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Abstract The tumour necrosis factor receptor OX40
(CD134) is activated by its cognate ligand OX40L
(CD134L, CD252) and functions as a T cell co-stimulatory
molecule. OX40-OX40L interactions have been proposed as a
potential therapeutic target for treating autoimmunity. OX40 is
expressed on activated T cells, and in the mouse at rest on
regulatory T cells (Treg). OX40L is found on antigen-
presenting cells, activated T cells and others including lym-
phoid tissue inducer cells, some endothelia and mast cells.
Expression of both molecules is increased after antigen pre-
sentation occurs and also in response to multiple other pro-
inflammatory factors including CD28 ligation, CD40L liga-
tion and interferon-gamma signaling. Their interactions pro-
mote T cell survival, promote an effector T cell phenotype,
promote T cell memory, tend to reduce regulatory function,
increase effector cytokine production and enhance cell mobil-
ity. In some circumstances, OX40 agonism may be associated
with increased tolerance, although timing with respect to an-
tigenic stimulus is important. Further, recent work has sug-
gested that OX40L blockade may be more effective than
OX40 blockade in reducing autoimmunity. This article re-
views the expression of OX40 and OX40L in health, the

effects of their interactions and insights from their under- or
over-expression. We then review OX40 and OX40L expres-
sion in human autoimmune disease, identified associations of
variations in their genes (TNFRSF4 and TNFSF4, respective-
ly) with autoimmunity, and data from animal models of hu-
man diseases. A rationale for blocking OX40-OX40L interac-
tion in human autoimmunity is then presented along with
commentary on the one trial of OX40L blockade in human
disease conducted to date. Finally, we discuss potential prob-
lems with clinical use of OX40-OX40L directed
pharmacotherapy.
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Introduction

There is increasing interest in the role of the T cell co-
stimulatory tumour necrosis factor receptor (TNFR) OX40
and its cognate ligand, OX40L, in immunoregulation, and
especially as a therapeutic target. Capacity exists both to en-
hance immune activity to promote immune responses in vac-
cination and to break tolerance in cancer immunotherapy, and
also to reduce immune activity in hypersensitivity, atheroscle-
rosis, sepsis and autoimmunity. This review considers
autoimmunity.

Autoimmunity may be considered as a ‘clinical syndrome
caused by the activation of T cells or B cells, or both, in the
absence of an ongoing infection or other discernible cause’ [1]
and is typically associatedwith autoantibodies reactive against
self antigens [2]. Autoimmune disease, where there is also a
negative effect on health in addition to autoimmunity, affects
some 3 % of the US population. It may cause long-term mor-
bidity compounded by side effects from untargeted
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immunosuppressive therapy [3]. In addition, several autoim-
mune diseases are not responsive to standard immunosuppres-
sants and there is a need for effective but targeted and tolerable
therapy. This review focuses on the logical and experimental
evidence for the potential of OX40-L manipulation to treat
autoimmunity.

OX40 and OX40 Ligand

The tumour necrosis factor receptor OX40 was first identified
on activated rat lymphocytes: The first murine OX40 antibody
was raised in mice immunized with phytohemagluttinin-
activated rat lymph node. The antibody bound exclusively to
activated CD4+ T cells and increased their proliferation after
standardized stimulation in culture [4]. The identifier CD134
has since been allocated to the target receptor with its single
transmembrane domain and cysteine-rich extracellular do-
main, but the name OX40 remains more common and is used
in this review [5]. OX40’s cognate ligand is variously de-
scribed as OX40L, CD134L, CD252 and gp34; OX40L will
be used hereafter.

In 1994, OX40L was identified on an EBV-transformed B
cell line with low-level expression on activated T cells [6].
This ligand for OX40 is a type II transmembrane protein and
both mRNA and protein are markedly induced in human Tcell
leukaemia virus 1-infected cells. OX40L is expressed in tri-
meric form and binds three OX40molecules with high affinity
and slow dissociation [7, 8]. After it was cloned, OX40L was
shown to increase T cell proliferation in response to a variety
of standard stimuli [6].

OX40 and OX40L are encoded by TNFRSF4 and TNFSF4
on chromosome 1, where they are in close proximity to other
TNF family molecules. The ligand-receptor pair is only pres-
ent in the mammalian lineage and has been proposed as hav-
ing evolved to permit the fine-tuning of memory and high-
affinity antibody production to allow continued reproductive
success after placentation [9]. Initial cloning and first sequenc-
ing revealed similarities to CD40L and CD40 (TNFSF5/
TNFSFR5), and they were later established as members of
the TNF and TNF receptor superfamilies [5].

Expression of OX40

Since its identification, the expression profile of OX40 has
been confirmed as being predominantly on activated lympho-
cytes, and amongst these predominantly CD4+ T cells. On
human CD4+ T cells, there is no expression of OX40 at rest,
although in murine regulatory T cells (Treg) constitutive ex-
pression is reported [10]. Expression is seen on activated,
memory and regulatory CD4+ T cells [11, 8, 12], at lower
levels on activated CD8+ cells [13] but not on naïve cells.

OX40 expression is also a marker of thymic T cells receiving
positive selection signals [14]. Further, lower level OX40 ex-
pression is seen on NKT cells [15], NK cells [16] and neutro-
phils [17]. Reports on the function of OX40 other than on T
cells are limited and the remainder of this article considers T
cell OX40 alone.

T cell receptor ligation alone is sufficient to drive OX40
expression on CD4+T cells, but co-stimulatory ligation of
CD28 by CD80 and CD86 (together B7) augments expres-
sion, as does CD40-CD40L ligation [18, 19]. IL-2 may induce
OX40 on both CD4 and CD8 T cells [20, 21] and IL-1 and
TNF also contribute. Further, the proteins Roquin 1 and 2 act
as posttranscriptional regulators of protein expression and ap-
pears to act to degrade OX40 mRNAs: deficiency in function-
al Roquin results in increased expression [22] (see Fig. 1).

Reports on the time-course of OX40 expression vary, but in
general expression on previously unstimulated CD4+ T cells
reaches maximal 48 h after T cell receptor stimulation in both
mouse [23] and human [24]. Murine memory T cells will re-
express OX40 within 4 h of re-stimulation [23]. Such rapid re-
expression of OX40 appears to be partly regulated by Sp1/
Sp3, YY1 and NFκB. NFκB histone acetylation has been
demonstrated in memory T cells, which express OX40 in a
few hours on stimulation [25].

Consistent with observations that it restricted to activated T
cells, OX40 expression is often confined to sites of inflamma-
tion and immune activation in human disease and this is
reviewed below [26, 27]. In myelin-immunized rats, which
go on to develop experimental allergic encephalomyelitis
(EAE), OX40 denoted those T cells that were specific for
myelin [28] and OX40 demarcation of antigen specificity is
also true after Th1-type response promoting Listeria infection
[29]. In humans, OX40 expression on T cells has been report-
ed to demarcate autoreactive cells in type 1 diabetes mellitus
[30].

Expression of OX40 Ligand

As with OX40, OX40L expression is upregulated in response
to antigen presentation on multiple antigen-presenting cells:
these include B cells [31], macrophages [32] and dendritic
cells [33]. The repertoire of cells that can be induced to ex-
press OX40L is broader than for OX40 and reports exist of
expression on mast cells [34, 35], bronchial smooth muscle
[36], malignancies [37], vascular endothelial cells [38] and
Langerhans cells [39]. There is constitutive expression on
lymphoid tissue inducer cells [40]. Activated CD4+ and
CD8+ T cells may also express OX40L and this may be en-
hanced by IL-12 exposure, with CD4+ cells showing greater
expression than CD8+ [41, 42].

Factors promoting OX40L expression other than antigen
presentation and accompanying co-stimulation include
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interferon gamma (IFNγ), in an IFNγ-receptor-dependent
mechanism [43, 44], prostaglandin E2 [45], TSLP [46] and
IL-18 [47]. Finally, human serum soluble OX40L increases
with age [48].

Functions of OX40-OX40 Ligand Interactions

OX40 Engagement Expands Effector Tcells and Prolongs
Their Survival

Experiments with a soluble form of OX40L have shown that
its engagement amplifies T cell proliferative responses to a
range of stimuli [6]. Activation does not affect early prolifer-
ation and activation but controls late proliferation and activa-
tion states [41, 19]. Figure 2 summarizes the effects of OX40
ligation.

In vivo work has shown that OX40 ligation preferentially
expands the antigen-specific T cell pool [49, 50].

Correspondingly, there is reduced CD4+ expansion in
OX40- or OX40L-deficient mice and constitutive OX40L ex-
pression by either dendritic cells (DCs) [51] or T cells [52]
results in a greater numbers of activated CD4+ T cells, and
transfecting DCs with OX40L mRNA increases their CD4+ T
cell stimulatory potency and increases T cell polarization [53].

OX40 ligation results in augmentation of effector cyto-
kine production [23] and prolongation of activation, and
this is partially mediated through stabilization of mRNA
[54]. The cytokines produced appear dependent on other
factors: see below. An important mechanism by which T
cells may prolong activation is through T cell-T cell inter-
actions: by expression of both OX40L and OX40 on acti-
vation, T cells may stimulate other T cells, so sustaining
activation [41]. Thus, proliferation is reduced in stimulated
pure T cell cultures by OX40L blockade. An intriguing
observation with relevance to autoimmunity is that T cells
activated through OX40 become resistant to subsequent
regulation by Treg [10].
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OX40 & OX40L
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Fig. 1 OX40 and OX40L
expression, interaction and
molecular consequences. At rest,
no or minimal OX40 and OX40L
is expressed. Expression of both
is increased by antigen
presentation to the T cell receptor
and the engagement of co-
stimulatory molecules (CD28
with CD80 and CD86, and
CD40L with CD40) in a
mechanism that involves the
influx of calcium. OX40L is
expressed on both APC and T
cell; OX40 expression is limited
to the T cell. Expression on naïve
cells occurs after 24 to 72 h.
Factors affecting expression are
highlighted. Arrows denote
positive effects; barred lines
denote negative effects. APC=
antigen-presenting cell; IFN-γ=
interferon gamma; TLR=toll-like
receptor; PGE2=prostaglandin
E2; IL=interleukin; mRNA=
messenger ribonucleic acid;MHC
II=major histocompatibility
complex class II; TCR=T cell
receptor; TNF=tumour necrosis
factor
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The direction of T cell polarization is dependent on the
cytokine milieu and may favour Th1, Th2 [33, 46], Th9 [55]
or Th17 [56] cytokine production depending on circum-
stances; naïve T cells predominantly produce IL-4 [57].
OX40 ligation’s general net effect of promoting immune acti-
vation was demonstrated in a landmark experiment where a
single dose of agonistic OX40 antibody was demonstrated to
break tolerance that had been induced to an exogenous peptide
[58].

OX40 and T cell Regulation

Both mice and humans lacking OX40 have reduced numbers
of natural Treg alongside a reduction in other non-naïve T cell

subtypes [10, 37]. Correspondingly, mice that constitutively
express OX40L on T cells have increased numbers of Treg in
their spleens alongside autoimmunity (see below; [52]).
OX40, together with the other TNFRSF members, appears
to couple the signal strength of TCR signals and fine-tune
sensitivity to IL-2 [59]. Given that both TCR signal strength
and IL-2 receptor signaling contribute to thymic Treg selec-
tion, this is consistent with the observation that OX40 marks
thymic T cells receiving signals of positive selection [14].

OX40 agonists can drive Treg expansion in TGFβ-treated
cultures, although the cytokine milieu is key. If IFNγ and IL-4
are present, there is preferential expansion of effector CD4+;
with blockade of IL-4 and IFNγ, there is Treg expansion [60].
However, OX40 stimulation without IL-2 produces weakly
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Fig. 2 Effects of OX40 ligation on T cells. Major effects of OX40
ligation are highlighted in bold with effector mechanisms below. Note
that in some situations, OX40 ligation promotes a regulatory rather than
effector phenotype: see text. Molecular mechanisms are described in
more detail in Fig. 4. Arrows denote positive effects; barred lines
denote negative effects; dashed lines show relations. APC=antigen-
presenting cell, IL: interleukin; IL2Rα=IL-2 receptor alpha; IL-12R=
IL-12 receptor; IFN-γ=interferon gamma; CXCR5=C-X-C chemokine
receptor type 5; Th1=T-helper cell type 1; Th2=T-helper cell type 2;

Th17=T-helper cell type 17; CTLA-4=cytotoxic T-lymphocyte
associated protein 4; TGF-β=transforming growth factor beta; FoxP3=
Forkhead box p3; Bcl-2=B cell lymphoma 2; Bcl-xL=B cell lymphoma-
extra large; BCL2A1=Bcl-2-related protein A1; FAS=Fas cell surface
death receptor; TRAF=TNF receptor-associated factor; NFκB=nuclear
factor kappa-light-chain-enhancer of activated B cells; ERK=
extracellular-signal-regulated kinases; PI3K=Phosphatidylinositol-4,5-
bisphosphate 3-kinase; AKT=protein kinase B
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proliferating, poorly suppressive Treg whilst exogenous IL-2
is sufficient to correct this [61]. Further experiments in lym-
phocyte cultures treated with the combination of anti-CD3 and
anti-CD28 antibodies with exogenous IL-2 have suggested a
Treg inhibiting role of OX40: in vitro TGFβ-driven conver-
sion to Treg is reduced by OX40 in both mouse and human
[62, 63]. In a variety of carcinoma models, agonistic anti-
OX40 injected into tumours causes Treg deactivation and de-
pletion, and also mediated tumour regression [64]. Similarly,
the expansion and regulatory capability of established
‘ICOS+IL-10’ Tregs is inhibited by OX40 [63, 65].

OX40-deficient Treg appear to have reduced suppressive
function. In a study of transfer colitis, Treg lacking OX40
were ineffective at correcting disease whereas their replete
counterparts were effective [66], and in an allograft model,
OX40 treated Treg were less able to suppress rejection, effec-
tor T cell proliferation or interferon-γ production [67].

OX40 Promotes and Sustains CD4+ T cell Memory

Numbers of memory cells are increased after administration of
OX40 agonists in a TRAF2-dependent manner in an antigen-
specific mouse model [68] and OX40 is required for both
maintenance and effective reactivation in memory T cell-
mediated allograft rejection [69]. Similarly, OX40 signals
are required for appropriate expansion of a memory T cell
pool. Appropriately, fewer memory T cells are seen in OX40
deficiency [49, 70] and numbers are increased in mice with
constitutive OX40L expression on either DC [51] or CD4+ T
cells [52] or with OX40L antibody ligation [49]. These find-
ings are supported by the observation that OX40 signals per-
mit and sustain the acquired response to vaccination [13].

OX40 Promotes Generation of Memory CD8+ T cells

OX40-L interactions appear to have an analogous role in cy-
totoxic CD8+ Tcells to that in CD4+ cells: initial activation is
not inhibited by their absence and initial responses to viral
infection are maintained [71]. However, OX40 promotes
CD8+ Tcell survival [72] and the generation and maintenance
of antigen-specific cells [73]. CD8-mediated allograft rejec-
tion is impaired in the absence of OX40-L interactions [74]
and anti-tumour immunity is improved after treatment with
OX40 agonists in a number of models [75], and this may be
in part by forcing CD8+ T cells out of senescence [76].

Ligated OX40 Forms a Signaling Complex Which Alters
Transcription Through Multiple Pathways

The molecular events that follow OX40 engagement by
OX40L are incompletely described although there is interac-
tion with a number of established pro-inflammatory media-
tors. Molecular pathways are summarized as Fig. 3.

OX40 Interactions Facilitate Adhesion and Migration

OX40-OX40L interactions facilitate the adhesion of activated
T cells to endothelia and their subsequent transmigration.
Blockade of OX40L has been demonstrated to reduce T cell
adhesion to cultured vascular endothelial cells [38]. In mice
with constitutive OX40L expression on dendritic cells, there is
greater accumulation of CD4+ T cells in stimulated lymphoid
tissue and this has been interpreted as evidence of increased
migration, although increased proliferation cannot be exclud-
ed [51]. OX40-deficient T cells proliferate faster in vitro than
OX40-sufficient T cells but survive less well. OX40-L inter-
actions upregulate a number of molecules implicated in mi-
gration: CXCR5, which is associated with trafficking to ger-
minal follicles [18] but also sites on inflammation [77];
CXCR4 [78]; and RANTES/CCL5 [79]. In animals, there is
evidence that OX40-deficient T cells may be impaired from
reaching sites of inflammation in addition to their reduced
effector function [80, 66, 77].

OX40-L Interaction also Promotes Activity of the Cell
Expressing OX40L

The effects of OX40L ligation on the expressing cell are less
well studied than those of OX40 ligation and are summarized
in Fig. 4.

OX40 and OX40 Ligand Aberrations in Transgenic Mice

A key study highlighting OX40-OX40L interactions’ role in
autoimmunity was performed in 2002 when Murata and co-
workers generated mice transgenic for TNFSF4with the trans-
gene under the control of the lck promoter [52]. This resulted
in the constitutive expression of OX40L on all T cells.
Phenotypically, these mice had greatly elevated numbers of
CD4+ T cells of which an increased proportion were of a
memory phenotype, greatly enlarged lymphoid organs, en-
hanced antigen-specific T cell responses as measured by pro-
liferation and cytokine production, increased serum antibody
concentrations and Th2-type cytokines prior to stimulation
and—perhaps most interestingly—multi-lineage infiltrates of
both lung and colon; these changes were prevented by the
administration of a blocking OX40L antibody. A further in-
teresting observation from the study was that autoimmunity
was only induced in C57BL/6 mice and not BALB/c: perhaps
related to the former’s greater tendency to produce Th1-type
immune responses. Of note, autoimmunity may be similarly
induced with constitutive expression of other TNFR ligands
such as LIGHT [81].

If OX40L is constitutively expressed on dendritic cells,
numbers of CD4+ T cells are increased seen in B-follicles
and these cells are of a more activated phenotype after immu-
nization with an antigenic nitrophenol conjugate but not at rest
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or after lipopolysaccharide alone. In contrast with mice with
over-expression of OX40L on T cells, there was no overt
autoimmunity [51].

Mice deficient in OX40 were generated in the late 1990s
[7, 71]. Such mice breed normally and appear able to generate
both IgM and IgG subclass responses to pathogens such as
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Fig. 3 Signaling pathways after OX40 stimulation. OX40L is trimeric
and each trimer associates with three OX40 molecules. The signaling
complex alters transcription through multiple pathways: a signaling
complex involving TNF receptor associated factor 2 and 6, and
possibly TRAF5, and IKKα, IKKβ, IKKγ is formed, IκB is
phosphorylated and degraded and the NFκB sub-unit RelA, along with
p50 is then able to enter the nucleus [167, 168, 68]; in a TRAF6-
dependent process, IKKα acts to permit RelB nuclear entry [55]; the
OX40 signaling complex phosphorylates STAT5 permitting nuclear
entry [61]; OX40 permits the intracellular entry of calcium, this then
activates calcineurin via calmodulin resulting in the dephosphorylation
and nuclear entry of NFAT [8]; PI3K complexed to activated OX40
increases phosphorylation of AKT (also known as a PKB) in a PDK-
dependent manner, this in turn amplifies signaling through the IKK
complex [100]. The NFAT and PI3K pathways amplify signals from
antigen-stimulated T cell receptors. There are multiple transcriptional

effects including suppression of FoxP3 [67] and increased transcription
of BLIMP-1 [169] tending to promote an overall effector phenotype.
Cytokine transcription is dependent on pre-existing polarization state:
e.g. IL-9 in Th9 cells [55]. Note that a number of these pathways are
shared with other TNFRs and T cell receptor stimulation itself. TRAF=
Tumour Necrosis Factor (TNF) receptor associated factor; STAT=Signal
Transducer andActivator of Transcription; PI3K=phosphatidylinositol 3-
kinase; PDK=phosphoinositide-dependent kinase; AKT=protein kinase
B; IKK=IκB kinase; NFAT=nuclear factor of activated T cells; RelA and
RelB V-rel avian reticuloendotheliosis viral oncogene homolog A and B;
FoxP3=Forkhead box P3; CTLA4=cytotoxic T lymphocyte antigen-4;
TGFβ=transforming growth factor beta; BLIMP-1=PR domain zinc
finger protein 1; Bcl-2 and Bcl-XL=B cell lymphoma 2 and XL; Bcl-
XL; Bfl-1=Bcl-2 related protein A1; IL=interleukin; IL-12Rβ2=IL-12
receptor β2 sub-unit

Clinic Rev Allerg Immunol (2016) 50:312–332 317



vesicular stomatitis virus and also to haptenized proteins with
maintained germinal centre formation. CD8+ cytotoxic lym-
phocyte responses are maintained, but stimulated CD4+ T

cells show reduced proliferation and IFNγ responses to virus-
es. However, viral response in OX40 deficiency appears var-
iable and numbers of infiltrating cells on bronchoalveolar
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Fig. 4 Effects of OX40L ligation on non Tcells. In addition to effects on
T cells as summarized in Fig. 2, OX40-OX40L ligation has a number of
effects on the cell expressing OX40L. These are highlighted in bold by
cell type. See text for further details. References: Dendritic cells [170], B
cells [171, 172], endothelia [79], mast cells [173]. Ig=immunoglobulin;

BSAP=B cell specific activator protein; RANTES/CCL5=regulated on
activation, normal T cell expressed and secreted/chemokine (C-C motif)
ligand 5; IL: Interleukin, IgE=immunoglobulin E; TNFα=Tumour
necrosis factor alpha
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lavage in response to influenza virus were reduced in OX40-
deficient animals [71]. Similarly, the generation of CD4mem-
ory is greatly impaired in OX40 deficiency [49].
Haplosufficiency of OX40 appears sufficient for a phenotyp-
ically normal CD4+ response.

Human OX40 Deficiency

A single human with homozygous recessive missense muta-
tions in TNFRSF4 has been reported. She had reduced surface
T cell OX40 expression and poor OX40L binding [37]. The
patient was identified through exome sequencing of cases of
classic Kaposi’s sarcoma (KS): a disease usually confined to
the immunosuppressed, especially in conditions where there is
CD4+ T cell dysfunction such as HIV/AIDS [82]. This pa-
tient’s CD4+ T cells showed minimal OX40 staining after
stimulation in contrast to controls. Transfection of Jurkat cells
with vectors carrying the mutant gene demonstrated greatly
reduced OX40 staining in comparison with control.
Phenotypically, there was treatment-responsive visceral leish-
maniasis (in which clearance is associated with strong Th1–
IFNγ responses [83]), an absence of non-naïve T cells in her
peripheral circulation, reduced IFNγ responses after in vitro
stimulation of peripheral CD4+ T cells to commonly encoun-
tered antigens and preserved proportions of class-switched
antibody with reduced numbers of memory B cells. There
was no evidence of the infectious diseases usually associated
with antibody deficiency or CD4+ T cell deficiency. Also
despite evidence of contact with EBV and CMV, she lacked
recall responses to these pathogens although also lacked evi-
dence of related disease.

OX40 and OX40L with Relation to Specific Diseases
and Disease Models

Polymorphisms in TNFSF4 are Associated with SLE
and Systemic Sclerosis with Associations With Sjögren
Syndrome and Narcolepsy

An important early study assessing TNFSF4’s link to autoim-
munity examined both families and case-controls study in
SLE patients from both the USA and UK. OX40L variants
were both over- and under-transmitted in SLE [84]. The group
went on to demonstrate increased relative OX40L expression
in comparison to other markers on stimulation of peripheral
blood mononuclear cells and a greater proportion of cells pos-
itive for OX40L in those with disease-associated variants.

Genome-wide association studies have confirmed linkage
with TNFSF4 polymorphisms in both European [85] and Han
Chinese [86] populations. Candidate gene work has con-
firmed that several European risk variants are also significant-
ly associated with disease amongst Mestizo or mixed heritage
European-AmerIndian peoples [87], with the unconfirmed

suggestion that OX40L variants may be linked with develop-
ing renal manifestations of the disease in Chinese [88]. Multi-
population meta-analyses have confirmed linkage of numer-
ous TNFSF4 variants with SLE [89] and have also suggested
relative specificity to SLE rather than other autoimmune con-
ditions. The use of fine-mapping of TNFSF4 in SLE and con-
trol subjects from multiple ancestries has confirmed that the
phenomenon is not a manifestation of linkage disequilibrium
and also linked the rs2205960-T variant with specific autoan-
tibodies and lymphopenia [90].

Two separate candidate gene studies have demonstrated
associations of polymorphisms with systemic sclerosis [91,
92]. Both protective and at risk variants were identified as well
as specific association with limited—rather than diffuse—dis-
ease. Later meta-analysis of several large GWAS studies con-
firmed the association of several TNFSF4 and also identified
an association with anti-centromere antibodies [93].

The sleep disorder narcolepsy has been considered autoim-
mune because of its strong associations with specific HLA
variants and that similar disease is induced by serum transfer
in animals; autoreactive T cells and autoantibodies are not yet
identified. A role for OX40L is suggested in narcolepsy fol-
lowing a significant association with TNFSF4 polymorphism
in an ImmunoChip® study involving some 1,886 patients
[94]. No studies assessing protein expression or function are
yet reported.

A link between variants in TNFSF4 and Sjögren syndrome
has been suggested by a candidate gene study in a
Scandinavian cohort of 540 patients, but validatory studies
are required [95].

OX40 is Expressed at Sites of Autoimmune Inflammation

In autoimmunity, OX40 is typically upregulated at sites of
inflammation (summarized in Table 1). Consistent with its
known expression pattern, OX40 is identifiable on infiltrating
lymphocytes in multi-system diseases such as vasculitis but
staining is only seen in affected organs; in non-confluent co-
litis, staining is only seen in biopsies from affected areas, and
in rheumatoid arthritis, OX40 upregulation is particularly pro-
nounced on synovial lymphocytes from inflamed joints [96,
27, 26]. In more localized diseases such as colitis, colonic
OX40+ expression is not associated with increased systemic
expression as assessed in peripheral blood; in more systemic
conditions, there is a typically a peripheral increase (see
below).

OX40 is Upregulated on Peripheral Circulating Lymphocytes
in Autoimmunity

In systemic diseases, there is commonly an increase in the
number of peripheral CD4+ T cells expressing OX40.
Consistent with observations from conditions where there is
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site-specific autoimmunity, in systemic autoimmunity there is
often a correlation of expression and disease severity e.g. in
SLE [97–103]. Disease-ameliorating interventions can reduce
proportions of circulating lymphocytes expressing OX40 such
as natalizumab in multiple sclerosis or may correlate with
other measures of severity: in myasthenia gravis there is a
correlation with acetylcholine receptor antibody titer [104,
105].

Lymphocyte OX40 Expression may Correlate
with Pathogenicity in Human Autoimmunity

In an observation that mirrors experimental animal work,
OX40 expression on circulating lymphocytes predicts patho-
genic antigen specificity in T1DM [106]. Similarly, OX40 and
CD25 (IL2Rα) co-expression is strongly predictive of identi-
fying autoreactive Tcells in patients with T1DM and also pre-
diabetic probands, suggesting a role in disease initiation [30].
The association of OX40 expression with increased lympho-
cyte activity lends interest to the finding that OX40 mRNA in
sorted Treg is reduced in T1DM [107]. By contrast, mRNA
for OX40 and TRAF2 were both upregulated in purified
CD4+ cells from patients with active SLE [108].
Unfortunately, no protein correlate was examined in either
study.

OX40L Expression is Upregulated in a Site-Specific Manner
in Autoimmunity

Similar to OX40, OX40L is expressed in a site-specific man-
ner in autoimmune disease (Table 1). This appears to be most
marked in autoimmune-mediated inflammation than other
causes: for example, it is maximal in immune-mediated ne-
phritides as compared with other etiologies [97].

Systemically, mRNA for OX40L was increased in the se-
rum of SLE patients with concurrent increases in TRAF2
[108]. TRAF2 is activated through ligation of TNF receptors,
and OX40 in particular. A correlation between more severe
clinical manifestations and serum OX40L mRNA was also
demonstrated.

Serum Soluble OX40L

Soluble OX40L is readily assessable in serum by ELISA and
elevations that correlate with disease severity have been iden-
tified in a number of conditions (Table 1). Some studies may
be confounded by the observation that sOX40L tends to in-
crease with age although in active Graves’ thyroiditis at least,
there is a correlation in disease state with increased sOX40L
expression [48].

Serum Soluble OX40 Alterations Vary Between Autoimmune
Diseases

Examination of serum soluble OX40 concentrations in a co-
hort of unimmunosuppressed Japanese patients with systemic
sclerosis revealed significant elevations as compared with
both healthy controls and patients with SLE [109]. sOX40 is
not however consistently elevated in autoimmunity: the re-
verse occurs in rheumatoid arthritis [110] and in SLE, there
is no difference from controls [109].

OX40-L Blockade has Variable Anti-Inflammatory Effects
in Vitro

OX40-L blockade may reduce disease-associated characteris-
tics in leucocyte cultures. Perforin-mediated hemolysis by
lymphocytes from SLE patients is reduced by OX40 block-
ade, alongside NFκB activation and hemolytic activity [111].
Similarly, the prolonged activation and reduced apoptosis seen
in T cells isolated from donors with thyroiditis is reversed, an
anti-OX40L [112]. Continued OX40 agonism may be neces-
sary to maintain a disease-associated phenotype too: for ex-
ample, it was necessary to cause proliferation in response to an
otherwise sub-mitogenic dose of anti-CD3 on an MBP-
reactive cell line derived from EAE [113]. OX40+ cells iso-
lated from a mouse colitis model showed increased IFNγ and
TNFα production in culture that was inhibited in vitro with
neutralizing OX40L [114]. In partial contrast, a Chinese group
has examined PBMCs from a small number of lupus nephritis
patients and the effects of an OX40 on them in culture with
exogenous IL-2 [103]. Production of IL-4 and IL-10 was re-
duced but IFNγ increased, suggesting a predominant anti-Th2
effect.

Expression of OX40 is Specific to Sites of Autoimmunity
and Correlates with Disease Severity in Animal Models

Consistent with observations in humans, OX40 expression is
limited to sites of immune activation in models of autoimmu-
nity. For example, OX40 (and OX40L) mRNA is increased in
the spleen, lymph node and nervous tissue of EAE rats with
non-significant changes in peripheral blood [115]. T cell
OX40 is seen in the thyroids and spleens of mice with thy-
roiditis [116], the joints of animals with collagen-induced ar-
thritis (CIA) [117], the eyes of mice with intravitreal
ovalbumin-induced uveitis [56] and on infiltrating T cells in
hapten-induced colitis [80].

Groups examining the effects of other disease-ameliorating
interventions have reported a correlation of reduced OX40
expression with lessened severity: in both a CIA model and
a human T cell leukaemia virus type I transgenic mouse mod-
el, arthritis severity was reduced by interleukin-1 deficient and
this correlated with reduced T cell OX40 expression [117]. In
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IL- receptor antagonist deficient mice, there is IL-17 depen-
dent arthritis: OX40 expression on synovium infiltrating T
cells is reduced in ameliorated disease and the IL-17 produc-
tion induced by stimulation of CD4+ T cells from these mice
was markedly enhanced by a stimulatory OX40 antibody in
culture [118].

OX40L Expression in Animal Models is Specific to Sites
of Autoimmunity

Similar to OX40, OX40L expression is consistent with clini-
cally apparent sites of inflammation: for example, diabetes-
prone non-obese diabetic (NOD) mice show OX40L in their
pancreases and secondary lymphoid organs [119]; lupus-like
nephritis prone BXSB mice express OX40L in renal lesions,
which correlate with disease severity [120]; OX40L and
OX40 protein expression in homogenized brain correlates
with disease severity in EAE [121]; and in CD4+CD45RB+
transfer colitis, infiltrating lymphocyte in the colon frequently
express OX40L [122]. The major source of OX40L expres-
sion in EAE is on CD11b+dendritic cells with data on
antigen-presenting cells incomplete in other models [123].

A further animal study has considered the role of investi-
gating the relative expression of a number of TNF ligands
between MRL/MpJ-lpr/lpr mice, which develop sialadenitis
and controls [124]. Although this study demonstrated variable
expression of TNFR ligands GITR-L and 41BB-L, OX40L
expression did not vary significantly with the degree of in-
flammation illustrating that OX40L expression is not an inev-
itably consequence of murine autoimmunity.

The H-24 derivative of the NOD mouse has a tendency to
autoimmune thyroiditis exacerbated by iodinated drinking
water. Such inflammation is T cell dependent and is likened
to Hashimoto’s thyroiditis [116]. Histological scores correlate
with thyroid OX40 and OX40L mRNA levels; OX40L posi-
tivity is seen on intrathyroid B cells with similar changes in the
spleen.

OX40 Expression in Animal Models of Autoimmunity
Correlates with an Early Initiating Event

Rats treated with Mycobacterium tuberculosis and adjuvant
predictably develop polyarthritis. In this model, OX40 expres-
sion is increased in the draining lymph nodes of inflamed
joints and expression increases before clinical signs appear
[125]. In rat EAE, there was analogous early OX40 activation
on antigen-specific lymphocytes before the onset of clinical
signs [126].

OX40 Appears to Identify Activated, Antigen-Specific Cells

Variations on the EAE model provided further insights into
the role of OX40/OX40L interactions. Recently activated T

cells autoreactive to components of nervous tissues are
OX40+ in the irises of EAE rats [127]. Expression of OX40
appears to define cells that are reactive to the myelin basic
protein antigen used to induced EAE [128], as above, cells
specific to listeria expressing a particular peptide are OX40-
positive [29] and OX40-positive circulating T cells precede
diabetes onset in NOD mice [119].

OX40 and OX40L Ameliorate Autoimmunity in Vivo

OX40L blockade in vivo generally ameliorates autoim-
munity, with strong experimental support for efficacy in
most major disease models (summarized in Table 2).
Two studies have however shown the reverse: in mice
given sheep anti-glomerular basement membrane anti-
bodies, the resultant nephritis is exacerbated by blocking
OX40L antibody with increased IFNγ+T cell infiltration
[129]. A second study reported in abstract form only
reports exacerbation of EAU with OX40L blockade, al-
though this is in contrast to other EAU and EAE studies
[130–133].

The effect of OX40L blockade may be time-dependent.
Using the NOD mouse, Pakala and colleagues showed
that OX40 is expressed on circulating CD4+ T cells prior
to the onset of overt diabetes and that OX40L is expressed
in both secondary lymphoid tissue and the pancreas [119].
Intriguingly, the group demonstrated a reduction in the
incidence of diabetes in their study population when
blocking antibody to OX40L was given at 12 weeks from
birth but not earlier or later; this contrasts with results
showing that CD28 blockade prevents diabetes in a win-
dow up to 4 weeks and is complementary to the sequential
checkpoint theory of autoimmunity proposed by Croft
[134]. Similar data are lacking for OX40 blockade.

The effects of OX40-L blockade in ameliorating auto-
immunity include preventing proliferation of active CD4+
T cells, altering cytokine production, preventing migration
and affecting T cell polarization. In mice with dextran sul-
fate sodium-induced enteritis, OX40-IgG fusion protein
reduces histological severity and reduces the production
of T-bet mRNA, suggesting reduced Th1 polarization
[77]. Disease amelioration appeared to be partly IL-10 me-
diated: IL-10 was increased by agonistic OX40 IgG and
IL-10 blocking antibodies reduced OX40-IgG efficacy.
After OX40-IgG administration, lymphocyte infiltration
reduced. CXCR5 was less expressed, suggesting one pos-
sible mechanism. In transfer colitis, OX40-deficient T cells
are unable to reach the colon [66]. A third colitis model has
confirmed reduction in Th1 type cytokines with OX40
blockade [80], a similar picture is seen in inflammatory
arthritis [123] and in EAE IL-2 and IL-6 [131]: all had
reduced severity of tissue T cell infiltrate.
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OX40L Blockade May Have More Potent Effects Than OX40
Blockade

Although OX40 is the only known receptor for OX40L, and
OX40L is OX40’s only known natural ligand, there appears to
be an increased effect of preventing OX40L signaling as com-
pared with stopping OX40 signaling or anti T cell therapy. In
CIA, an OX40-blocking FAb fragment which prevented re-
verse signaling was equaled in efficacy by an OX40L fusion
protein previously shown to block OX40L but signal through
OX40 [135]. Supporting this argument is the finding that in
mice deficient in Treg, the resultingmulti-system autoimmunity
is more significantly attenuated by OX40 blockade or deficien-
cy than CD4+ and/or CD8+ deficiency [136, 137]. Such find-
ings may offer an alternative explanation for studies where
apparent OX40 agonists have ameliorated autoimmune disease.

OX40 May Be Used to Target Depletion of Autoreactive T
Cells

Two groups have demonstrated successfully used OX40 to
target autoreactive cells. OX40 is a viable target for the deliv-
ery of liposomal drug 5′-fluoro-2′-deoxyuridine dipalmitate (a
cytostatic agent), reducing proliferation in vitro and the sever-
ity of adjuvant-induced arthritis in vivo [125]. Similarly, a
depleting immunotoxin specific to OX40 was able to amelio-
rate disease in a rat EAE model [28].

The Effects of OX40 Agonism Vary with Timing in Relation
to Antigen Exposure and Inflammatory Milieu

An interesting and clinically relevant feature of OX40 stimula-
tion has become apparent through work on EAE. Having con-
firmed others’ work that OX40 stimulation antagonized the
Treg generation in TGFβ-treated culture, Weinberg et al.
showed that blocking IL-4, IL-6 and IFNγ caused OX40
agonism to have a reverse effect and promote the generation
of Treg. This was then translated to the EAE model: OX40
agonism during induction ameliorated disease; OX40 agonism
after onset worsened disease [60]. Similar effects are reported
in models of diabetes: in NODmice immunized with intranasal
insulin, agonistic anti-OX40 reduced the incidence of diabetes
when given at immunization [138]. OX40 administration ap-
peared to augment specific Treg numbers. These Treg popula-
tions appeared to mediate tolerance: SCID mice crossed onto
the NOD background were protected when there was co-
transfer of CD4+ cells from αOX40-treated mice. Further ev-
idence of OX40 agonism enhancing the effects of the cytokine
milieu include experiments that have shown promotion of a
Th1, Th2 [33, 46], Th9 [55] or Th17 [56] type response de-
pending on the microenvironment concerned.

The same group demonstrated that OX40 expression iden-
tified encephalitogenic autoreactive T cells [113] and transfer

of these cells caused EAE after culture with stimulating OX40
but not without: suggesting that continued OX40 signaling
was necessary for maintenance of pathogenic potential [113].

In contrast, in a model of intravitreal ovalbumin-induced
uveitis in mice with ovalbumin-specific T cells, OX40 stimu-
lating antibody worsened inflammation and augmented pro-
duction of Th17 cytokines [56]. In interpreting this difference,
it should be remembered that antigen-specific effector T cells
were pre-formed not generated at the point of immunization.
However in uveitis induced by injection of a photoreceptor
protein peptide, agonistic OX40 ligation at immunization or
afterwards worsened clinical scores and prolonged duration of
inflammation [139]. There were increases in numbers of IFNγ
and IL-17 positive effector CD4+ T cells and the quantity of
IFNγ produced by cultures of splenocytes with retinal antigen
was also increased. Thus, timing of OX40 agonism is critical
in determining response.

There Is Redundancy in OX40 Co-Stimulatory Signaling

The EAE model has also highlighted OX40/L interaction’s
auxiliary role in co-stimulation. The major, and constitutively
expressed, T cell co-stimulatory molecule is CD28. In CD28-
deficient mice, EAE manifests at reduced severity. However,
when OX40L blocking antibody was co-administered, EAE
could not be induced [140]. Similarly, in Treg-deficiency
multi-system autoimmunity, combination blockade of OX40
and CD30 is sufficient to correct an otherwise lethal effector T
cell driven phenotype; either alone prolongs life by weeks
[136]. There was an additive effect of anti-OX40L and
CTLA-4 Ig co-administration in ameliorating disease in a dif-
ferent EAE study [141].

OX40 is Necessary for Regulatory and Effector T cell
Function and Migration

By transferring allotype marked Treg in colitis, it has been
demonstrated that Tregs lacking OX40 are less able to localize
to the gut than their intact counterparts. Importantly, these are
then unable to control transfer colitis; co-transfer of intact
Tregs reduces weight loss, histological scores, T cells gut in-
filtration, and cytokine levels but these improvements are not
seen with OX40-deficient T cells despite normal in vitro pro-
liferation. Intriguingly, OX40 on transferred effector cells was
also a requirement for the development of colitis, highlighting
its importance in both arms of the T cell response [66].

Conclusion

OX40 is predominantly expressed on activated T cells, and its
cognate ligand OX40L is expressed on activated antigen-
presenting cells, but also activated T cells, some endothelia
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and mast T cells. Their interaction serves to increase the
proliferation and longevity of effector T cells, increase
production of effector cytokines, (usually) suppress regu-
latory function, preserve cellular memory and facilitate
migration. There is evidence for increased expression
and signaling through the OX40-OX40L receptor-ligand
pair in a wide variety of human autoimmune diseases
and in several this correlates with established measures
of disease severity.

In the majority of animal models of autoimmunity, OX40-
OX40L inhibition ameliorates disease; OX40 agonism ap-
pears to be more time-specific with increased autoimmunity
in some instances and amelioration in others. This difference
may be due to differential expansion of regulatory or effector
compartments, different cytokine milieu or variable blockade
of reverse OX40L signaling.

OX40-OX40L inhibition is therefore a logical ap-
proach for the targeted treatment of human autoimmune
disease (summarized in Box 1). Some recent work sug-
gests that OX40L blockade may be more effective than
OX40, but this requires further exploration. Questions
regarding optimal timing of administration, off-target
effects, the need for concurrent blockade of other co-
stimulatory molecules and the possibility of malignant
or infective complications with longer term use all
warrant consideration when considering further trials
(see also Box 2).

Box 1: Rationale for Targeting OX40-OX40L Interactions
in Autoimmunity

& OX40-OX40 ligand interactions form part of pathogenic
pathway in a number of human diseases and animal
models. Thus, whether aberrations in such interactions
form part of etiopathogenesis of autoimmunity themselves
as in constitutively OX40L expressing mice or whether
they are resultant on other pathways, preventing their ac-
tivation may ameliorate disease [52].

& As identified above, in certain models the effect of OX40L
blockade is superior to Tcell specific therapies alone [136,
135]

& A lack of severe side effects in the animal studies reported
above and the long-term relative health of OX40-deficient
mice and the single OX40-deficient human—with the ca-
veat of HHV8 infection—suggest a low side effect burden
[37, 71]. The one trial of humanized anti-OX40L did not
cause significant side effects [142].

& OX40-L should provide targeting to areas of immune ac-
tivity. Expression is largely confined to activated cells and
especially autoantigen-specific cells [28, 29]. Such site-
specificity has been demonstrated clinically by OX40 up-
regulation on the T cells of inflamed tissue but not

peripheral blood in human colitis and in rheumatoid ar-
thritis [112, 26].

& An ideal therapy in autoimmunity is the re-establishment
of immune tolerance. The observation that activation
through OX40L may render T cells resistance to regulato-
ry signals makes this a logical target [10, 112]. Further, in
systems such as CD40L-deficient islet cell allograft recip-
ients, OX40 agonism or blockade alone is enough to de-
termine graft tolerance [143].

& Migration of activated T cells across endothelia appears to
be at least partly dependent on OX40-OX40L [38, 144].
This observation, coupled with apparent selective tissue
expression in certain autoimmune disease states (e.g. [97])
suggests that inhibition of the interaction might reduce
migration into inflamed areas. Work in EAE mice sug-
gests that pathogenic T cells persist after OX40 blockade,
but do not migrate to target sites [132].

& OX40-L blockade appears effective after disease onset—
e.g. in a diabetes model [119]. Although several animal
studies have demonstrated that OX40-L inhibition may
ameliorate autoimmunity, many have used OX40/L block-
ade at, or before, disease onset: something that differs
from the clinical situation in which a patient will present
for treatment after symptom onset.

& Topical therapy is feasible and effective in mouse models
e.g. OX40-agonists intra-tumour [64] or intravitreal
OX40L blockade in a uveitis model [56].

Box 2: Potential Problems with Human OX40-OX40L
Therapy

& The optimal timing of OX40 blockade remains unclear: it
is proposed that OX40-L interaction is one a series of
time-dependent checkpoints in the activation of CD4+ T
cells [134]. In animal models of autoimmunity, timing of
administration of OX40-L blockade can be critical and
determine success [119].

& Agonism of OX40 can both ameliorate or exacerbate au-
toimmunity in animal models, and timing of administra-
tion can determine its effect [60, 138]. Whilst such timing
is feasible in animal models, it is difficult to see its trans-
lation into human therapy; further, in contrast to mice,
human Treg do not express OX40 at rest and it is therefore
possible that a tolerogenic effect might not be seen at all.

& OX40-L interactions represent but one of many co-
stimulatory processes between T cells and antigen-
presenting cells. In some animal modelsmultiple blockade
is required for a full protective effect e.g. OX40 and CD28
[140, 129] or OX40 and CD30 [136]. Whether multiple
blockades would be required in human work remains un-
certain but may underlie the failure of an anti-OX40L trial
in asthma [142].
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& Host responses may develop against therapeutic antibod-
ies, especially given a tendency to autoimmunity. Such
problems have been reported in the development of ago-
nistic OX40L fusion protein [145]. However, such anti-
bodies were not generated in a trial of OX40L blockade
[142]. Alternative approaches include small molecules
[146] or targeting cytotoxic drugs through OX40 [125,
28].

& Few studies have addressed the effects of OX40-L block-
ade withdrawal. A typical response would be for recur-
rence of the suppressed response: in one study that used
OX40 blockade to prevent skin allograft rejection, graft
loss occurred weeks after cessation [74]. Details are lack-
ing in autoimmunity.

& Recipients of OX40 blockade may become vulnerable to
infection or malignancy. The recurrent Kaposi’s sarcoma
and visceral leishmaniasis manifest in human OX40 defi-
ciency are concerning [37]. However, in OX40L deficient
mice, there is no increased susceptibility to Leishmania
[147], no overt susceptibility to infection is seen in
OX40-deficient mice [71], and infective complications
were not reported in human OX40L blockade [142].

& The typical net effect of OX40-L blockade is in a reducing
T cell-mediated effector function, however there is a pos-
sibility of losing tolerance or exacerbating disease. In T
cell transfer colitis, only intact, but not OX40-deficient,
Treg cells could control inflammation [66]. Examples of
unexpected disease exacerbation include in murine anti-
GBM nephritis [129] and murine experimental autoim-
mune uveoretinitis [130].

& Differences in OX40 expression between mouse and
humans warrant caution in translating therapy.
Expression of OX40 is constitutive on some populations
of Treg in mice but is only induced in humans [8].
‘Wildtype’ humans are also likely to be significantly more
antigen-experienced than laboratory mice. Differences in
prior antigen exposure were thought to have been behind
the lethal idiosyncratic reactions that resulted in deaths in
early human trials of the CD28 super-agonist TGN1412,
though analogous problems are yet reported with OX40
agonists [148, 149].

& The various genetics studies detailed above regarding
TNFSF4 variants in SLE, and associated variable
OX40L expression make variable responses to blockade
likely, especially between different ethnic groups [84].

& The full spectrum of functions of OX40-OX40L interac-
tions is incompletely understood. Whilst of the molecules
is not required for life, off-target effects of their blockade
must be considered outside of known effects on athero-
sclerosis [150]. For example, OX40 blockade in CIA re-
vealed reductions in osteoclastogenesis and that OX40L
deficient mice have thinner, shorter bones than intact con-
trols [135].
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