
the Reg receptor (Extl3) were reported; Reg receptor (Extl3)
overexpression in pancreatic β cells as well as Reg protein
addition toβ cells induced the activating transcription factor-2
(ATF-2) activation [52], and a β cell-specific knockout for
Extl3 resulted in abnormal islet morphology with reduced β
cell proliferation [53].

The Reg receptor (EXTL3) mRNA expression was also
detected in the liver, heart, kidney, spleen, thymus, stomach,
small intestine, and colon, as well as pancreatic acinar and
ductal cells, suggesting that the Reg-Reg receptor system is
involved with a variety of cell types in addition to β cells [29,
30, 45–49].

Several Reg and Reg-related genes have been isolated and
found to constitute a multigene family [29, 54]. Based on the
primary structures of the Reg proteins, the members of the
family are grouped into four subgroups, that is, types I, II,
III, and IV [28–30, 54]. Type I Reg proteins are expressed in
regenerating islets. Type I Reg has recently been reported to
be expressed in human colorectal carcinomas and in rat gastric
mucosa and enterochromaffin-like cells [29, 30, 55]. Type III
Reg proteins have been suggested to be involved in cellular
proliferation in intestinal Paneth’s granular cells, hepatocellu-
lar carcinomas, pancreatic acinar cells, keratinocytes, and
Schwann cells, suggesting that the Reg family proteins may
potentially be involved in the regeneration of several different
cells and tissues [29, 30].

Regulation of Reg Gene Expression

The Reg I gene has been shown to be expressed only during
islet regeneration, and Reg receptor expression was un-
changed during islet regeneration [28–30, 45]. Accordingly,
the regeneration and proliferation of pancreatic β cells appear
to be primarily regulated by the Reg I gene expression. We
revealed that the combined addition of IL-6 and dexametha-
sone increased the Reg ImRNA level and a further addition of
nicotinamide and 3-aminobenzamide (both PARP inhibitors),
increased the Reg I mRNA even more [18]. Progressive dele-
tion of the 5′-flankling region of the rat Reg I gene revealed
that the −81 to −70 region was essential for the activity of the
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Reg I promoter, and a gel mobility shift assay revealed that
PARP was binding the sequence. The inhibition of PARP
activity was shown to facilitate Reg I transcription by
preventing excessive PARP self-poly(ADP-ribosyl)ation.

Most recently, we found that the combined addition of the
IL-6 and dexamethasone-inducedREG Iα andREG Iβ expres-
sion in human 1.1B4 β cells [56]. In the study, promoter
assays revealed that a signal transduction and activation of
transcription (STAT)-binding site in each promoter of REG
Iα and REG Iβ was essential for the IL-6 + dexamethasone-
induced promoter activation. An electrophoretic mobility shift
assay and a chromatin immunoprecipitation assay revealed
that IL-6 + dexamethasone stimulation increased STAT3 bind-
ing to the REG Iα promoter. Furthermore, introduction of
small interfering RNA for STAT3 and AG490, a Janus kinase
(JAK) 2 inhibitor, significantly inhibited the IL-6 + dexameth-
asone-induced expression of the REG Iα and REG Iβ.
Therefore, the expression of REG Iα and REG Iβ appeared
to be upregulated in human β cells under IL-6 + dexametha-
sone stimulation through the JAK/STAT pathway [56].

Reg Gene Family in Diseases

Reg proteins are expressed in regenerating islets and involved
in β cell regeneration [28–30, 52, 57]. Reg was also shown to
mediate gastric mucosal proliferation in rats [55, 58]. The
expression of the REG Iα gene is closely related to the infil-
trating property of gastric carcinoma, and it may be a prog-
nostic indicator of differentiated adenocarcinoma of the stom-
ach [59, 60]. Correlation between the expression of the REG
family genes and cancer prognosis have been reported not
only in gastric carcinomas but also in colon, esophagus, lung,
liver, prostate, and head and neck cancers [61–66]. These
correlations suggest that the Reg gene family is involved in
cell growth in a variety of cell types other than pancreatic β
cells and that the REG family gene expression in cancer
tissues/cells might be a new cancer prognosis marker and/or
a therapeutic target.

In addition, autoantibodies/autoimmunity against Reg fam-
ily proteins and its potential mechanism were also reported in
diabetes and in other autoimmune diseases, such as celiac
disease and Sjögren’s syndrome [33, 38, 44, 67].
Autoimmunity against the Reg family protein(s) may be a
new diagnostic marker and/or therapeutic target for immune-
mediated diseases.

The Role of Autoimmunity Against Reg Protein
in Sjögren’s Syndrome

It was reported that REG Iαwas expressed in ductal epithelial
cells in the minor salivary glands of patients with Sjögren’s

syndrome [68]. Kimura et al. examined this REG Iα protein
expression using immunohistochemistry for the REG Iα pro-
tein and found the REG Iα protein was highly expressed in
ductal epithelial cells in the minor salivary glands of patients
with Sjögren’s syndrome but rarely expressed in those of nor-
mal minor salivary glands [68]. It was suggested that REG Iα
protein plays a role in the regeneration of the salivary glands
of people with Sjögren’s syndrome, but whether autoimmuni-
ty against REG Iα protein was involved with the pathogenesis
of Sjögren’s syndromewas not clear. It was also unclear which
REG family gene(s) were expressed in the Sjögren’s syn-
drome patients.

We examined the expression of REG family genes in the
minor salivary glands of Sjögren’s syndrome patients and
screened anti-REG Iα autoantibodies in their sera. We pre-
pared total RNA from formalin-fixed, paraffin-embedded mi-
nor salivary gland tissue specimens using an RNeasy FFPE kit
and analyzed the mRNA levels ofREG family genes (REG Iα,
REG Iβ, REG III, HIP/PAP, and REG IV) using specific
primers (5′-AGGAGAGTGGCACTGATGACTT-3′ and 5′-
TAGGAGACCAGGGACCCACTG-3′ for REG Iα, 5′-GC
TGATCTCCTCCCTGATGTTC-3′ and 5′-GGCAGCTGAT
TCGGGGATTA-3′ for REG Iβ, 5′-GAATATTCTCCCC
AAACTG-3′ and 5′-GAGAAAAGCCTGAAATGAAG-3′
for REG III, 5′-AGAGAATATTCGCTTAATTCC-3′ and 5′-
AATGAAGAGACTGAAATGACA-3′ for HIP/PAP, and 5′-
ATCCTGGTCTGGCAAGTC-3′ and 5′-CGTTGCTGC
TCCAAGTTA-3′ for REG IV) by quantitative real-time re-
verse transcriptase-polymerase chain reaction (qRT-PCR)
[38]. No REG Iβ mRNA was detected in the minor salivary
glands of either the controls or patients with primary Sjögren’s
syndrome. Similarly, the mRNA levels of REG III, HIP/PAP,
and REG IV did not differ between the minor salivary glands
of controls and those of patients with primary Sjögren’s syn-
drome. In contrast, the mRNA level of REG Iα in the minor
salivary glands of primary Sjögren’s syndrome patients was
significantly higher than that in the controls. We then analyzed
REG Iα protein expression in the minor salivary glands of
primary Sjögren’s syndrome patients via immunohistochem-
istry, using an anti-REG I protein monoclonal antibody. REG
Iα protein was detected in the ductal epithelial cells, whereas
acinar cells were rarely detected.

It has been reported that REG family gene expression was
regulated by several cytokines or chemokines, such as IL-6, IL-
8, IL-11, IL-22, IFNβ, IFNγ, and CXCL1 (CINC-2β) [18,
32–37, 56]. In order to investigate regulation of REG Iα gene
expression in the minor salivary glands, we measured IL-6, IL-
8, IL-11, IL-22, IL-22 receptor, IFNβ, IFNγ, CXCL1 (CINC-
2β), IL-6 receptor, and gp130 mRNAs using specific
primers (5′-GGTACATCCTCGACGGCATC-3′ and 5′-GCC
TCTTTGCTGCTTTCACAC-3′ for IL-6, 5′-TAGCAAAATT
GAGGCCAAGG-3′ and 5′-GGACTTGTGGATCCTGGCTA
-3′ for IL-8, 5′-TCTCTCCTGGCGGACACG-3′ and 5′-
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AATCCAGGTTGTGGTCCCC-3′ for IL-11, 5′-GCAGGCT
TGACAAGTCCAACT-3′ and 5′-GCC TCCTTAGCCAGCA
TGAA-3′ for IL-22, 5′-CTACATG TGCCGAGTGAAGA-3′
and 5′-ACATATCTGTA GCTCAGGTA-3′ for IL-22 receptor,
5′-CATTACCTGAAGGCCAAGGA-3′ and 5′-CAGCATC
TGCTGGTTGAAGA-3′ for IFNβ, 5′-ATTCGGTAACTGAC
TTGAATGTCC-3′ and 5′-CTCTTCGACCTCGAAACAGC-
3′ for IFNγ, 5′-GAAAGCTTGCCTCAATCCTG-3′ and 5′-
TCCTAAGCGATGCTCAAACA-3′ for CXCL1, 5′-TGA
GCTCAGATATCGGGCTGAAC-3′ and 5′-CGTCGTGG
ATGACACAGTGATG-3′ for IL-6 receptor, and 5′-AGGAC
CAAAGATGCCTCAACT-3′ and 5′-TTGGACAGTGAA
TGAAGATCG-3′ for gp130) via qRT-PCR [38]. The mRNA
levels of IL-6 and IL-8 in primary Sjögren’s syndrome minor
salivary glands were significantly higher than the levels in nor-
mal minor salivary glands. The mRNA levels of IL-11, IL-22,
IL-22 receptor, IFNγ, CINC-2β, IL-6 receptor, and gp130 in
minor salivary glands were not significantly different between
primary Sjögren’s syndrome patients and normal controls. The
mRNA of IFNβ was not detected in primary Sjögren’s syn-
drome minor salivary glands. These results suggested that the
upregulation of IL-6 and IL-8 could induce overexpression of
the REG Iα gene in primary Sjögren’s syndromeminor salivary
glands.

We examined autoantibodies against the REG Iα protein
(anti-REG Iα antibodies) in the sera from primary Sjögren’s
syndrome patients and healthy controls by the immunoblot
method, using diluted patient serum as a primary antibody in
the screener blotter and an enhanced chemiluminescent detec-
tion system [38, 44, 69]. Eleven percent (13 of 117) of patients
with primary Sjögren’s syndrome tested positive for anti-REG
Iα antibodies, whereas only 2.2 % (6 out of 271) were positive
in the controls. The group that was positive for anti-REG Iα
antibodies had significantly lower saliva secretion than the
negative group using an unstimulated Saxon test [70]. The
ratio of destructive stage (stage 4, based on Rubin and Holt’s
criteria) in sialography in the group that was positive for anti-
REG Iα antibodies was significantly higher than that in the
antibody-negative group. Furthermore, all the patients in the
group that was positive for anti-REG Iα antibodies showed
REG Iα expression in minor salivary gland ductal cells,
whereas only 40 % in the antibody-negative group showed
REG Iα expression in the minor salivary glands. These results
suggest that autoimmunity to REG is associated with the re-
generation of the ductal epithelial cells of the minor salivary
glands in primary Sjögren’s syndrome patients.

Regulation of REG Gene Expression in Salivary
Ductal Cells

We have reported that anti-REG Iα antibodies were found in
the sera of primary Sjögren’s syndrome patients and correlated

with clinical manifestations. We also reported that mRNA
levels of IL-6 and IL-8 as well as REG Iα were significantly
elevated, suggesting that IL-6 and IL-8 may be involved in the
overexpression of REG Iα mRNA in minor salivary gland
ductal cells [38] (Fig. 1). The precise mechanism of regulation
of REG Iα gene expression in minor salivary gland ductal
cells, however, has been elusive. The present study was un-
dertaken to determine the role of cytokines and the intracellu-
lar mechanism for regulation of the REG Iα gene in the sali-
vary ductal cells of Sjögren’s syndrome patients.

Induction of REG Iα mRNA by IL-6

We previously reported that the mRNA levels of REG Iα, IL-
6, and IL-8 in minor salivary glands of Sjögren’s syndrome
patients were significantly increased [38]. According to pre-
vious reports, both IL-6 and IL-8 could induce REG Iα ex-
pression [34, 36]. In order to investigate whether IL-6 or IL-8
upregulates REG Iα in salivary ductal cells, we analyzed the
REG Iα mRNA expression in human NS-SV-DC salivary
ductal cells, simian virus 40-immortalized cells derived from
human salivary ducts [71], after treatment of human IL-6
(20 ng/mL; Roche, Mannheim, Germany), human IL-8
(100 nM; Wako Pure Chemical, Osaka, Japan), dexametha-
sone (100 nM; MP Biochemicals, Santa Ana, CA) and the
combination of them by real-time RT-PCR using human
REG Iα-specific primers as described. The treatment of IL-6
but neither IL-8 nor dexamethasone induced the expression of
REG Iα mRNA (Fig. 2) [72]. The combinations of IL-6 +
dexamethasone or IL-6 + IL-8 showed no additional effect
compared with IL-6 alone. These results indicate that human
salivary ductal cells express REG Iα mRNA in response to
stimulation of IL-6.

IL-6

Salivary ductal cell

REG I

REG I mRNA

REG I

prote in

IL-8

Anti-REG I

auto

-antibodies

?

?

?

?

Fig. 1 Possible involvement of IL-6/IL-8 in REG Iα gene expression.
The mRNA levels of IL-6 and IL-8were correlated with that of REG Iα in
Sjögren’s syndrome salivary specimens [38]. However, the precise
mechanism of regulation of REG Iα gene expression in minor salivary
gland ductal cells has been elusive.We elucidate the role of cytokines (IL-
6, IL-8, or both) and intracellular mechanism for regulation of REG Iα
gene in the salivary ductal cells of Sjögren’s syndrome patients
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Activation of REG Iα Gene Promoter by IL-6

To determine whether the induction of REG Iα mRNA was
caused by the activation of transcription, a 1216-base pair
fragment containing 1190-base pair of the promoter region
(−1190∼+26) of the human REG Iα gene [73] was fused to
the luciferase reporter gene of pGL3-Basic vector and
transfected into human NS-SV-DC and rat A5 [74, 75]

salivary ductal cells using the Lipofectamine™ 2000 reagent.
Six hours after transfection, cells were incubated with IL-6 or
IL-8 for 24 h, and cell extracts were prepared for luciferase
assay. Luciferase assay revealed that IL-6 stimulation signifi-
cantly enhanced the REG Iα promoter activity not only in
human NS-SV-DC cells (Fig. 3a) but also in rat A5 cells
(Fig. 3b) [72]. Treatment with IL-8 did not alter the transcrip-
tional activity of REG Iα in NS-SV-DC cells nor in A5 cells.
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Fig. 2 The mRNA levels of REG family and HGF genes in NS-SV-DC
human salivary ductal cells (kindly provided by Dr. M. Azuma,
Department of Oral Medicine, Tokushima University School of
Dentistry, Tokushima, Japan, and maintained in Keratinocyte SFM
(Life Technologies, Carlsbad, CA)) treated with IL-6 (20 ng/mL),

dexamethasone (Dx; 100 nM), IL-8 (100 nM), IL-6 + Dx, or IL-6 + IL-
8. The levels of REG family and HGF mRNAs were measured by real-
time RT-PCR using β-actin as an endogenous control as described [56,
65, 66, 72, 91, 102–106] (Adopted from [72])
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Fig. 3 Luciferase assays in salivary ductal cells. HumanNS-SV-DC cells
(a) and rat A5 cells (derived from the salivary ducts of male Fischer 344
weanling rats, which were kindly provide by Dr. B.J. Baum of the
National Institute of Dental and Craniofacial Research, NIH, Bethesda,
MD, by treating explanted tissue clumps with 3-methylcholanthrene, and
maintaining in DMEM supplemented with 10 % fetal bovine serum) (b)
were transfected with constructs containing REG Iα promoter. After

transfection, the cells were stimulated with IL-6 (20 ng/mL human IL-6
in NS-SV-DC cells or 200 ng/mL rat IL-6 in A5 cells) or IL-8 (100 nM
human IL-8 in NS-SV-DC cells or 100 nM rat IL-8 in A5 cells); thereaf-
ter, the luciferase activities were measured as described [72, 104–106]
(Adopted from [72]). The diagram represents relative luciferase activities
to the untreated group. BBasic^ was represents a promoterless construct,
pGL3-Basic
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These results clearly indicated that REG Iα mRNA was in-
duced by IL-6 in salivary ductal cells at the transcriptional
level.

Localization of IL-6-Responsible Region in the REG
Iα Gene Promoter

In order to identify the region in the REG Iα gene promoter
essential for the transcription of the REG Iα mRNA in re-
sponse to IL-6 stimulation, progressive deletions of the REG
Iα promoter into pGL3-Basic vector was performed. The pro-
moter plasmids were transfected into human NS-SV-DC and
rat A5 salivary ductal cells by lipofection method, and the
transfected cells were stimulated by IL-6 as described above.
The deletion down to position −141 did not attenuate IL-6-
induced REG Iα promoter activity; however, an additional
deletion to −117 caused a remarkable decrease in IL-6-
induced promoter activity of REG Iα in both cells (Fig. 4)
[72]. These results indicated that the promoter region of
−141 to −117 of the REG Iα gene was responsible for the
REG Iα promoter activation by IL-6.

STAT3 Is a Key Factor for REG Iα Gene
Transcription

A computer-aided search for sequences similar to known cis-
acting elements revealed that the region of −141 to −117 of the
REG Iα gene contains a consensus binding sequence for
STAT. Site-directed mutagenesis of the STAT binding site
was conducted within the luciferase construct of B−141.^
The mutation constructs, in which the possible STAT binding
site was destroyed, showed remarkable reductions in IL-6-
induced promoter activities (Fig. 5). These results strongly
suggested that STAT is the most important regulator for the
REG Iα transcriptional activity by IL-6 in salivary ductal cells.
In order to verify the role of STAT3 in IL-6-induced REG Iα

induction, small interfering RNA (siRNA) for human STAT3
mRNA (5′-GCACCUUCCUGCUAAGAUUtt-3′) was intro-
duced into NS-SV-DC cells using the Lipofectamine®
RNAiMAX transfection reagent, and the IL-6-induced REG
Iα mRNA expression was analyzed by real-time RT-PCR. As
shown in Fig. 6, the introduction of siRNA for human STAT3
abolished not only IL-6-induced STAT3 upregulation but also
IL-6-induced REG Iα upregulation, indicating that REG Iα
gene transcription was induced by IL-6 through STAT3 bind-
ing to the STAT binding site located in −141 to −117 of the
human REG Iα gene promoter [72].

Conclusion

In the previous study, we reported that the REG Iα protein was
overexpressed in ductal epithelial cells in the minor salivary
glands of Sjögren’s syndrome patients, and that the saliva
secretion was attenuated in Sjögren’s syndrome patients with
autoantibodies to REG Iα [38]. We also showed the mRNA
levels of IL-6 and IL-8 were significantly higher in the
Sjögren’s syndrome minor salivary glands than those in nor-
mal minor salivary glands [38, 76]. In the present study, we
showed that REG Iα overexpression in salivary ductal cells
was induced by IL-6 but not by IL-8 at the transcriptional
level.

IL-6, a potent pro-inflammatory cytokine, is involved in
acute phase response, B cell proliferation and plasma cell for-
mation, and T cell stimulation and recruitment [8, 77]. IL-6 is
also regarded as a pivotal mediator in chronic inflammatory
diseases and many autoimmune diseases, such as rheumatoid
arthritis, multiple sclerosis, and Crohn’s disease [78]. High
serum concentrations of IL-6 in primary Sjögren’s syndrome
patients has been described, and the serum levels of IL-6 cor-
related with the degree of infiltration of lymphocytes in the
salivary glands [10, 79, 80]. Binding of IL-6 to its receptor
leads to homodimerization of an IL-6 receptor component
gp130, resulting in the activation of JAK and subsequent

Fig. 4 Deletion analysis of humanREG Iα promoter. HumanNS-SV-DC
cells (a) and rat A5 cells (b) were transfected with constructs containing
various deletion mutants of REG Iα promoter. Constructs listed on ordi-
nate are numbered according to their 5′ terminus in the REG Iα promoter.
The transfected cells were stimulated with IL-6 (20 ng/mL human IL-6 in

NS-SV-DC cells or 200 ng/mL rat IL-6 in A5 cells); thereafter, the lucif-
erase activities were measured as described [72] (Adopted from [72]).
The diagram represents relative luciferase activities to the untreated group
of B−1190^
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phosphorylation of STAT3 [81]. STAT3 plays a crucial role in
transmitting cytokine signals to the nucleus and promotes cell
proliferation and anti-apoptosis [82–85]. Thus, the JAK/STAT
pathway has been shown to be involved in carcinogenesis
under a background of inflammation. Furthermore, accumu-
lating evidence indicates that the JAK/STAT pathway may be
involved in multiple immune functions: STAT1 and STAT4
mainly induce IFNγ expression in Th1 cells, STAT6 induces
IL-4 expression in Th2 cells, and STAT3 induces IL-17 ex-
pression in Th17 cells [86].

Our results revealed that IL-6 stimulation enhanced REG
Iα gene expression through STAT3 activation in salivary duc-
tal cells. Involvement of STAT signaling in REG family gene
expression has been reported by other groups in other cell
systems: In gastric epithelial cells, Lee et al. described the
IL-11/STAT3 signaling pathway was important in

Helicobacter pylori CagA-directed REG 3γ (HIP/PAP) ex-
pression [35]. REG3A (HIP/PAP) was induced by IL-6 in
pancreatic cancer cells (pancreatic ductal cells) through the
JAK2/STAT3 pathway [87]. Sekikawa et al. showed that
REG Iα gene expression was regulated by the IL-22/STAT3
pathway in colon cancer cells and by the IL-6/STAT3 pathway
in gastric cancer cells [36, 88]. Most recently, we showed that
REG Iα gene expression was activated in human pancreatic β
cells by combined stimulation of IL-6 + dexamethasone via
the JAK/STAT3 signaling [56]. These studies were imple-
mented in gastrointestinal cell lines and pancreatic β cells,
and to the best of our knowledge, this is the first report that
revealed the association of the IL-6/STAT pathway and REG
Iα expression in salivary ductal epithelial cells.

IL-8, also known as CXCL8, is a pro-inflammatory chemo-
kine associated with the promotion of neutrophil chemotaxis

GTACC---GGGAAAAGG
GTACCGTAGGGAAAAGG
GTACC---ATACGAAGG
GTACC---TAGAAAAGG

-141 

-141 M1

-141 M2

-141 M3

-140 -130 

STAT binding sitea

cb

Fig. 5 (a) Alignment of REG Iα
promoter region. Nucleotides
insertions and substitutions in the
cis-elements are indicated in RED
(underlined). (b), (c) Effects of
site-directed mutagenesis of the
cis-elements within the REG Iα
gene promoter. Human NS-SV-
DC cells (b) and rat A5 cells (c)
were transfected with the indicat-
ed constructs. Bar graph indicat-
ed relative luciferase activity to
the untreated group of B−141^
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Fig. 6 Effects of STAT3-siRNA transfection on IL-6-induced REG Iα
promoter activity in NS-SV-DC cells. After siRNA introduction, NS-
SV-DC human salivary ductal cells were stimulated with IL-6 (20 ng/
mL). The expression of (a) STAT3 (using specific primers: sense primer

5′-CAGGATGGCCCAATGGAATC-3′ and antisense primer 5′-
CCCAGGAGATTATGAAACACC-3′) and (b) REG Iα mRNA was
measured by real-time RT-PCR using β-actin as an endogenous control
[56, 72] (Adopted from [72])
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and degranulation [89]. Several reports have indicated the in-
volvement of IL-8 in pathogenesis of Sjögren’s syndrome.
Cuello et al. described that minor salivary gland ductal epithe-
lial cells of Sjögren’s syndrome patients highly expressed IL-8
[90]. As mentioned above, the levels of IL-8 were also reported
to be correlated with REG gene expression in gastric cancer
cells [34]. We also showed that the IL-8 mRNA was highly
expressed in Sjögren’s syndrome minor salivary glands [38].
In the present study, however, we showed that IL-8 did not
induce REG Iα expression in salivary ductal cells, suggesting
that high levels of IL-8 in Sjögren’s syndrome minor salivary
glands are not involved in their REG Iα upregulation.

Reg I gene was originally found to be expressed in rat
regenerating islets but not in normal pancreatic islets [28].
RINm5F, a rat insulinoma-derived cell line, showed significant
increase in cell numbers in the presence of Reg I/REG Iα pro-
tein [18, 29, 44, 91] via activating transcription factor-2/cyclin
D1 pathway [52]. Human REG Iα protein administration ame-
liorated diabetes in NOD mice, with an increase in the β cell
mass [43]. We generated transgenic mice expressing mouse
Reg I, which was under an insulin promoter, showed increased
[3H]thymidine incorporation in the pancreatic islets [92]. The
Reg I transgene-carrying NOD mice were also generated by
intercrossing the transgenic mice expressing Reg I in pancreatic
β cells with NOD mice. The development of diabetes, judged
by glucosuria at least two consecutive determinations, in the
resultant Reg I transgenic NODmice was significantly retarded.
Additionally, anti-REG Iα autoantibodies, which were found in
diabetic patient sera, were showed to retard the proliferation of
pancreaticβ cells in vitro [44]. These results suggest that Reg I/
REG Iα protein stimulates the proliferation of pancreatic β
cells. We previously reported that primary Sjögren’s syndrome
patients with anti-REG antibodies showed significantly lower
salivary secretion [38], suggesting that IL-6-induced REG Iα
protein in salivary ductal cells is associated with regeneration of
damaged ductal epithelial cells of minor salivary glands and
that anti-REG autoantibodies attenuate the proliferation/
regeneration of salivary ductal/acinar cells.

In the present study, we showed that the REG Iα gene was
activated by the IL-6/STAT3 signaling in salivary duct epithelial
cells. STAT binding element was reported not only in REG Iα
promoter but also in other REG family promoters, such as REG
Iβ, HIP/PAP, and REG III promoters [54, 56], suggesting possi-
ble activation of the genes in the salivary ducts of Sjögren’s
syndrome patients through the IL-6/STAT3 axis. In our previous
study, however, no REG Iβ mRNA was detected either in the
control or the Sjögren’s syndrome salivary glands. The mRNA
levels of REG III and HIP/PAP also were not different between
the control and Sjögren’s syndrome salivary glands. In contrast,
the mRNA level of REG Iα in the salivary glands of Sjögren’s
syndrome patients was significantly higher than that of the con-
trols [38]. In Sjögren’s syndrome, involvement of several cyto-
kines other than IL-6, such as BAFF, IL-12/IL-23, and IFNα,

was also reported [8]. Combination(s) of these cytokines with
IL-6 may contribute to REG Iα-specific overexpression in sali-
vary duct epithelial cells of Sjögren’s syndrome patients. As a
result, anti-REG Iα autoantibodies were raised in Sjögren’s syn-
drome patients [38] and their salivary functions may be affected.

To alleviate xerostomia, which is one of chief manifestations
of Sjögren’s syndrome, treatment with conventional systemic
immunosuppressive drugs has been tried; however, the thera-
peutic effects were doubtful [93–96]. Recently, treatments with
monoclonal antibodies which target inflammatory cytokines or
cell surface antigens were developed in several autoimmune
diseases [97, 98]. As IL-6 is shown to be highly expressed in
the salivary glands of Sjögren’s syndrome patients, blocking the
IL-6 signal by a monoclonal antibody against IL-6 receptor is
expected to have beneficial effects [10]. Our results, however,
suggested that IL-6 was associated with regeneration of ductal
epithelial cells via REG Iα protein expression. Therefore,
blocking IL-6 and/or its receptor may induce untoward effects.
Rituximab, a chimeric anti-CD20 monoclonal antibody that
binds to the B cell surface antigen CD20, has been shown to
have beneficial effects for xerostomia of Sjögren’s syndrome
patients in several trials [99, 100]. Rituximab therapy has also
been shown to decrease autoantibody production [101]. It is
possible that beneficial effects of rituximab for Sjögren’s syn-
drome were associated with B cell depletion and subsequent
decrease of production of pathogenic autoantibodies, including
anti-REG Iα autoantibodies.

In conclusion, the present study showed that REG Iα tran-
scription in salivary ductal cells was stimulated by IL-6. Our
study also demonstrated that STAT3 bound the consensus se-
quence of REG Iα promoter and regulated transcription in
ductal epithelial cells in response to IL-6 stimulation
(Fig. 7). It was suggested that overexpression of REG Iα

IL-6

Salivary ductal cell

STAT

STAT

REG ITGCCGGGAA

REG I mRNA

REG I

protein
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REGI
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Fig. 7 Possible mechanism of IL-6-induced REG Iα expression in sali-
vary ductal epithelial cells (adopted from [72]) and its role in salivary
dysfunction. IL-6 induced by inflammation and/or autoimmunity stimu-
lates REG Iα transcription via the JAK/STAT pathway, leading to over-
expression of REG Iα protein. As some of Sjögren’s syndrome patients
have anti-REG Iα autoantibodies [38], salivary ductal cells expressing
REG Iα protein are attacked by the autoantibodies, leading to dysfunction
of saliva secretion [38]
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protein in salivary ductal cells is dependent on the IL-6/STAT
pathway and may play a role in the pathogenesis of Sjögren’s
syndrome.
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