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Abstract The contribution of inflammation to bone loss is
well documented in arthritis and other diseases with an em-
phasis on how inflammatory cytokines promote osteoclasto-
genesis. Macrophages are the major producers of cytokines in
inflammation, and the factors they produce depend upon their
activation state or polarization. In recent years, it has become
apparent that macrophages are also capable of interacting with
osteoblasts and their mesenchymal precursors. This interac-
tion provides growth and differentiation factors from one cell
that act on the other and visa versa—a concept akin to the
requirement for a feeder layer to grow hemopoietic cells or
the coupling that occurs between osteoblasts and osteoclasts
to maintain bone homeostasis. Alternatively, activated macro-
phages are the most likely candidates to promote bone forma-
tion and have also been implicated in the tissue repair process
in other tissues. In bone, a number of factors, including
oncostatin M, have been shown to promote osteoblast forma-
tion both in vitro and in vivo. This review discusses the dif-
ferent cell types involved, cellular mediators, and how this can
be used to direct new bone anabolic approaches.
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Introduction

Monocytes and macrophages are heterogeneous population of
cells that can switch their phenotypic and functional properties
in response to signals from their microenvironment during
normal homeostasis and in disease. The activation state, or
polarization, of the macrophage is determined by numerous
factors including tissue location and the cells, cytokines, and
other mediators it encounters. In terms of bone, the pro-
inflammatory properties of macrophages are often reported
in the context of arthritic joint destruction; however, there is
an emerging body of literature implicating macrophages in the
accrual of bone mass and as vital modulators of the tissue
repair process in bone. This review will focus on how macro-
phage polarization affects osteoblast fate during normal ho-
meostasis and in disease.

Macrophage Polarisation

Over 100 years, since Elie Metchnikoff described these cells
of phagocytic ability, the world of macrophage biology has
seen an ever-growing diversity in their types and functions [1].
In the 1960s, macrophages were being given more diverse
properties based on classical activation; antigen-dependent,
but non-specific enhanced, microbicidal activity, by encoun-
tering bacillus Calmette-Guerin (BCG), and Listeria [2]. By
the early 1990s, the concept that there could be both classical-
ly and alternatively activated macrophages was supported by
the findings of Stein and colleagues showing that IL-4 treat-
ment induced inflammatory macrophages to adopt an alterna-
tive activation phenotype, distinct from that induced by
IFN-γ, characterized by a high capacity for endocytic clear-
ance of mannosylated ligands, enhancedMHC class II antigen
expression, and reduced pro-inflammatory cytokine secretion
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[3]. Ultimately leading to the adoption of the M1/M2 termi-
nology following the observation of differential macrophage
function in cells obtained from T helper (Th)1 or Th2 domi-
nant mouse strains [4]. Following this nomenclature, M1 re-
fers to ‘classical’ activation of macrophages by IFN-γ where-
as M2 refers to ‘alternative’ activation of IL-4 and IL-13.
There have been further additions to this scheme including
the addition of toll-like receptor ligands such as lipopolysac-
charide (LPS) or the use of GM-CSF and M-CSF as M1 and
M2 differentiation factors, respectively.

In recent times, the notion of classifying macrophages as
classically activated/inflammatory (M1) and alternatively
activated/regenerative (M2), regardless of how many addi-
tional subtypes you might like to add, has fallen out of favor
to be replaced with concept of a continuum of different acti-
vation states according to the environment that the macro-
phages are exposed to, and the transcription factors, cytokines,
and cellular functions they exhibit. It has been proposed that
three principles—the source of macrophages, definition of the
activators, and a consensus collection of markers—should be
used to describe macrophage activation [5]. This is supported
by an increasing body of literature into the genomics of mac-
rophage polarization [6–8]. Although the current thinking en-
courages a full description of the source and stimulation of the
macrophage, it is important to note thatM1/M2 terminology is
still in wide spread use and much of the work quoted in this
review will be using this wording as it was generated prior to
the newly suggested guidelines.

Evidence from a number of different studies in vivo and
in vitro has generally indicated that identifying the activated
states of macrophages and targeting the macrophage polariza-
tion from M1 to M2 or vice versa might be served as novel
diagnostic or therapeutic strategies for multiple diseases. Mac-
rophage activation is involved in the outcome of many dis-
eases, including metabolic diseases, allergic disorders (such as
airway hyperreactivity), autoimmune diseases, cancer, and
bacterial, parasitic, fungal, and viral infections. Hence, mac-
rophage polarization plasticity has important therapeutic im-
plications and will be discussed in the context of bone
disorders.

Bone Destruction and Macrophages

In 1972, the mononuclear phagocyte system was proposed to
classify macrophages, monocytes, and their precursor cells
based on similarities in the morphology, function, origin,
and kinetics of the phagocytes [9]. Cells of the mononuclear
phagocyte series, including hematopoietic marrow cells,
blood monocytes, and peritoneal macrophages, have the ca-
pacity to differentiate into bone resorbing osteoclasts placing
osteoclast ontology firmly within this lineage of cells [10–13].
Myeloid-derived suppressor cells have also been described to

contribute to the osteoclast precursor pool in inflammatory
arthritis [14, 15]. Thus, for many years, the perceived contri-
bution of monocyte/macrophages to bone destruction was as a
source of precursors and pro-inflammatory cytokines. With
the discovery of RANKL in 1998 and the advent of
‘osteoimmunology’, the ever-expanding links to other cell
types modulating bone turnover are at an all time high [16].
With this in mind, it is important not to just perceive the
monocyte/macrophage lineage as a forerunner to the osteo-
clast but additionally as vital modulators of bone homeostasis
in their own right.

A great deal of what is known about osteoclastogenesis and
the immune system has arisen from the study of disease, par-
ticularly rheumatoid arthritis (RA) [17]. In RA, synovial fi-
broblast proliferation is accompanied by extensive neovascu-
larization and perivascular and interstitial infiltration of the
synovium with lymphocytes, plasma cells, and activated mac-
rophages [18]. The success of anti-TNF therapy for RA was
underpinned by research showing that monocyte/
macrophages are producing TNF in response to the cells and
cytokines in the arthritic joint [19, 20]. TNF and other proin-
flammatory cytokines have been shown to promote osteoclas-
togenesis directly by increasing precursor numbers and/or dif-
ferentiation, as well as indirectly via osteoblasts and other
stromal cells to increase RANKL production [21–23]. Classi-
cal macrophage activation is associated with high levels of
these cytokines so it is tempting to ascribe pro-inflammatory
macrophages as cells promoting osteoclastogenesis whilst the
alternatively activated macrophages would inhibit this pro-
cess. Furthermore, TNF has been described as capable of
switching CD11b+F4/80+ cells (M-CSF treated murine
bone marrow) from Ly6C-Gr1-M2 to Ly6C+Gr1-CD11c+
and Ly6C-Gr1-CD11c+M1 cells. Pretreatment of the M-
CSF-treated murine bone marrow with TNF to increase the
number of osteoclast precursors led to increased the numbers
of osteoclasts from both the Ly6C+Gr1- and Ly6C-Gr1-
groups suggesting that the role of TNF is to expand osteoclast
precursors by switching the differentiation of M-CSF-induced
M2 to M1 macrophages with enhanced osteoclast forming
potential [24].

Orthodontic tooth movement (OTM) is associated with in-
flammatory bone remodeling. Forced tooth movement in-
creased M1-like macrophage polarization as determined by
increased expression of TNFa and iNOS. The distance of
OTM, the number of TRAP-positive osteoclasts and CD68+
macrophages, and the expression of TNF-α and iNOS were
increased by exogenous TNF addition whilst anti-TNF re-
duced these features suggesting that M1-like macrophage po-
larization promotes alveolar bone resorption to allow tooth
movement [25]. Bisphosphonate-related osteonecrosis of the
jaw (BRONJ) is a complication observed following high dose
of zoledronate for the prevention of osteolytic bone lesions in
breast and prostate cancer patients and multiple myeloma.
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Zhang et al. demonstrated that elevated IL-17 expression cor-
related with an increasedM1/M2macrophage ratio at the local
mucosal tissue of non-healing extraction socket of BRONJ
patients and in a murine model of the disease. In the mice,
blocking of IL-17 activity reversed the alteration in M1/M2
macrophages ratio and incidence of BRONJ. Adoptive trans-
fer of M2 macrophages (bone marrow in M-CSF for 6 days
followed by 48 h of IL-4) decreased serum IL-17 and inci-
dence of BRONJ [26]. Both of these studies support the notion
of the M1macrophage being associated with bone destruction
and the M2 with tissue repair.

Bone Formation and Macrophages

A characteristic feature of arthritic disorders is focal erosions
in articular bone. This is broadly attributed to an inflammatory
cytokine driven increase in osteoclast formation with a con-
comitant decrease in osteoblast activity. In the K/BxN model
of serum transfer arthritis, osteoblasts present at site of inflam-
mation lacked markers of maturation and less mineralized
bone was formed at bone surfaces adjacent to inflammation
compared to surfaces adjacent to normal bone marrow [27]. In
this system, the resolution of inflammation restored osteoblast
differentiation and function [28]. In the clinical setting, the RA
joint is associated with extensive osteoclastic bone destruction
in the absence of bone repair as well as generalized osteopo-
rosis [18, 29]. As such, it could be thought that inflammation
inhibits bone formation yet other forms of arthritis such as
ankylosing spondylitis (AS) show both bone erosions in the
joints and excessive bone formation at the enthesis, where
tendons and ligaments insert into the bone.

Enthesitis, inflammation of the enthuses, occurs in
spondyloarthritides (SpA), including AS, but enthesitis can
also be associated with endocrinological, metabolic, traumat-
ic, and degenerative conditions [30]. In this situation, new
bone formation occurs at the site where inflammation has
been. Animal models of AS have shown that inhibition of
TNF did not affect the severity and incidence of joint ankylo-
sis suggesting that the process of entheseal ankylosis may be
independent of TNF [31]. Evidence from genetic studies,
in vitro models, human expression studies, and animal models
supports a central role of the IL-23/IL-17 axis in the patho-
genesis of SpA [32, 33]. Sherlock and colleagues recently
described the essential role of IL-23 in enthesitis by acting
on IL-23 receptor (IL-23R)(+), RAR-related orphan receptor
gammat (ROR-gammat)(+)CD3(+)CD4(-)CD8(-), stem cell
antigen 1 (Sca1)(+) entheseal resident T cells to produce IL-
22, and activate signal transducer and activator of transcrip-
tion 3 (STAT3)-dependent osteoblast-mediated bone remodel-
ing thus leading to entheseal bone formation [34].

Could there also be a role for monocyte/macrophages in
promoting bone formation? Conceptually, this would have

parallels to the coupling of osteoblasts and osteoclasts where-
by factors and cell surface markers on one cell promote the
formation and/or activation of the other [35]. Early studies
gave some initial clues reporting enhanced osteogenic differ-
entiation and growth of marrow stromal cells or calvaria oste-
oblasts co-cultured with monocyte/macrophage lineage cells
as evidenced by increased alkaline phosphatase activity and
collagen I synthesis [36, 37]. These reports also highlighted
the proximity of macrophage lineage cells to bone cells
in vivo and a role for monocyte/macrophage-derived
osteoinductive soluble factors such BMP2 in osteoblast sur-
vival and differentiation [38].

In arthritic disorders, studies into any potential contribution
of the macrophages to bone formation are overshadowed by
the predominant role that inflammatory macrophages play in
the clinical features of the disease. In 2008, Chang et al. de-
scribed a discrete population of resident macrophages,
OsteoMacs, intercalated throughout murine, and human osteal
tissues. The removal of OsteoMacs from calvarial osteoblast
preparations led to decreased in bone nodule formation
in vitro. In vivo, macrophage depletion using the
macrophage-Fas-induced apoptosis (MAFIA) mouse caused
complete loss of the osteoblast bone-forming surface indicat-
ing a vital role of macrophages in osteoblast survival and
function [39]. Efficient fracture repair relies on early inflam-
mation with the recruitment of monocyte macrophages to the
fracture site [40]. Osteomacs have been described as critical
mediators of endochondral and intramembranous bone
healing in murine models of bone injury [41, 42]. Osteomacs
were in direct contact with matrix-producing and mineralising
osteoblasts and were distinct from infiltrating inflammatory
macrophages as characterised by high expression of Mac2.
Depletion of osteomacs significantly suppressed new bone
formation whereas specifically expanding osteomacs, but not
their Mac2high inflammatory counterparts, resulted in a signif-
icant increase in new mineralised matrix [41]. In a murine
femoral fracture model, IHC demonstrated that inflammatory
macrophages (F4/80(+)Mac-2(+)) were localized with initiat-
ing chondrification centers and persisted within granulation
tissue at the expanding soft callus front. Resident macro-
phages (F4/80(+)Mac-2(neg)), including osteal macrophages,
were predominated in the maturing hard callus. Ablation of
macrophages using the MAFIA mice abolished or reduced
callus formation supporting the conclusion that inflammatory
macrophages were required for initiation of fracture repair.
The exact contribution of both inflammatory and resident
macrophages to anabolic bone repair and the factors they pro-
duce remain to be elucidated [42].

Osteonecrosis (ON) is another example of inflammatory
bone loss. Experimentally, injection of methylprednisolone
in mice led to the infiltration of M1 macrophages and expres-
sion of TNF in the necrotic zone during the early stages of
disease progression. TNF levels gradually decreased and a
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larger M2 cell population presented in the necrotic zone in the
late stage of ON. At this late stage, histologic findings of
appositional new bone formation around the necrotic bone
suggested that M2 macrophages could be beneficial for re-
solving inflammation and promoting tissue repair [43]. It is
evident from these studies that cell–cell interactions between
macrophages and osteoblasts and their progenitors are critical
for bone formation; however, the osteogenic factors derived
from either cell type that are involved these interactions
remained less clear.

Macrophage-derived Factors in Osteoblast
Differentiation

Using an in vitro human system, we showed that monocytes
andmacrophages could promote the osteogenic differentiation
of bone marrow derived mesenchymal stem cells (MSC), the
precursor of the osteoblast. This process required direct cell–
cell contact leading to the production of a soluble factor and
was dependent on prostaglandin E2 (PGE2) and cyclooxygen-
ase 2 (COX2). This soluble factor was shown to induce
STAT3 phosphorylation and was identified as oncostatin M
(OSM) [44] (Fig. 1). Another study by Guihard et al. showed
that monocyte/macrophages activated via LPS or endogenous
ligands similarly induced osteoblast formation fromMSC due
to the production of OSM. The authors found that classically
activated inflammatory M1 and not M2 macrophages were
responsible for OSM production via a COX2 and PGE2 reg-
ulatory loop. Two other gp130 cytokines, IL-6 and leukemia
inhibitory factor, were induced in this system and showed

similar effect on MSC differentiation [45]. A third study also
showed OSM-driven osteoblast formation from MSC using
conditioned media of macrophages derived from cord blood.
These macrophage populations were then treated withM-CSF
plus IL-4 (to induce alternative activation) or with GM-CSF,
IFN-γ, and LPS to represent classical activation. In this case,
conditioned media from IL-4-treated macrophages stimulated
osteoblastic maturation in MSC, whilst the classically-
activated macrophages did not [46]. This leads to a conflict
between these two studies although work from our own labo-
ratory is in favor of supporting a role for alternatively activat-
ed macrophages as the most potent inducers of osteoblast
formation.

Monocytes and macrophages are known producers of
OSM [47] which has been shown to increase osteogenic dif-
ferentiation and mineralisation both in vitro and in vivo.
Transgenic mice overexpressing OSM develop osteopetrotic
bones and enlarged hind limbs [48], whilst directed OSM
expression in mouse knee joints stimulated periosteal bone
formation [49]. We, and others, have also shown that injection
of OSM over calvarie of 5-week-old male C57BL/6 mice
leads to an increase in calvarial thickness, mineral apposition
rate, mineralizing surface/bone surface, and bone formation
rate/bone surface [44, 50]. OSM regulates osteoblast differen-
tiation through rapidly inducing the transcription factors
C/EBPδ and C/EBPβ, and subsequent activation of transcrip-
tion factor Runx2 but also by strongly inhibiting expression of
sclerostin, an osteocyte-derived mineralisation inhibitor [50].
In addition, OSM can activate STAT3 signaling in osteoblasts
[44, 51] leading to increased ALP activity which can be abro-
gated by both tyrosine and threonine/serine kinase inhibitors
[52] and overexpression of a STAT3 dominant negative in
MSC [44]. OSM signaling through STAT3 has also been
shown to directly target Wnt5a [53, 54] that promotes osteo-
genic differentiation of MSCs. Furthermore, the activation of
STAT3 byOSM can induce expression of c-Fos [55]. All these
studies provide evidence of the possible mechanisms by
which monocytes induce MSC osteogenic differentiation
through OSM.

As previously discussed, an early phase of inflammation is
associated with fracture repair. In a murine tibial injury model
of intramembranous bone formation, OSM was expressed
during this inflammatory phase and the depletion of macro-
phages repressed OSM expression. OSM deficient mice
showed reduced STAT3 activation during the hematoma stage
of repair leading to a significant reduction in the amount of
new intramedullar woven bone at the injured site [56]. The
exact contribution of inflammation, as opposed to mechanical
destabilization, to the pathogenesis of osteoarthritis and the
formation of osteophytes are undecided. OSM, in combina-
tion with TNF, has formerly been shown to stimulate cartilage
degradation via matrix metalloproteinase-13 [57]. In a recent
study, OSM was higher in fluid and tissue from 32 patients

Fig. 1 Cell–cell contact between MSCs and macrophages results in the
production of PGE2 and acting via the EP2/4 receptors on the
macrophages to induce OSM production. OSM acts via the OSM and
LIF receptors on the MSC to activate STAT3 phosphorylation and switch
on a program of osteoblast differentiation genes. STAT3 signaling also
leads to the upregulation of the receptors for OSM to amplify its effects
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with knee OA compared with the controls. In vitro, OSM
increased osteoblast proliferation and differentiation via a
downregulation of Notch signaling molecules [58]. Whilst
not providing direct evidence, it is tempting to speculate a role
for OSM in osteophyte formation however this remains to be
proven.

Much of the work investigating MSC interactions with
monocytes and the factors involved has been due to the im-
munomodulatory properties of MSC. Macrophages co-
cultured with MSCs showed an increased expression of
CD206, increased production of IL-10 and IL-12p40, and re-
duced production of TNFα, IL-6, and IL-12p70 [59–61].
MSC inhibited the upregulation of CD86 and MHC class II
in LPS-stimulated macrophages impairing their ability to ac-
tivate antigen-specific CD4+ T cells whilst increasing their
phagocytic capacity [60]. These studies show that MSCs can
polarise macrophages into a phenotype resembling alterna-
tively activated macrophages, an environment that on balance
appears to be in accord with these macrophages promoting
bone formation and tissue repair (Fig. 2). PGE2 has been iden-
tified as a major factor involved in the immunomodulatory
properties of MSCs [59–61]. Recent in vivo studies using
scaffolds impregnated with MSC to promote bone formation
have shown that MSCs induce mobilization of macrophages
and induce their functional switch from pro-inflammatory to
an alternatively activated phenotype via PGE2 production.
Subsequently, there is the formation of a bone regenerative
niche through the recruitment of endothelial and osteogenic
precursors from the bone marrow [62]. PGE2 has been report-
ed to have many important roles in bone including osteoclast
a nd o s t e ob l a s t f o rma t i o n and f un c t i o n , bon e
mechanotransduction, and repair [63, 64]. It has been

demonstrated in bone fracture sites that infiltrating macro-
phages have elevated expression of COX2 and that this is
required for bone repair [65]. PGE2 has been shown to directly
promote osteoblast differentiation [66–68] but can also induce
OSM production in monocytes and macrophages [69], which
could suggest that COX2 expressing macrophages at fracture
sites are critical for bone repair at least in part due to their
production of OSM.

However, OSM is not the only STAT3 activating factor,
and activation of STAT3 is not the only signaling pathway
associated with osteoblast differentiation [70, 71]. We have
shown that constitutive activation of STAT3 enhances osteo-
genesis of MSCs accompanied by upregulation of ALP and
RUNX2 as well as downregulation of Dickkopf homolog 1
(DDK1). In addition, constitutively active STAT3 induced the
expression of the OSM receptor (OSMR) and leukemia inhib-
itory factor receptor (LIFR) making osteoblast progenitors
more responsive to OSM [44, 50]. Bone formation by
entheseal resident T cells depends on IL-22 production [34],
and in other systems, MSC/macrophage interaction is mediat-
ed by IL-10 production [61]—both of these cytokines lead to
signaling via STAT3. The interleukin-6 (IL-6) family cyto-
kines, of whichOSM is a member, act via gp130 and stimulate
STAT3 phosphorylation. There was a profound reduction in
trabecular bone mass when gp130 was deleted in the entire
osteoblast lineage (Osx1Cre gp130 f/f) and also when this
deletion is restricted to osteocytes (DMP1Cre gp130 f/f) [72].

Cyclic AMP-signaling via PGE2, as well as SMAD signal-
ing via BMP-2, results in osteoblast differentiation [73].
Whilst there is a documented role for PGE2 in both macro-
phage polarization and in osteoblastogenesis, there is scant
direct evidence for BMP2 in conjunction with macrophages

Fig. 2 MSCs are activated by
pro-inflammatory mediators such
as IFNγ to exert their
immunoregulatory abilities
including macrophage
polarisation towards an
alternatively activated phenotype.
PGE2 has been shown to be
involved in this process. In turn,
OSM from the macrophage
induces STAT3 phosphorylation
and promotes osteoblast
differentiation from MSC, and
thus, inflammation is dampened
and the tissue repair process is
initiated

Clinic Rev Allerg Immunol (2016) 51:79–86 83



beyond the ability of PGE2, acting via the EP2 and EP4 re-
ceptors on osteoblast precursors, to induce BMP production.
To date, most of the Wnt signaling interactions in bone have
focused on osteoblast–osteoclast crosstalk, and there is little
literature on the role of polarized macrophages in this signal-
ing pathway.

Conclusions

The world of macrophage biology has entered into an exciting
phase, and their contribution to both bone formation and de-
struction is a growing field of research. The advent of the
genomic era has provided us with more insight than ever as
to the diversity of macrophage activation states in both normal
homeostasis and in disease [5, 8]. Macrophages are an integral
part of bone tissue that regulate normal osteoblast differentia-
tion from mesenchymal progenitors and bone formation [39,
74]. During inflammation, osteoblast precursors encounter
pro-inflammatory macrophages that one might predict would
inhibit bone formation. However, the resolution of inflamma-
tion and subsequent tissue repair process is a tightly regulated.
MSC, as osteoblast precursors, has been reported to induce a
switch for a pro-inflammatory phenotype to an alternatively
activated macrophage phenotype, and the weight of evidence
to date supports a role for these cells in inducing osteoblast
formation to promote bone tissue repair. OSM is the most
documented of the macrophage-derived factors that promote
this process but there are certainly more to be discovered in the
coming years. It is the clues from these investigations that will
direct the next generation of bone anabolic therapies.
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